首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The aims of this work were to determine the influence of chronic electroconvulsive shock (ECS) on presynaptic 5-HT(1A) receptor function, postsynaptic 5-HT(1A) receptor function in hippocampus and hypothalamus, and presynaptic 5-HT(1B) receptor function in hippocampus and hypothalamus. This represents part of an on-going study of the effects of ECS on serotonergic receptor activity in selected brain areas which may be relevant to the effects of electroconvulsive therapy (ECT) in humans. Chronic ECS reduced the ability of the 5-HT(1A) receptor agonist 8-hydroxy-2(di-n-propylamino)tetraline (8-OH-DPAT) (0.2 mg/kg s.c.) to decrease 5-HT levels in hypothalamus as shown by in vivo microdialysis, indicative of a reduction in sensitivity of presynaptic 5-HT(1A) autoreceptors. The ability of the 5-HT(1B) receptor antagonist GR 127935 (5 mg/kg s.c.) to increase 5-HT levels in both hippocampus and hypothalamus was unaffected by chronic ECS. 8-OH-DPAT (0.2 mg/kg s.c.) increased cyclic AMP levels in hippocampus measured by in vivo microdialysis approximately 2-fold. The degree of stimulation of cyclic AMP formation was not altered by chronic ECS. However the cyclic AMP response to forskolin (50 micro M) administered via the microdialysis probe, which was approximately 4-fold of basal in sham-treated rats, was almost completely abolished in ECS-treated rats. Since this indicates that either adenylate cyclase catalytic unit activity or Gs protein activity is reduced in the hippocampus after chronic ECS, the lack of change in 8-OH-DPAT-induced cyclic AMP formation may be taken as possible evidence of an increase in sensitivity of postsynaptic 5-HT(1A) receptors in the hippocampus by chronic ECS. Chronic ECS increased basal plasma levels of corticosterone, ACTH and oxytocin. The ACTH response to s.c. injections of 0.2 mg/kg or 0.5 mg/kg 8-OH-DPAT was reduced by chronic ECS. Postsynaptic 5-HT(1A) receptor activity in the hypothalamus, in contrast to the hippocampus, thus appears to be desensitized after chronic ECS. We conclude that chronic ECS has regionally specific effects on both pre- and post-synaptic 5-HT(1A) receptors, but, in contrast to some antidepressant drugs, does not affect presynaptic 5-HT(1B) receptor activity.  相似文献   

2.
Serotonin (5-HT)1A receptor agonism may be of interest in regard to both the antipsychotic action and extrapyramidal symptoms (EPS) of antipsychotic drugs (APD) based, in part, on the effect of 5-HT1A receptor stimulation on the release of dopamine (DA) in the nucleus accumbens (NAC) and striatum (STR), respectively. We investigated the effect of R(+)-8-hydroxy-2-(di-n-propylamino)-tetralin (R(+)-8-OH-DPAT) and n-[2-[4-(2-methoxyphenyl)-1-piperazinyl]ethyl]-n-(2-pyridinyl)cyclohexanecarboxamide trihydrochloride (WAY100635), a selective 5-HT1A receptor agonist and antagonist, respectively, on basal and APD-induced DA release. In both STR and NAC, R(+)-8-OH-DPAT (0.2 mg/kg) decreased basal DA release; R(+)-8-OH-DPAT (0.05 mg/kg) inhibited DA release produced by the 5-HT2A/D2 receptor antagonists clozapine (20 mg/kg), low dose risperidone (0.01 and 0.03 mg/kg) and amperozide (10 mg/kg), but not that produced by high dose risperidone (0.1 and 1.0 mg/kg) or haloperidol (0.01–1.0 mg/kg), potent D2 receptor antagonists. This R(+)-8-OH-DPAT-induced inhibition of the effects of clozapine, risperidone and amperozide was antagonized by WAY100635 (0.05 mg/kg). WAY100635 (0.1–0.5 mg/kg) alone increased DA release in the STR but not NAC. The selective 5-HT2A receptor antagonist M100907 (1 mg/kg) did not alter the effect of R(+)-8-OH-DPAT or WAY100635 alone on basal DA release in either region. These results suggest that 5-HT1A receptor stimulation inhibits basal and some APD-induced DA release in the STR and NAC, and that this effect is unlikely to be mediated by an interaction with 5-HT2A receptors. The significance of these results for EPS and antipsychotic action is discussed.  相似文献   

3.
The thyroid hormone triiodothyronine (T3) augments and accelerates the effects of antidepressant drugs. Although the majority of studies showing this have used tricyclics, a few studies have shown similar effects with the selective serotonin re-uptake inhibitor (SSRI) fluoxetine. In this study we investigated the effects of fluoxetine (5 mg/kg), T3 (20 μg/kg) and the combination of these drugs, each administered daily for 7 days, on serotonergic function in the rat brain, using in vivo microdialysis. Fluoxetine alone induced a trend towards desensitization of 5-HT1A autoreceptors as shown by a reduction in the effect of 8-OH-DPAT to lower 5-HT levels in frontal cortex, and desensitized 5-HT1B autoreceptors in frontal cortex. The combination of fluoxetine and T3 induced desensitization of 5-HT1B autoreceptors in hypothalamus. Since there is evidence linking hypothalamic function and depression, we suggest that this effect may partly account for the therapeutic efficacy of the combination of an SSRI and T3.  相似文献   

4.
The reproducibility of serotonin (5-HT) and (+)8-OH-DPAT-mediated inhibition of adenylyl cyclase activity was assessed in membranes, stimulated by forskolin, of rat frontal cortex postmortem as well as of human fronto-cortical, hippocampal and dorsal raphe tissues obtained from autopsy brains. The results revealed that differences between basal and forskolin-stimulated enzyme activities were still significant after 48 h postmortem in rat cortex and in all human brain regions up to 46 h after death. However, a decrease of about 17 and 26% in forskolin-stimulated adenylyl cyclase activity was observed at 24 and 48 h, respectively, in rat cortex. 5-HT and the 5-HT1A receptor agonist, (+)8-hydroxy-2(di-N-propylamino)tetraline (8-OH-DPAT), were able to inhibit forskolin-stimulated adenylyl cyclase activity in a dose-dependent manner for 48 h after death in rat and human brain. In rat cortex, both 5-HT and (+)8-OH-DPAT potencies (EC50, nM) and efficacies (percent of maximum inhibition capacity, %) varied significantly with postmortem delay. Conversely, in human tissues, postmortem delay and subject age did not modify agonist potencies and efficacies. Furthermore, a regionality of 5-HT potency and efficacy was revealed in the human brain. 5-HT was equally potent in cortex and raphe nuclei, while being more potent but less effective in hippocampus. (+)8-OH-DPAT was more active in hippocampus and raphe nuclei than in cortex. (+)8-OH-DPAT behaved as an agonist in all areas, as its efficacy was similar or greater than those obtained with 5-HT. The (+)8-OH-DPAT dose–response curve was completely reversed by 5-HT1A receptor antagonists in rat cortex and all human brain areas. In conclusion, we suggest here that differences between rat and human brain might exist at the level of postmortem degradation of 5-HT-sensitive adenylyl cyclase activity. In human brain, 5-HT1A receptor-mediated inhibition of adenylyl cyclase seems to be reproducible, suggesting that reliable experiments can be carried out on postmortem specimens from patients with neuropsychiatric disorders.  相似文献   

5.
Serotonin (5-HT) has been shown to phase shift circadian rhythms in mammals and to affect responses of the circadian system to light, but it is not clear which receptors are involved in these actions. We found that drugs which act as 5-HT1A receptor agonists suppressed photic responses of hamster SCN cells, but these drugs also exhibit high affinity for the recently cloned 5-HT7 receptor. We therefore studied the effects of 5-HT agonists and antagonists with differential affinities for 5-HT7 and 5-HT1A receptors on responses of hamster SCN cells to retinal illumination. We confirmed that the 5-HT receptor agonists 5-HT, 8-OH-DPAT and 5-CT, dose-dependently reduced photic activation of SCN cells. These effects could be blocked by co-application of antagonists with high affinities for 5-HT7 receptors: ritanserin or clozapine. The 5-HT1A/B/D antagonist, cyanopindolol, which is inactive at 5-HT7 receptors, did not antagonize the actions of 8-OH-DPAT. Selective 5-HT1A antagonists, WAY100635 and p-MPPI, had weak or no antagonist effects on the responses to 8-OH-DPAT in the SCN, but they effectively antagonized the actions of 8-OH-DPAT in the hippocampus. In the cerebellar cortex where few 5-HT7 receptors are present, ritanserin failed to antagonize the effects of 8-OH-DPAT. Our results indicate that the 5-HT7 receptor subtype plays a major role in mediating the effects of 5-HT on photic responses of SCN cells in the hamster.  相似文献   

6.
Summary (S)-UH-301 [(S)-5-fluoro-8-hydroxy-2-(dipropylamino)-tetralin, 0.5–4.0 mg/kg i.V.] did not significantly alter the firing rate of 5-hydroxytryptamine (5-HT) containing neurons in the dorsal raphe nucleus (DRN) as a group, although some individual cells were activated whereas others were depressed. However, (S)-UH-301 (2.0mg/kg i.v.) consistently reversed the inhibition of DRN-5-HT cells produced by the selective 5-HT1A receptor agonist (R)-8-OH-DPAT (0.5 g/kg i.v.) and the dose-response curve for this effect of (R)-8-OH-DPAT was markedly shifted to the right by pretreatment with (S)-UH-301 (1.0mg/kg i.v.). These results support the notion that (S)-UH-301 acts as an antagonist at central 5-HT1A receptors.  相似文献   

7.
(±)-1-(2,5-Dimethoxy-4-iodophenyl)-2-aminopropane hydrochloride (DOI, 1.25, 2.5 and 5 mg/kg), a serotonin (5-HT)2A/2C agonist, produced an inverted U-shaped increase in DA release in rat medial prefrontal cortex (mPFC) with a significant effect only at 2.5 mg/kg. This effect was completely abolished by M100907 (0.1 mg/kg), a 5-HT2A antagonist, and WAY100635 (0.2 mg/kg), a 5-HT1A antagonist, neither of which when given alone affected dopamine release. DOI (2.5 mg/kg), but not the 5-HT2C agonist Ro 60-0175 (3 mg/kg), attenuated clozapine (20 mg/kg)-induced mPFC dopamine release. These results suggest that 5-HT2A receptor stimulation increases basal cortical dopamine release via 5-HT1A receptor stimulation, and inhibits clozapine-induced cortical dopamine release by diminishing 5-HT2A receptor blockade.  相似文献   

8.
Summary The anticonflict activity of m-CPP, a non-selective agonist of 5-HT receptors, was studied in the drinking conflict test in rats. m-CPP administered in doses of 0.125–0. 5 mg/kg increased the number of punished licks, the maximum effect having been observed after a dose of 0.25 mg/kg. The anticonflict effect of m-CPP (0.25 mg/kg) was antagonized by the non-selective 5-HT antagonist metergoline (1–4 mg/kg) and by the -adrenoceptor blocker SDZ 21009 (2 and 4 mg/kg) with affinity for 5-HT1A and 5-HT1B receptors. On the other hand, the 5-HT1A receptor antagonist NAN-190 (0.5 and 1 mg/kg), the 5-HT2 receptor antagonist ritanserin (0.25 and 0.5 mg/kg), and the -blockers betaxolol (8 mg/kg) and ICI 118,551 (8 mg/kg) with no affinity for 5-HT receptors did not affect the effect of m-CPP. The effect of m-CPP was not modified, either, in animals with the 5-HT lesion produced by p-chloroamphetamine.These results suggest that the anticonflict effect of m-CPP described above results from stimulation of 5-HT1B receptors — most probably these which are located postsynaptically.  相似文献   

9.
We evaluated the effects of adrenalectomy (ADX) and replacement with glucocorticoid receptor agonists on serotonin (5-HT) 5-HT1A and 5-HT2 receptor binding in rat brain. 5-HT1A receptor binding was increased in the CA2–CA4 and the dentate gyrus of the hippocampus 1 week after ADX. This effect was prevented by the systemic administration of aldosterone (10 μg/μl/h) but not by RU28362 (10 μg/μl/h). No significant effect was observed on 5-HT2 receptor binding in rat cortex. The expression of 5-HT transporter mRNA was unchanged in the raphe nucleus as measured by in situ hybridization.  相似文献   

10.
The role of the serotonin (5-HT)1A receptor in the regulation of acetylcholine (ACh) release in the hippocampus was investigated using an in vivo microdialysis technique and a sensitive radioimmunoassay specific for ACh. The mean (±S.E.M.) basal ACh contents in the hippocampal perfusate of conscious, freely moving rats was 60 ± 4 (n = 29) and 3691 ± 265 fmol/30 min (n = 31), respectively, in the absence and presence of physostigmine (Phy) in the perfusion fluid. Systemic administration of 8-hydroxy-2-(di-n-propylamino)tetralin (8-OH-DPAT, 0.5 mg/kg, s.c.), a 5-HT1A agonist, significantly enhanced ACh release both in the presence and absence of Phy. Local application of 8-OH-DPAT (3–30 μM) into the hippocampus through the microdialysis probe significantly potentiated ACh release only in the presence of Phy, whereas no significant effect was observed in its absence. Pretreatment with NAN-190 (3 mg/kg, i.p.), a 5-HT1A antagonist, eliminated the increasing effect of systemically applied 8-OH-DPAT on ACh release, while NAN-190 alone had no effect on basal ACh release either in the absence or presence of Phy. Consistent with the time course of ACh release, systemic administration of 8-OH-DPAT evoked hyperlocomotion, which was reversed by NAN-190. However, local hippocampal application of 8-OH-DPAT did not affect the locomotor activity of the rats. These findings suggest that at least two different sites are involved in the 8-OH-DPAT-induced increase in the release of ACh in the rat hippocampus in vivo.  相似文献   

11.
The present study demonstrates the involvement of serotonin (5-HT) receptors of the 5-HT1A type in immunoinhibitory effect of 5-HTergic system of the brain. A selective agonist of 5-HT1A receptors 8-OH-DPAT (1 mg/kg) induces the immunosuppression, whereas 5-HT1A blockade with WAY-100635 (1 mg/kg) resulted in immunostimulation. It is also shown that immunomodulating effects of the drugs were dependent on psychoemotional status of animals acquired aggressive or submissive behavior under social conflict conditions. Activation of 5-HT1A receptors produced a decrease of the immunity in aggressive mice, whereas 5-HT1A receptor blockade caused immunostimulation in submissive animals.  相似文献   

12.
Sleep, waking, and EEG power spectra were investigated in rats after intrathecal (IT) administration of a 5-HT1A agonist and a 5-HT1A antagonist. Total slow wave sleep (TSWS) was increased and waking was decreased over the 8-h recording period after the 5-HT1A agonist 8-hydroxy-2-(di-n-propylamino)tetralin (8-OH-DPAT) (38 nmol). Within TSWS, SWS1 was unchanged while SWS-2 tended to be increased. The 5-HT1A antagonist 1-[2-Methoxyphenyl)-4-(4-(2-phthalimido)-butyl]piperazine hydrobomide (NAN-190) did not change and sleep/waking stages. Combined treatment with 8-OH-DPAT and NAN-190 increased variance. Following the combination, sleep and waking were not significantly different from control. SWS-2 tended to be reduced compared to the effect of 8-OH-DPAT alone. There were no systematic changes in neither waking nor TSWS fronto-frontal or fronto-parietal EEG power spectrum after any of the treatments, indicating that sleep quality was not changed. The results confirm earlier data suggesting that in the spinal cord, stimulation of 5-HT1A receptors have a dampening effect on transmission of sensory information, leading to deactivation and thereby increased sleep tendency. The reason why the 8-OH-DPAT effect was not clearly antagonized by the putative 5-HT1A antagonist NAN-190, may be due to the generally weak antagonistic and also partial agonistic effect of NAN-190 as reported in the literature.  相似文献   

13.
We investigated the possible role of 5-HT1A somatodendritic autoreceptors in the dorsal raphe nucleus (DRN) on salt intake response during basal conditions and following natriorexigenic challenge aroused by sodium depletion in rats. Acute systemic administration (76–1520 nmol/kg s.c.) of 8-OH-DPAT, a selective 5-HT1A somatodendritic autoreceptor agonist, induced a clear and dose-dependent preference for salt intake through free choice between water and 0.3 M NaCl simultaneously offered under basal conditions. Acute intra-DRN microinjection (7.5 nmol/rat) of 8-OH-DPAT significantly mimicked the acute systemic protocol in sodium-replete rats. Interestingly, microinjection of 8-OH-DPAT into the DRN raised an additional long-lasting increase of 0.3 M NaCl intake in sodium-depleted rats despite a high volume ingested 30 min after central injection. Conversely, chronic systemic treatment (1520 nmol/kg s.c.) with 8-OH-DPAT for 2 and 3 weeks or repeated intra-DRN microinjection (7.5 nmol/rat) evoked a significant long-term decrease in 0.3 M NaCl intake in sodium-depleted rats given only water and a sodium-deficient diet over the course of 24 h after furosemide injection. These results show a clear-cut involvement of the DRN 5-HT1A somatodendritic autoreceptors in sodium satiety signaling under basal conditions and during the consummatory phase of salt intake in sodium-depleted rats.  相似文献   

14.
The roles of endogenous serotonin (5-HT) and 5-HT receptor subtypes in regulation of acetylcholine (ACh) release in frontal cortex of conscious rats were examined using a microdialysis technique. Systemic administration (1 and 3 mg/kg, i.p.) of the 5-HT-releasing agent p-chloroamphetamine (PCA) elevated ACh output in a dose-dependent manner. Depletion of endogenous 5-HT by p-chlorophenylalanine significantly attenuated the facilitatory effect of PCA on ACh release. The PCA (3 mg/kg)-induced increase in ACh release was significantly inhibited by local application of the 5-HT4 receptor antagonists RS23597 (50 μM) and GR113803 (1 μM), while the 5-HT1A antagonist WAY-100135 (10 mg/kg, i.p.; 100 μM), 5-HT1A/1B/β-adrenoceptor antagonists (−)-pindolol (8 mg/kg, i.p.) and (−)-propranolol (150 μM), 5-HT2A/2C antagonist ritanserin (1 mg/kg, i.p.; 10 μM) and 5-HT3 antagonist ondansetron (1 mg/kg, i.p.; 10 μM) failed to significantly modify the effect of PCA. These results suggest that PCA-induced enhancement of 5-HT transmission facilitates ACh release from rat frontal cortex at least in part through 5-HT4 receptors.  相似文献   

15.
Summary Two specific 5-HT1A agonists, 8-OH-DPAT (0–300 g/kg), and buspirone (0–3.0 mg/kg), were tested on variable-interval, threshold-current self-stimulation of rat lateral hypothalamus. Buspirone produced a prolonged monotonic depression of responding, whereas the effects of 8-OH-DPAT were biphasic: 3.0 g/kg produced a sustained enhancement of responding while higher doses (100–300 g/kg) produced a relatively short-lasting depression. This biphasic pattern parallels previously reported effects of 8-OH-DPAT on food intake and on various other behaviours. Threshold-current self-stimulation is highly sensitive to alterations in dopaminergic transmission but relatively insensitive to changes in 5-HT. Thus the facilitatory effect of low-dose 8-OH-DPAT seems most plausibly interpreted in terms of enhanced dopaminergic transmission. This could be brought about by 5HT1A autoreceptor-mediated inhibition of 5-HT release and consequent disinhibition of dopaminergic transmission. Depression of self-stimulation by higher doses of 8-OH-DPAT may reflect the activity of 8-OH-DPAT at postsynaptic 5-HT receptors, with consequent inhibition of DA transmission. Suppression of responding after buspirone at all doses tested may reflect the action of this compound as a partial agonist at postsynaptic 5-HT receptors, and/or its effects on other systems.  相似文献   

16.
To gain further insight into the operation of 5-HT autoreceptor-mediated feedback control of 5-HT biosynthesis in serotonergic nerve terminal areas, the effect of the 5-HT1B and the 5-HT1A receptor agonists, TFMPP and 8-OH-DPAT, respectively, were investigated in the rat central nervous system (CNS) using in vivo and in vitro neurochemical approaches. TFMPP suppressed 5-HT synthesis (5-HTP accumulation after decarboxylase inhibition) both in vivo and in vitro. In vivo, the 5-HT synthesissuppressing effect of the drug (3.0 mg/kg, s.c.) proved resistant to either acute hemitransection or reserpine (5 mg/kg, i.p.; 90 min before) pretreatment. In vitro, in cortical, hippocampal and striatal slice preparations, TFMPP (0.1–10 μM) decreased 5-HT synthesis under basal and stimulated (30 mM K+) conditions, an effect which was unaltered by prior in vivo reserpine-induced 5-HT depletion but was attenuated in the presence of 5-HT1B receptor antagonists such as methiothepin, cyanopindolol or propranolol. The 8-OH-DPAT (0.1 mg/kg, s.c.)-induced decrease of 5-HT synthesis in vivo was abolished by hemitransection but resistant to acute reserpine pretreatment; 8-OH-DPAT (10 μM) did not decrease 5-HT synthesis in vitro. In conclusion, the present study confirms the importance of 5-HT autoreceptors in the feedback control of nerve terminal 5-HT biosynthesis. Specifically, our data indicate: (1) that the reduction of rat brain 5-HT synthesis after TFMPP is mediated by 5-HT1B autoreceptors located on the serotonergic axon terminals, and (2) that the effect is directly mediated and occurs independently of 5-HT neuronal firing and intact monoamine stores. © 1995 Wiley-Liss, Inc.  相似文献   

17.
The present study investigated alterations of the regulation of serotonin (5-hydroxytryptamine; 5-HT) release by 5-HT1A autoreceptors following single and repeated treatment with the 5-HT1A receptor agonist 8-hydroxy-2-(di-n-propylamino)-tetralin (8-OH-DPAT). Rats were pretreated with 8-OH-DPAT (1.0 mg/kg, s.c.) for 1, 7, or 14 days. The ability of an acute challenge administration of 8-OH-DPAT (1.0 mg/kg, i.p.) to decrease 5-HT release in the ventral striatum and the ventral hippocampus of rats maintained under chloral hydrate anesthesia was examined 24 h after the last pretreatment injection using in vivo microdialysis. The decrease of 5-HT release in the striatum produced by the challenge dose of the 5-HT1A receptor agonist was diminished following 7 and 14 days of pretreatment, but not after 1 day of pretreatment, with 8-OH-DPAT. In contrast, decreases of 5-HT release in the hippocampus by the 8-OH-DPAT challenge were not altered after 1 or 7 days of pretreatment, and only a trend for attenuation appeared after pretreatment for 14 days. The results of the present study indicate that desensitization of 5-HT1A autoreceptors regulating 5-HT release in different brain regions by repeated treatment with 8-OH-DPAT occurs at different rates. Synapse 25:107–116, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

18.
The interaction between serotonin (5-HT)1A and nicotinic cholinergic reptors in the regulation of spatial navigation behavior in the Morris water maze (WM) test was studied. Pretraining intraperitoneal (i.p.) injections of a combination of subthreshold doses of 8-hydroxy-2-(di-n-propylamino)tetralin (8-OH-DPAT) (a 5-HT1A receptor agonist) at 30 μg/kg and mecamylamine (a nicotinic cholinergic receptor antagonist) at 2500 μg/kg greatly impaired WM navigation to a hidden platform and slightly, but not statistically significantly, impaired WM navigation to a visible platform. Post-training i.p. injections of this combination had no effect on WM navigation performance. Serotonin depletion induced byp-chlorophenylalanine (PCPA) increased the performance impairing action of pretraining injected combination of 8-OH-DPAT 30 μg/kg and mecamylamine 2500 μg/kg. In trained rats combined injections of 8-OH-DPAT 30 μg/kg and mecamylamine 2500 μg/kg given pretraining had no effect on the navigation to a hidden platform located in a familiar or in a novel position. Pretraining trial injected combination of hexamethonium 2000 μg/kg (a peripherally acting nicotinic antagonist) and 8-OH-DPAT 30 μg/kg had no effect on navigation. These data suggest that a combined treatment with a 5-HT1a receptor agonist and a nicotinic cholinergic receptor antagonist more severely impair non-mnemonic acquisition performance processes than consolidation and retrieval processes.  相似文献   

19.
Summary The intrathecal (i.th., T 8–10) administration in conscious rats of the 5-hydroxytryptamine (5-HT)1A agonist 8-OH-DPAT (10 nmol), and to a lesser extent the 5-HT1B agonist CGS 12066B (6 nmol), resulted in a blood pressure reduction and a bradycardia. These responses were prevented by the i.th. pretreatment with substance P (SP) (6.5 nmol) and enhanced following pretreatment with the non-peptide SP antagonist CP-96,345 (10 nmol). The partial 5-HT1A agonist 8-MeO-CLEPAT (10 nmol) had by itself small cardiovascular effects. Following the pretreatment with SP, 8-MeO-CLEPAT caused a pressor response and a tachycardia whereas the opposite effects were observed following pretreatment with the SP antagonist. These results support the notion of a functional interaction between serotonergic and SP mechanisms at the level of the preganglionic sympathetic nerves in the spinal cord.  相似文献   

20.
R(+)-8-OH-DPAT (0.05, but not 0.025, 0.1, 1 mg/kg), a 5-HT1A receptor agonist, decreased l-3,4-dihydroxyphenylalanine (DOPA) accumulation in rat striatum following NSD-1015, an l-aromatic amino acid decarboxylase inhibitor. Amphetamine (1 mg/kg) increased striatal DOPA accumulation, an effect attenuated by R(+)-8-OH-DPAT (0.05 mg/kg). However, both amphetamine (1 mg/kg) and R(+)-8-OH-DPAT (0.05 mg/kg) decreased cortical DOPA accumulation; there were no additional decreases from their combination. Neither amphetamine (1 mg/kg), R(+)-8-OH-DPAT (0.05 mg/kg), or the combination, significantly affected DOPA accumulation in the nucleus accumbens. The significance of and possible mechanisms for these findings are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号