首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this paper a series of new 3-[4-(3-substituted phenyl)piperazin-1-yl]-1-(benzo[b]thiophen-3-yl)propanol derivatives is presented as a new class of antidepressant drugs with dual activity at 5-HT1A serotonin receptors and serotonin transporter. The 5-HT1A receptor and 5-HT transporter binding affinities of hydroxylic compounds 4 a-e have been determined. The new compounds present nanomolar affinity for both activities, and 1-(benzo[b]thiophen-3-yl)-3-[4-(3-methoxyphenyl)piperazin-1-yl]propan-1-ol (4d) shows values (nM) of Ki = 86 for 5-HT1A receptors and Ki = 76 for the serotonin transporter, respectively.  相似文献   

2.
Some benzo[b]thiophene derivatives with different substituents in positions 3 and 5 have been synthesized in order to obtain new dual antidepressant drugs. Compounds derived from 2-acetyl-3-methylbenzo[b]thiophene or 2-acetyl-3,5-dimethylbenzo[b]thiophene were prepared with two different phenylpiperazines (2-methoxy and 2-hydroxyphenylpiperazine) and evaluated for in vitro 5-HT1A receptor affinity and serotonin reuptake inhibition by radioligand assays. Compound 1-(3,5-dimethylbenzo[b]thiophen-2-yl)-3-[4-(2-methoxyphenyl)piperazin-1- yl]propan-1-ol (II.2.a) shows good values (nM) for both activities: Ki = 85 for 5-HT1A receptor and Ki = 120 for serotonin transporter.  相似文献   

3.
Novel omega-[4-(2-methoxyphenyl)piperazin-1-yl]ethyl derivatives 1-6 containing 4-, 5- and/or 6-arylsubstituted pyrid-2(1H)-one moiety were synthesized. All the new compounds were examined in vitro to assess their 5-HT1A and 5-HT2A receptor affinities. Compounds 3 and 4 with a 5- or a 6-phenylsubstituted pyridone ring demonstrated high 5-HT1A receptor affinity (Ki = 17 and 38 nM, respectively) and were tested in behavioral functional models. Derivative 3 can be regarded as a weak 5-HT1A postsynaptic antagonist, whereas 4 showed features of a weak partial agonist of 5-HT1A receptors (an agonist of pre- and an antagonist of postsynaptic ones). Binding affinities and in vivo results were discussed in comparison with those for the previously described tetramethylene analogs. The obtained results showed that the shortening of the aliphatic chain to two methylene groups exposed the intrinsic activity of the ligand 4 at 5-HT1A receptor sites.  相似文献   

4.
The benzamide PB12 (N-[2-[4-(4-chlorophenyl)piperazin-1-yl]ethyl]-3-methoxybenzamide) (1), already reported as potent and selective dopamine D(4) receptor ligand, has been modified searching for structural features that could lead to D(3) receptor affinity. Changes in the aromatic ring linked to N-1 piperazine ring led to the identification of 2-methoxyphenyl and 2,3-dichlorophenyl derivatives (compounds 6 and 13) displaying moderate D(3) affinity (K(i) = 145 and 31 nM, respectively). Intermediate alkyl chain elongation in compounds 1, 6, and 13 improved binding affinity for the D(3) receptor and decreased the D(4) affinity (compounds 18-26). Among these latter compounds, the N-[4-[4-(2,3-dichlorophenyl)piperazin-1-yl]butyl]-3-methoxybenzamide (19) was further modified with the replacement or of the 2,3-dichlorophenyl moiety (compounds 27-30) or of the 3-methoxyphenyl ring (compounds 31-41). In this way, we identified several high-affinity D(3) ligands (0.13 nM < K(i)'s < 4.97 nM) endowed with high selectivity over D(2), D(4), 5-HT(1A), and alpha(1) receptors. In addition, N-[4-[4-(2,3-dimethylphenyl)piperazin-1-yl]butyl]-3-methoxybenzamide (27) and N-[4-[4-(2,3-dichlorophenyl)piperazin-1-yl]butyl]-7-methoxy-2-benzofurancarboxamide (41) appear to be valuable candidates for positron emission tomography (PET) because of their affinity values, lipophilicity properties, and liability of (11)C labeling in the O-methyl position.  相似文献   

5.
In a search toward new and efficient antidepressants, 1-aryl-3-(4-arylpiperazin-1-yl)propane derivatives were designed, synthesized, and evaluated for 5-HT reuptake inhibition and 5-HT1A receptor antagonism. This dual pharmacological profile should lead, in principle, to a rapid and pronounced enhancement in serotoninergic neurotransmission and consequently to a more efficacious treatment of depression. The design was based on coupling structural moieties related to inhibition of serotonin reuptake, such as gamma-phenoxypropylamines, to arylpiperazines, typical 5-HT1A ligands. In binding studies, several compounds showed affinity at the 5-HT transporter and 5-HT1A receptors. Antidepressant-like activity was initially assayed in the forced swimming test with those compounds with Ki < 200 nM in both binding studies. Functional characterization was performed by measuring the intrinsic effect on rectal temperature in mice and also the antagonism to 8-OH-DPAT-induced hypothermia. The most efficacious compounds (12f, 23gE, 28a, and 28b) were further explored for their ability to antagonize 8-OH-DPAT-induced inhibition of forskolin-stimulated cAMP formation in a cell line expressing the 5-HT1A receptor. Furthermore, the antidepressant-like properties of 12f, 28a, and 28b, which exhibited 5-HT1A receptor antagonistic property in the latter study, were also evaluated in the learned helplessness test in rats. Among these three compounds, 28b (1-benzo[b]thiophene-3-yl)-3-[4-(2-methoxyphenyl)-1-ylpropan-1-ol) showed the higher affinity at both the 5-HT transporter and 5-HT1A receptors (Ki = 20 nM in both cases) and was also active in the other pharmacological tests. Such a pharmacological profile could lead to a new class of antidepressants with a dual mechanism of action and a faster onset of action.  相似文献   

6.
VN2222 (1-(benzo[b]thiophen-3-yl)-3-[4-(2-methoxiphenyl piperazin-1-yl]propan-1-ol) is a potential antidepressant with high affinity for the serotonin transporter and 5-HT(1A) receptors. Locally applied, VN2222 enhanced the extracellular 5-hydroxytryptamine (5-HT) concentration (5-HT(ext)) in rat striatum to 780% of baseline whereas its systemic administration (1-10 mg/kg s.c.) reduced 5-HT(ext). In the presence of citalopram, 8-OH-DPAT or VN2222 applied in medial prefrontal cortex reduced 5-HT(ext). Fluoxetine, VN2222, and 8-OH-DPAT suppressed the firing rate of dorsal raphe 5-HT neurons (ED(50): 790, 14.9, and 0.8 microg/kg i.v., respectively). These effects were antagonized by WAY 100635. Administration of VN2222 for 2 weeks desensitized 5-HT(1A) receptors as assessed by microdialysis and single-unit recordings (ED(50) values for 8-OH-DPAT were 0.45 and 2.34 microg/kg i.v. for controls and rats treated with 6 mg/kg day VN2222). These results show that VN2222 is a mixed 5-HT reuptake inhibitor/5-HT(1A) agonist that markedly desensitizes 5-HT(1A) autoreceptors. These properties suggest that it may be a clinically effective dual action antidepressant drug.  相似文献   

7.
A series of novel bicyclic 1-heteroaryl-4-[omega-(1H-indol-3-yl)alkyl]piperazines was synthesized and evaluated on binding to dopamine D(2) receptors and serotonin reuptake sites. This class of compounds proved to be potent in vitro dopamine D(2) receptor antagonists and in addition were highly active as serotonin reuptake inhibitors. Some key representatives showed potent pharmacological in vivo activities after oral dosing in both the antagonism of apomorphine-induced climbing and the potentiation of 5-HTP-induced behavior in mice. On the basis of the preclinical data, 8-{4-[3-(5-fluoro-1H-indol-3-yl)propyl]piperazin-1-yl}-4H-benzo[1,4]oxazin-(R)-2-methyl-3-one (45c, SLV314) was selected for clinical development. In vitro and in vivo studies revealed that 45c has favorable pharmacokinetic properties and a high CNS-plasma ratio. Molecular modeling studies showed that the bifunctional activity of 45c can be explained by its ability to adopt two different conformations fitting either the dopamine D(2) receptor pharmacophore or the serotonin transporter pharmacophore.  相似文献   

8.
Although several tritiated agonists have been used for radiolabelling serotonin (5-hydroxytryptamine, 5-HT)(1B) receptors in rats, data with a selective, radiolabelled antagonist have not been presented. Inasmuch as [3H]GR125,743 specifically labels cloned, human and native guinea pig 5-HT(1B) receptors and has been employed for characterization of cerebral 5-HT(1B) receptor in the latter species [Eur. J. Pharmacol. 327 (1997) 247.], the present study evaluated its utility for characterization of native, cerebral 5-HT(1B) sites in the rat. In homogenates of frontal cortex, [3H]GR125,743 (0.8 nM) showed rapid association (t(1/2)=3.4 min), >90% specific binding and high affinity (K(d)=0.6 nM) for a homogeneous population of receptors with a density (B(max)) of 160 fmol/mg protein. In competition binding studies, affinities were determined for 15 chemically diverse 5-HT(1B) agonists, including 2-[5-[3-(4-methylsulphonylamino)benzyl-1,2,4-oxadiazol-5-yl]-1H-indole-3-yl]ethylamine (L694,247; pK(i), 10.4), 5-carboxamidotryptamine (5-CT; 9.7), 3-[3-(2-dimethylamino-ethyl)-1H-indol-6-yl]-N-(4-methoxybenzyl)acrylamide (GR46,611; 9.6), 5-methoxy-3-(1,2,5,6-tetrahydro-4-pyridinyl)-1H-indole (RU24,969; 9.5), dihydroergotamine (DHE; 8.6), 5-H-pyrrolo[3,2-b]pyridin-5-one,1,4-dihydro-3-(1,2,3,6-tetrahydro-4-pyridinyl (CP93,129; 8.4), anpirtoline (7.9), sumatriptan (7.4), 1-[2-(3-fluorophenyl)ethyl]-4-[3-[5-(1,2,4-triazol-4-yl)-1H-indol-3-yl]propyl]piperazine (L775,606; 6.4) and (minus sign)-1(S)-[2-[4-(4-methoxyphenyl)piperazin-1-yl]ethyl]-N-methyl-3,4-dihydro-1H-2-benzopyran-6-carboxamide (PNU109,291; <5.0). Similarly, affinities were established for 13 chemically diverse antagonists, including N-[4-methoxy-3-(4-methylpiperazin-1-yl)phenyl]-3-methyl-4-(4-pyridyl)benzamide (GR125,743; pK(i), 9.1), (-)cyanopindolol (9.0), (-)-tertatolol (8.2), N-(4-methoxy-3-(4-methylpiperazin-1-yl)phenyl]-2'-methyl-4'-(5-methyl-1,2,4-oxadiozol-3-yl)biphenyl-4-carboxamide (GR127,935; 8.2), N-[3-(1,4-benzodioxan-5-yl)piperidin-4-yl]N-(indan-2yl)amine (S18127; 7.9), metergoline (7.8), (-)-pindolol (7.6), 1'-methyl-5-[2'-methyl-4'-(5-methyl-1,2,4-oxadiazol-3-yl)-biphenyl-4-ylcarbonyl]-2,3,6,7-tetrahydro-5H-spiro[furo[2,3-f]indole-3,4'-piperidine] (SB224,289; 7.5) and ketanserin (<5.0). These rank orders of affinity correspond to the binding profile of 5-HT(1B) rather than 5-HT(1D) receptors. The low affinities of L775,066 and PNU109,291 versus L694,247 should be noted, as well as the low affinity of ketanserin as compared to SB224,289. Finally, in line with species differences, the affinities of several ligands including CP93,129, RU24,969, (-)-pindolol and (-)-propanolol in rat 5-HT(1B) sites were markedly different to guinea pig 5-HT(1B) sites labelled with [3H]GR125,743. In conclusion, [3H]GR125,743 is an appropriate tool for the radiolabelling of native, rat 5-HT(1B) receptors and permitted determination of the affinities of an extensive series of ligands at these sites.  相似文献   

9.
Syntheses of novel 5-aryl-2,3,5,6-tetrahydro-3H-imidazo[2,1-b] [1,3,5]benzotriazepine derivatives 3a-g were performed by reacting 2-(2-aminoarylimino)imidazolidines 1a-b with corresponding aryl aldehydes. The compounds 3 incorporating aminal group upon treatment with 2,3-dichloro-5,6-dicyano-1,2-benzoqinone (DDQ) underwent the oxidative ring contraction to give 1-(4,5-dihydro-1H-imidazol-2-yl)-2-aryl-benzimidazoles 4a-g. Reactions of the compounds 1a-c with carbonyldiimidazole (CDI) afforded novel 2,3,5,6-tetrahydro-1H-imidazo[2,1-b] [1,3,5]benzotriazepin-5-ones 5a-c which when heated in boiling methanol gave the corresponding 1-(4,5-dihydro-1H-imidazol-2-yl)-1,3-dihydro-2H-benzimidazol-2-ones 6a-c. Radioligand binding studies using rat central imidazoline I2 receptors and alpha2-adrenoceptors demonstrated that benzimidazoles 4a-g display a low affinity (microM) for these receptors while benzimidazol-2-ones 6a-b elicited a moderate affinity for I2 receptor with Ki values of 490 and 220 nM, respectively.  相似文献   

10.
The selective dopamine D(3) receptor ligands N-4-[4-[(2,3-dichlorophenyl)piperazin-1-yl]butyl]1-methoxy-2-naphthalencarboxamide (1) and N-4-[4-[(2,3-dichlorophenyl)piperazin-1-yl]butyl]-7-methoxy-2-benzofurancarboxamide (2) were labeled with (11)C (t(1/2) = 20.4 min) as potential radioligands for the noninvasive assessment of the dopamine D(3) neurotransmission system in vivo with positron emission tomography (PET). The radiosynthesis consisted in an O-methylation of the des-methyl precursors N-[4-[4-(2,3-dichlorophenyl)piperazin-1-yl]butyl]-1-hydroxy-2-naphthalenecarboxamide (3) and N-[4-[4-(2,3-dichlorophenyl)piperazin-1-yl]butyl]-7-hydroxy-2-benzofurancarboxamide (4) with [(11)C]methyl iodide using tBuOK/HMPA and KOH/DMSO, respectively. The radiotracers [(11)C]1 and [(11)C]2 were obtained in 35 min with over 99% radiochemical purity, 74 +/- 37 GBq/mumol of specific radioactivity, 13% and 26% radiochemical yield (EOB, decay-corrected). Distribution studies in rats demonstrated that the new tracers [(11)C]1 and [(11)C]2 cross the blood-brain barrier and localize in the brain. However, the kinetics of cerebral uptake did not reflect the regional expression of the D(3) receptors. Despite their in vitro pharmacological profile, [(11)C]1 and [(11)C]2 do not display an in vivo behavior suitable to image D(3) receptor expression using PET.  相似文献   

11.
A series of omega-[4-(2-methoxyphenyl)piperazin-1-yl]alkyl derivatives with terminal pyrid-2(1H)-one fragments was synthesized and evaluated for their 5-HTIA and 5-HT2A activity. Enlargement of the aromatic amide system by its substitution with phenyl and/or p-methoxyphenyl in positions 4, 5 and/or 6, as well as modification of an aliphatic spacer allowed us to better understand structure-activity relationships in that group of compounds. The results of in vitro and in vivo experiments showed that only unsubstituted (1b) and monosubstituted (2b-4b) derivatives with the tetramethylene spacer demonstrated high 5-HTIA receptor affinity (Ki = 15-40 nM) and 5-HT1A/5-HT2A selectivity; they exhibited features of 5-HTIA antagonists. Those results suggested that the mode of substitution of the terminal amide moiety in the tested tetramethylene arylpiperazines was not significant for their 5-HTIA receptor activity. Conformational analysis calculations indicated that despite its great capacity for adaptation at 5-HTIA receptor site, an aryl substituent in position 4 in the pyrid-2(1H)-one ring destabilized the ligand-5-HT1A receptor complex formation in the case of trimethylene derivatives. Diarylsubstituted derivatives (5a-8a and 5b-8b) were characterized by a low 5-HT2A affinity (Ki > 446 nM) regardless of the spacer length, while those with the tetramethylene aliphatic chain had a higher 5-HT2A affinity than the remaining investigated compounds.  相似文献   

12.
Antipsychotic drugs act preferentially via dopamine D(2) receptor blockade, but interaction with serotonin 5-HT(1A) receptors has attracted interest as additional target for antipsychotic treatment. As receptor internalisation is considered crucial for drug action, we tested the propensity of antipsychotics to internalise human (h)D(2S) receptors and h5-HT(1A) receptors. Agonist-induced internalisation of hemaglutinin (HA)-tagged hD(2S) and HA-h5-HT(1A) receptors expressed in HEK293 cells was increased by coexpression of G-protein coupled receptor kinase 2 and beta-arrestin2. At the HA-hD(2S) receptor, dopamine, quinpirole and bromocriptine behaved as full agonists, while S(-)-3-(3-hydroxyphenyl)-N-n-propylpiperidine [(-)-3PPP] and sarizotan were partial agonists. The typical antipsychotic, haloperidol, and the atypical compounds, olanzapine, nemonapride, ziprasidone and clozapine did not internalise HA-hD(2S) receptors, whereas aripiprazole potently internalised these receptors (>50% relative efficacy). Among antipsychotics with combined D(2)/5-HT(1A) properties, bifeprunox and (3-exo)-8-benzoyl-N-[[(2S)7-chloro-2,3-dihydro-1,4-benzodioxin-1-yl]methyl]-8-azabicyclo-[3.2.1]octane-3-methanamine (SSR181507) partially internalised HA-hD(2S) receptors, piperazine, 1-(2,3-dihydro-1,4-benzodioxin-5-yl)-4-[[5-(4-fluorophenyl)-3-pyridinyl]methyl (SLV313) and N-[(2,2-dimethyl-2,3-dihydro-benzofuran-7-yloxy)ethyl]-3-(cyclopent-1-enyl)-benzylamine (F15063) were inactive. At the HA-h5-HT(1A) receptor, serotonin, (+)-8-hydroxy-2-(di-n-propylamino)tetralin [(+)-8-OH-DPAT] and sarizotan were full agonists, buspirone acted as partial agonist. (-)-Pindolol showed little activity and no internalising properties were manifested for the 5-HT(1A) receptor antagonist N-[2-[4-(2-methoxyphenyl)-1-piperazinyl]-ethyl]-N-(2-pyridinyl)cyclohexanecarboxamide (WAY100635). Most antipsychotics induced HA-h5-HT(1A) receptor internalisation, with an efficacy rank order: nemonapride>F15063>SSR181507>bifeprunox approximately SLV313 approximately ziprasidone>aripiprazole and potencies: SLV313>SSR181507 approximately F15063>bifeprunox approximately nemonapride approximately aripiprazole>ziprasidone. Interestingly, the internalisation induced by clozapine was only minimal, whereas aripirazole and bifeprunox were more potent for internalisation than for G-protein activation. These different profiles of antipsychotics for receptor internalisation may help to evaluate their potential therapeutic impact in the treatment of schizophrenia.  相似文献   

13.
New S-alkylated 5-(2-,3- and 4-methoxyphenyl)-4H-1,2,4-triazole-3-thiols (5a-c, 6a-c) and 5-(2-,3- and 4-methoxyphenyl)-4-phenyl-4H-1,2,4-triazole-3-thiols (7a-c, 8a-c, 9a-c) were synthesized by the alkylation of 3-(2-,3- and 4-methoxyphenyl)-4,5-dihydro-1H-1,2,4-triazole-5-thiones (3a-c) or 3-(2-,3- and 4-methoxyphenyl)-4-phenyl-4,5-dihydro-1H-1,2,4-triazole-5-thiones (4a-c) with 1-iodobutane or 1-(1,3-benzodioxol-5-yl)-2-bromo-1-ethanone, 2-bromo-1-(2,3-dihydro-1,4-benzodioxin-6-yl)-1-ethanone and 2-bromo-1-(3,4-dihydro-2H-1,5-benzodioxepin-7-yl)-1-ethanone. Compounds 3a-c and 4a-c were synthesized by the acylation of thiosemicarbazide or 4-phenyl-3-thiosemicarbazide with 2-, 3- and 4-methoxybenzoyl chlorides and further cyclization of the obtained acylderivatives 1a-c and 2a-c. The synthesized compounds 4a-c, 5a, 6a-c, 7a-c, 8a-c, 9b,c exhibit anti-inflammatory activity.  相似文献   

14.
Antagonist 5-HT(1A) PET ligands are available, but an agonist ligand would give more information about signal transduction capacity. Synthesis and in vivo evaluation of [O-methyl-(11)C]2-{4-[4-(7-methoxynaphthalen-1-yl)piperazin-1-yl]butyl}-4-methyl-2H-[1,2,4]triazine-3,5-dione (10), a potential high affinity (K(i) = 1.36 nM) 5-HT(1A) agonist PET tracer is described. Piperazine 10 is a 5-HT(1A) agonist with an EC(50) comparable to serotonin, based on cAMP formation and GTP(gamma)S binding assays. Radiosynthesis of [(11)C]10 has been achieved by reacting 2-{4-[4-(7-hydroxynaphthalen-1-yl)piperazin-1-yl]butyl}-4-methyl-2H-[1,2,4]triazine-3,5-dione (9) and [(11)C]CH(3)OTf in 25 +/- 5% (n = 15) yield at the end of synthesis (EOS). The chemical and radiochemical purities of [(11)C]10 were >99% with a specific activity 1500 +/- 300 Ci/mmol (n =15). PET studies in anesthetized baboon demonstrate [(11)C]10 specific binding in brain regions rich in 5-HT(1A) receptors. Binding of [(11)C]10 was blocked by WAY100635 and 8-OH-DPAT. The regional brain volumes of distribution (V(T)) of [(11)C]10 in baboon correlate with [(11)C]WAY100635 V(T) in baboons. These data provide evidence that [(11)C]10 is the first promising agonist PET tracer for the 5-HT(1A) receptors.  相似文献   

15.
The present study investigated the role of the 5-hydroxytryptamine (5-HT, serotonin)1D receptor as a presynaptic autoreceptor in the guinea pig. In keeping with the literature, the 5-HT1B selective antagonist, 1'-methyl-5-[[2'-methyl-4'-(5-methyl-1,2,4-oxadiazol-3-yl)biphenyl-4-yl]carbonyl]-2,3,6,7-tetrahydrospiro [furo[2,3-f]indole-3,4'-piperidine]oxalate (SB224289) potentiated [3H]5-HT outflow from pre-labelled slices of guinea pig cerebral cortex confirming its role as a presynaptic autoreceptor in this species. In addition, the 5-HT1D receptor-preferring antagonists, 1-[2-[4-(6-fluoro-1H-indol-3-yl)-3,6-dihydro-2H-pyridin-1-yl]-ethyl]-3-pyridin-4-yl-methyl-tetrahydro-pyrimidin-2-one (LY367642), (R)-1-[2-(4-(6-fluoro-1H-indol-3-yl-)-3,6-dihydro-1(2H)-pyridinyl)ethyl]-3,4-dihydro-1H-2-benzopyran-6-carboxamide (LY456219), (S)-1-[2-(4-(6-fluoro-1H-indol-3-yl-)-3,6-dihydro-1(2H)-pyridinyl)ethyl]-3,4-dihydro-1H-2-benzopyran-6-carboxamide (LY456220) and 1-[2-[4-(4-fluoro-benzoyl)-piperidin-1-yl]-ethyl]-3,3-dimethyl-1,2-dihydro-indol-2-one (LY310762), potentiated [3H]5-HT outflow from this preparation with potencies (EC50 values=31-140 nM) in the same range as their affinities for the guinea pig 5-HT1D receptor (Ki values=100-333 nM). The selective 5-HT1D receptor agonist, R-2-(4-fluoro-phenyl)-2-[1-[3-(5-[1,2,4]triazol-4-yl-1H-indol-3-yl)-propyl]-piperidin-4-ylamino]-ethanol dioxylate (L-772,405), inhibited [3H]5-HT outflow. In microdialysis studies, administration of either SB224289 or LY310762 at 10 mg/kg by the intraperitoneal (i.p.) route, potentiated the increase in extracellular 5-HT concentration produced by a maximally effective dose of the selective serotonin re-uptake inhibitor, fluoxetine (at 20 mg/kg i.p.). In addition, the 5-HT1D receptor-preferring antagonist and 5-HT transporter inhibitor, LY367642 (at 10 mg/kg i.p.), elevated extracellular 5-HT concentrations to a greater extent than a maximally effective dose of fluoxetine. It is concluded that the 5-HT1D receptor, like the 5-HT1B receptor, may be a presynaptic autoreceptor in the guinea pig.  相似文献   

16.
A series of twenty new N-[(4-arylpiperazin-1-yl)-propyl]-2-aza-spiro[4.4]nonane- and [4.5]decane-1,3-dione derivatives were synthesized and their anticonvulsant activity was evaluated in maximal electroshock (MES) and sc pentertazole (sc PTZ) tests. Their neurotoxicity was examined as well. Although no antiseizure properties of the investigated compounds were found in the MES model, eight of them were active in the sc PTZ test and three, namely 2-{3-[4-(2-fluorophenyl)-piperazin-1yl]-propyl}-2-aza-spiro[4.4]nonane-1,3-dione (7), 2-{3-[4-(2-fluorophenyl)-piperazin-1-yl]-propyl}-7-methyl-2-aza-spiro[4.5]-decane-1,3- dione (22) and 2-{3-[4-(3-chlorophenyl)-piperazin-1-yl]-propyl}-7-methyl-2-aza-spiro[4.5]-decane-1,3-dione (23) were classified to the Anticonvulsant Screening Program (ASP) 1 class. In addition, since the investigated compounds belong to a class of long-chain arylpiperazines, their serotonin 5-HT1A and 5-HT2A receptor affinity was determined. All the 2-OCH3 and 3-Cl derivatives were the most potent 5-HT1A receptor ligands (Ki = 24-143 and 70-107 nM, respectively), whereas the highest 5-HT2A affinity was observed for the unsubstituted and 3-Cl derivatives (Ki = 8-66 nM). No correlation between anticonvulsant and serotonergic activity was observed.  相似文献   

17.
Novel N-[3-(4-phenylpiperazin-1-yl)-propyl] derivatives of 3-spiro-cyclo-hexanepyrrolidine-2,5-dione (5-7) and 3-spiro-beta-tetralonepyrrolidine-2,5-dione (8-10) were synthesized and their 5-HT1A and 5-HT2A receptor affinities were determined. All tested compounds exhibited moderate to low 5-HT1A receptor affinity, whereas compounds 5-7 demonstrated high 5-HT2A receptor affinity (Ki = 27, 46 and 15 nM, respectively) and features of 5-HT2A receptor antagonists. Introduction of a beta-tetralone fragment in the 3-position of pyrrolidine-2,5-dione ring (8-10) did not affect 5-HT1A but decreased 5-HT2A receptor affinity.  相似文献   

18.
The present paper concerns the influence of conformational parameters on the recognition by rat 5-HT1A receptors of derivatives 4-[3-(5-methoxy-1,2,3,4-tetrahydronaphthalen-1-yl)propyl]-1-(2-pyridinyl)piperazine (1a) and 3-(5-methoxy-1,2,3,4-tetrahydronaphthalen-1-yl)-N-[2-(2-pyridyloxy)ethyl]propanamine (3b), two highly potent and selective 5-HT1A receptor ligands. Fifteen corresponding flexible and rigid analogues were prepared following several synthetic routes and were tested in binding assays with radioligands at 5-HT1A, D2, and alpha1 receptors from rat brain membranes. Among the new derivatives emerged trans-4-[4-(3-methoxyphenyl)cyclohexyl]-1-(2-pyridinyl)piperazine (trans-8a) and trans-N-[4-(3-methoxyphenyl)cyclohexyl]-2-(2-pyridyloxy)ethylamine (trans-8b). These compounds can be considered as conformationally constrained analogues of compounds 1a and 3a, respectively. In fact, compounds trans-8a and trans-8b showed a marked enhancement in 5-HT1A receptor affinity when compared to the corresponding cis isomers. Because compound trans-8a was a potent and selective 5-HT1A ligand (K(i), nM: 5-HT1A = 0.028, D2 = 2194, alpha1 = 767), it was chosen as a lead to prepare other analogues that were tested at 5-HT1A, D2, and alpha1 receptors from rat brain membranes, showing high affinity at the 5-HT1A and selectivity vs D2 and alpha1 receptors. Selected compounds were tested for their affinity at the human cloned 5-HT1A, alpha1a, alpha1b, alpha1d receptor subtypes. They were also submitted to the [35S]GTPgammaS binding assay stimulating the 5-HT1A receptor-mediated G-protein activation, therefore behaving as full or as partial agonists. Finally, the ability of iv administration of trans-8a to induce fore-paw treading in rats was evaluated in comparison with 8-OH-DPAT. Although the affinity (K(i)) and in vitro activity (pD'2) of trans-8a at the 5-HT1A receptor were higher than those of 8-OH-DPAT, the compound was less potent than the reference standard in inducing the symptom.  相似文献   

19.
A new generation of antidepressant agents could be represented by compounds with mixed activity as serotonin transporter (SERT) inhibitors and 5-HT(1A) receptor antagonists. We report here on the synthesis and evaluation of SERT and 5-HT(1A) receptor affinity of long-chain arylpiperazines obtained either by modifying 6-nitroquipazine into a long-chain arylpiperazine or by inserting a modified 6-nitroquipazine moiety or other structures endowed with SERT affinity into a long-chain arylpiperazine with 5-HT(1A) affinity. Among the compounds studied, 2-[4-(2-methoxyphenyl)piperazin-1-yl]-N-(6-nitro-2-quinolyl)ethylamine (21) and 1-(5-bromo-1,2,3,4-tetrahydronaphthalen-1-yl)-3-[4-(2-methoxyphenyl)-piperazin-1-yl]-1-propanone (24) showed good affinity values for SERT and 5-HT(1A) receptors (SERT: K(i) (inhibition constant)=71.8 and 62.8 nM; 5-HT(1A)K(i)=14.2 and 0.82 nM, respectively).  相似文献   

20.
It has been suggested that the combination of a selective serotonin reuptake inhibitor (SSRI) and a 5-HT1A receptor antagonist may facilitate the onset of the SSRIs antidepressant action. Accordingly, we describe the synthesis of a series of new 3-[(4-aryl)piperazin-1-yl]-1-arylpropane derivatives with structural modifications performed in Ar1, Ar2 and Z (Z is different functional groups) to obtain the sought dual activity. Compounds were evaluated for in vitro affinity at 5-HT1A receptors and 5-HT transporter. The antidepressant-like activity of derivatives with the higher affinity was assessed initially using the forced swimming test (FST). Compound 1-(2,4-dimethylphenyl)-3-[(2-methoxyphenyl)piperazin-1-il]-1-propa none (III.1.a) showed the best antidepressant-like activity which was further confirmed in the learned helplessness test.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号