首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Glioblastomas are highly vascular tumors which overexpress the angiogenesis factor vascular endothelial growth factor (VEGF). VEGF and its receptors, VEGF-R1 and VEGF-R2, have been shown to be necessary for embryonic angiogenesis as well as for tumor angiogenesis. Recently, the angiopoietin/Tie2 receptor system has been shown to exert functions in the cardiovascular system that are distinct from VEGF but are also critical for normal vascular development. To assess the potential role of Tie2 and its ligands angiopoietin-1 and angiopoietin-2 in tumor vascularization, we analyzed their expression pattern in human gliomas. Tie-2 was up-regulated in tumor endothelium compared to normal human brain tissue. We further observed cell type-specific up-regulation of the message for both angiopoietin-1 and angiopoietin-2 in gliomas. Whereas Ang-1 mRNA was expressed in tumor cells, Ang-2 mRNA was detected in endothelial cells of a subset of glioblastoma blood vessels. Small capillaries with few periendothelial support cells showed strong expression of Angiopoietin-2, whereas larger glioblastoma vessels with many periendothelial support cells showed little or no expression. Although the function of Tie2 and its ligands in tumor angiogenesis remains a subject of speculation, our findings are in agreement with a recently proposed hypothesis that in the presence of VEGF, local production of Ang-2 might promote angiogenesis.  相似文献   

2.
Vascular endothelial growth factor localization in the adult   总被引:16,自引:0,他引:16       下载免费PDF全文
Although vascular endothelial growth factor (VEGF) has been well studied in both developmental and pathological angiogenesis, its role in mature blood vessels is poorly understood. A growing body of observations, including the side effects of anti-VEGF therapies as well as the role of soluble VEGFR1 in preeclampsia, points to an important role for VEGF in maintenance of stable blood vessels. To better understand the potential function of VEGF in mature vessels, a survey of VEGF localization in adult mice was conducted. In adult VEGF-lacZ mice, VEGF was expressed in a cell-specific manner by cells overlying fenestrated and sinusoidal blood vessels, including podocytes, choroid plexus epithelium, and hepatocytes, as well as in tissues with high metabolic demands or with secretory functions, such as cardiac and skeletal myocytes, Leydig cells, prostatic epithelium, and salivary serous epithelium. VEGF was not detected in most endothelium but was specifically expressed by aortic endothelial cells where VEGFR2 was found to be phosphorylated, indicating an autocrine loop. Additionally, VEGFR2 was constitutively phosphorylated in the liver, lung, adipose, and kidney in vivo, providing evidence consistent with a role for VEGF in adult tissues. These observations support the concept that VEGF acts in the adult to stabilize mature vessels.  相似文献   

3.
Angiogenesis is an important physiological and pathological process. Bartonella is the only genus of bacteria known to induce pathological angiogenesis in the mammalian host. Bartonella-induced angiogenesis leads to the formation of vascular tumors including verruga peruana and bacillary angiomatosis. The mechanism of Bartonella-induced angiogenesis is not completely understood. Pericytes, along with endothelial cells, play an important role in physiological angiogenesis, and their role in tumor angiogenesis has been extensively studied. Abnormal signaling between endothelial cells and pericytes contributes to tumor angiogenesis and metastasis; however, the role of pericytes in Bartonella-induced angiogenesis is not known. In this study, after infecting human brain vascular pericytes (HBVPs) with Bartonella henselae, we found that these bacteria were able to invade HBVPs and that bacterial infection resulted in decreased pericyte proliferation and increased pericyte production of vascular endothelial growth factor (VEGF) when compared to the uninfected control cells. In the context of pathological angiogenesis, reduced pericyte coverage, accompanied by increased VEGF production, may promote endothelial cell proliferation and the formation of new vessels.  相似文献   

4.
Bartonellae are bacterial pathogens for a wide variety of mammals. In humans, bartonellosis can result in angioproliferative lesions that are potentially life threatening to the patient, including bacillary angiomatosis, bacillary peliosis, and verruga peruana. The results of this study show that Bartonella bacilliformis, the agent of Oroya fever and verruga peruana, produces a proteinaceous mitogen for human vascular endothelial cells (HUVECs) that acts in a dose-dependent fashion in vitro with maximal activity at >or=72 h of exposure and results in a 6- to 20-fold increase in cell numbers relative to controls. The mitogen increases bromodeoxyuridine (BrdU) incorporation into HUVECs by almost twofold relative to controls. The mitogen is sensitive to heat and trypsin but is not affected by the lipopolysaccharide inhibitor polymyxin B. The mitogen does not affect caspase 3 activity in HUVECs undergoing serum starvation-induced apoptosis. The Bartonella mitogen was found in bacterial culture supernatants, the soluble cell lysate fraction, and, to a lesser degree, in insoluble cell fractions of the bacterium. In contrast, soluble cell lysate fractions from closely related B. henselae, although possessing significant mitogenicity for HUVECs, resulted in only about a twofold increase in cell numbers. Biochemical and immunological analyses identified GroEL as a participant in the observed HUVEC mitogenicity. A B. bacilliformis strain containing the intact groES-groEL operon on a multicopy plasmid was generated and used to demonstrate a correlation between HUVEC mitogenicity and GroEL levels in the lysate (r(2) = 0.85). Antiserum to GroEL significantly inhibited mitogenicity of the lysate. Data also show that GroEL is located in the soluble and insoluble fractions (including inner and outer membranes) of the cell and is actively secreted by B. bacilliformis.  相似文献   

5.
The VEGF family of angiogenic ligands consists of VEGFA, VEGFB, VEGFC, VEGFD and placenta growth factor, PlGF. These growth factors bind in an overlapping pattern to three receptor tyrosine kinases, denoted VEGFR1, VEGFR2 and VEGFR3. Originally, VEGFA (the prototype VEGF) was described as a master regulator of vascular endothelial cell biology in vitro and in vivo, transducing its effect through VEGFR2. VEGFA, VEGFB and PlGF bind to VEGFR1, which is a negative regulator of endothelial cell function at least during embryogenesis. VEGFC and VEGFD were identified as lymphatic endothelial factors, acting via VEGFR3. With time, the very clear distinction between the roles of the VEGF ligands in angiogenesis/lymphangiogenesis has given way for a more complex pattern. It seems that the biology of the different VEGFR2 and VEGFR3 ligands overlaps quite extensively and that both receptor types contribute to angiogenesis as well as lymphangiogenesis. This paradigm shift in our understanding is due to the access to more sophisticated reagents and techniques revealing dynamic and plastic expression of ligands and receptors in different physiological and pathological conditions. Moreover, knowledge on the important role of VEGF coreceptors, the neuropilins, in regulating the responsiveness to VEGF has changed our perception on the mechanism of VEGF signal transduction. This review will primarily focus on the properties of VEGR3, its signal transduction and the resulting biology.  相似文献   

6.
Vascular endothelial growth factor A (VEGF-A) is an angiogenic growth factor that is a primary stimulant of the vascularization of solid tumors. In the tumor microenvironment, an upregulation of both VEGF and its receptors occurs, leading to a high concentration of occupied receptors on tumor vascular endothelium. Also, VEGF is involved in the development of the normal vascular network of the thymus. Little is known about VEGF expression in normal and malignant thymic tissue. Our purpose was to study the pattern and localization of VEGF expression in benign conditions of the thymus and thymoma to determine a possible correlation with VEGF receptors VEGFR1, VEGFR2 and microvascular density. All cases were positive for VEGF and VEGFR1, 2 in the epithelial cells, in a cytoplasmic, granular pattern. In the normal thymus, there were positive epithelial cells with subcapsular distribution and Hassall's corpuscle epithelial cells. In acute thymic involution, the positive fields were correlated with dilation and stasis of blood vessels and lymphocyte depletion. Rare positive cells were found in other types of involution; the myasthenic thymus showed an intense and diffuse reaction in lymphoid follicles of the medulla. A strong reaction for VEGF was observed in type B3 thymomas in neoplastic epithelial cells, normal endothelial cells, plasma within the blood vessels and focally in the stroma adjacent to the tumor. Receptors for VEGF were positive in neoplastic epithelial cells and endothelium. We hypothesized that VEGF acts as an immunoregulatory factor in the normal thymus and as proangiogenic and autocrine factor in thymomas.  相似文献   

7.
Bartonellosis, a biphasic disease caused by motile intracellular bacteria, produces in its tissue phase a characteristic dermal eruption (Verruga peruana) resulting from a pronounced endothelial cell proliferation. Bacteria are found in the interstitium and within the cytoplasm of endothelial cells (Rocha-Lima inclusion). The aim of this study was to determine if Bartonella bacilliformis produce a substance(s) that might be responsible for the vascular proliferation seen in the Verruga. This was assessed in an in vitro system using human endothelial cells and measuring proliferation as well as production of tissue type plasminogen activator after exposure to the endothelial cultures to B. bacilliformis extracts. Our results indicate that B. bacilliformis possess an activity that stimulates endothelial cell proliferation up to three times that of control. The factor(s) is specific for endothelial cells, heat sensitive, larger than 12 to 14 kd, not enhanced by heparin, has no affinity for heparin, and is precipitated by 45% ammonium sulfate. In addition, the B. bacilliformis extracts stimulate production of t-PA antigen in a concentration-dependent fashion. This activity is also heat sensitive and not lost after dialysis (12 to 14 kd). B. bacilliformis extracts, however, do not increase the production of plasminogen activator inhibitor. It was also determined that B. bacilliformis extracts stimulate the formation of new blood vessels in an in vivo model for angiogenesis. These results describe a bacterial factor(s) that stimulates two important steps in the development of new blood vessels in vitro, as well as the formation of new blood vessels in vivo. Determining the mechanism of action, combined with a complete characterization of this factor(s), may help in understanding the pathogenesis not only of the Verruga and angiogenesis in general but also the recently described Cat-Scratch-associated epithelioid hemangiomas in patients with AIDS and Kaposi sarcoma.  相似文献   

8.
Angiogenesis, a process related to tumor growth and malignancy, is stimulated by several growth factors. Among these is vascular endothelial growth factor (VEGF), which acts on endothelial cells by binding with 2 specific receptors, VEGFR1 and VEGFR2. Recent studies have demonstrated that VEGF expression is correlated with microvessel density (MVD) and tumor progression. Digestive endocrine tumors are heterogeneous neoplasms exhibiting variable biological aggressiveness and behavior that often are not predictable on morphologic grounds alone. The aims of this study were to evaluate the expression of VEGF, VEGFR1, and VEGFR2 in digestive endocrine tumors and to examine its correlation with MVD and malignancy. A total of 84 specimens from endocrine neoplasms and normal gut and pancreatic tissue were immunohistochemically studied using specific antibodies directed against VEGF, VEGFR1, VEGFR2, endothelial antigens, and gastroenteropancreatic hormones. Ultrastructural immunocytochemistry was performed to identify the cellular localization of VEGF and the VEGFRs. In normal tissues, VEGF immunoreactivity was detected in G cells and PP cells. Ultrastructurally, VEGF was localized within secretory granules. The VEGFRs were not significantly expressed by normal endocrine cells. VEGF-immunoreactive (IR) cells were detected in 40 of 83 tumors, mainly G cell and enterochromaffin cell neoplasms. VEGFR1-IR cells were found in 44 of 82 tumors, and VEGFR2-IR cells were found in 55 of 82 tumors, with no predilection for any specific tumor type. The expression of VEGF and its receptors did not correlate with MVD or malignancy. These results suggest that in normal tissues, endothelial functions may be regulated by VEGF produced by some endocrine cells and that a VEGF/VEGFR binding mechanism may be involved in tumorigenesis, but not in tumor progression and aggressiveness.  相似文献   

9.
Heart failure is a cause of pulmonary vasoconstriction and remodelling, leading to pulmonary hypertension (PH) and decreased survival. The pathobiology of PH in heart failure remains incompletely understood. We investigated pulmonary vascular function and signalling molecules in early stage PH secondary to experimental heart failure. Eight beagle dogs with overpacing-induced heart failure underwent haemodynamic assessment and postmortem pulmonary arterial reactivity, morphometry and quantification of genes encoding for factors involved in vascular reactivity and remodelling: endothelin-1 (ET-1), ETA and ETB receptors, vascular endothelial growth factor (VEGF), VEGF receptors 1 and 2 (VEGFR1 and VEGFR2), endothelial nitric oxide synthase, angiopoietin-1, bone morphogenetic protein receptors (BMPR1A and BMPR2), serotonin transporter (5-HTT) and the 5-HT(2B) receptor. Overpacing was associated with a decrease in cardiac output and an increase in pulmonary vascular pressures. However, there were no changes in pulmonary vascular resistance or in arteriolar medial thickness. There were increased expressions of genes encoding for ET-1, ETB, VEGF and VEGFR2, while expression of the other genes analysed remained unchanged. In vitro, pulmonary arteries showed decreased relaxation and increased reactivity, while systemic mammary arteries were unaffected. Early PH in heart failure is characterized by altered vasoreactivity and increased ET-1/ETB and VEGF/VEGFR2 signalling.  相似文献   

10.
The bursa of Fabricius is a lymphoid organ of the chick which plays an important role in the development of the immune system. The role of angiogenic factors in the development of the vascular system of this organ has been poorly investigated. Vascular endothelial growth factor (VEGF) is a major regulator of endothelial cell proliferation, angiogenesis and vascular permeability, and its activities are mediated by two receptors, VEGFR-1 and VEGFR-2. In this study we have investigated by immunohistochemistry the VEGF and VEGFR-2 immunoreactivity in developing bursa of Fabricius. Starting from day 10 of incubation, the endodermal epithelium reacts with VEGF and gives rise to the lymphoid follicles, while the vascular endothelium reacts with VEGFR-2. These data support the view that VEGF acts as a paracrine stimulator of angiogenesis in the avian embryo and confirm the requirement of the endodermal layer for the normal formation of blood vessels by mesodermal cells.  相似文献   

11.
Expression of angiogenic and lymphangiogenic factors by tumours may influence the route of metastatic spread. Vascular endothelial growth factor (VEGF) is a regulator of tumour angiogenesis, but studies of the inhibition of solid tumour growth by neutralizing anti-VEGF antibodies indicated that other angiogenic factors may be involved. VEGF-D may be an alternative regulator because like VEGF it is angiogenic and it activates VEGF receptor-2 (VEGFR-2), an endothelial cell receptor which is a key signalling molecule in tumour angiogenesis. This study reports the generation of monoclonal antibodies to the receptor-binding domain of VEGF-D and the use of these antibodies to localize VEGF-D in malignant melanoma. VEGF-D was detected in tumour cells and in vessels adjacent to immunopositive tumour cells, but not in vessels distant from the tumours. These findings are consistent with a model in which VEGF-D, secreted by tumour cells, activates endothelial cell receptors and thereby contributes to the regulation of tumour angiogenesis and possibly lymphangiogenesis. In addition, VEGF-D was detected in the vascular smooth muscle, but not the endothelium, of vessels in adult colon. The endothelium of these vessels was negative for VEGFR-2 and VEGFR-3. As VEGF receptors can be up-regulated on endothelium in response to vessel damage and ischaemia, these findings of a specific localization of VEGF-D in smooth muscle of the blood vessels suggest that VEGF-D produced by vascular smooth muscle could play a role in vascular repair by stimulating the proliferation of endothelial cells.  相似文献   

12.
Signaling pathways induced by vascular endothelial growth factor (review)   总被引:7,自引:0,他引:7  
Vasculogenesis and angiogenesis are the mechanisms responsible for the development of the blood vessels. Angiogenesis refers to the formation of capillaries from pre-existing vessels in the embryo and adult organism, while vasculogenesis is the development of new blood vessels from the differentiation of endothelial precursors (angioblasts) in situ. Vascular endothelial growth factor (VEGF) family members are major mediators of vasculogenesis and angiogenesis both during development and in pathological conditions. VEGF has a variety of effects on vascular endothelium, including the ability to promote endothelial cell viability, mitogenesis, chemotaxis, and vascular permeability. It mediates its activity mainly via two tyrosine kinase receptors, VEGFR-1 (flt-1) and VEGFR-2 (flk-1/KDR), although other receptors, such as neuropilin-1 and -2, can also bind VEGF. Another tyrosine kinase receptor, VEGFR-3 (flt-4) binds VEGF-C and VEGF-D and is more important in the development of lymphatic vessels. While the functional effects of VEGF on endothelial cells has been well studied, not as much is known about VEGF signaling. This review summarizes the different pathways known to be involved in VEGF signal transduction and the biological responses triggered by the VEGF signaling cascade.  相似文献   

13.
Experimental evidence has shown, both in vitro and in animal models, that neoplastic growth and subsequent metastasis formation depend on the tumor's ability to induce an angiogenic switch. This requires a change in the balance of angiogenic stimulators and inhibitors. To assess the potential role of angiogenesis factors in human thyroid tumor growth and spread, we analyzed their expression by semiquantitative RT-PCR and immunohistochemistry in normal thyroid tissues, benign lesions, and different thyroid carcinomas. Compared to normal tissues, in thyroid neoplasias we observed a consistent increase in vascular endothelial growth factor (VEGF), VEGF-C, and angiopoietin-2 and in their tyrosine kinase receptors KDR, Flt-4, and Tek. In particular, we report the overexpression of angiopoietin-2 and VEGF in thyroid tumor progression from a prevascular to a vascular phase. In fact, we found a strong association between tumor size and high levels of VEGF and angiopoietin-2. Furthermore, our results show an increased expression of VEGF-C in lymph node invasive thyroid tumors and, on the other hand, a decrease of thrombospondin-1, an angioinhibitory factor, in thyroid malignancies capable of hematic spread. These results suggest that, in human thyroid tumors, angiogenesis factors seem involved in neoplastic growth and aggressiveness. Moreover, our findings are in keeping with a recent hypothesis that in the presence of VEGF, angiopoietin-2 may collaborate at the front of invading vascular sprouts, serving as an initial angiogenic signal that accompanies tumor growth.  相似文献   

14.
Dong X  Qiu XS  Wang EH  Li QC  Gu W 《中华病理学杂志》2003,32(2):128-132
目的 探讨血管内皮生长因子C(VEGF C)和受体 (VEGFR) 3在人非小细胞肺癌(NSCLC)组织中的表达及其与微血管、微淋巴管形成、淋巴转移、预后之间的关系。方法 对 76例人NSCLC及相应癌旁组织行VEGF C、VEGFR 3及CD34免疫组织化学染色链霉素抗生物素蛋白 过氧化物酶 (SP)法检测 ,进行淋巴管密度计数、微血管密度 (MVD)计数 ,并结合临床和病理资料进行分析。结果 NSCLC中 ,VEGF C的表达与肺癌分化程度负相关 (P =0 0 0 9)。VEGF C和VEGFR 3的表达水平与淋巴结转移呈正相关 (分别P =0 0 0 8,P =0 0 13) ,与淋巴浸润呈正相关 (分别P =0 0 2 7,P =0 0 2 0 )。VEGF C的表达与VEGFR 3在肺癌细胞中的表达呈正相关 (P =0 0 0 9)。VEGF C与淋巴管密度 (P =0 0 0 6 )、MVD(P =0 0 4 6 )呈正相关。淋巴管密度与淋巴结转移 (P =0 0 10 )、淋巴浸润 (P =0 0 19)、TNM分期 (P =0 0 15 )呈正相关 ,MVD与血行转移 (P <0 0 0 1)、TNM分期 (P <0 0 0 1)呈正相关。VEGF C阳性表达与生存时间、5年生存率呈负相关 (P <0 0 0 1)。结论 NSCLC中 ,VEGF C通过自分泌方式作用于受体VEGFR 3,促进肺癌组织生长 ,抑制分化。VEGF C促使肺癌内淋巴管形成 ,促进肺癌淋巴结转移。VEGF C和VEGFR 3表达增高、淋巴管密度增加  相似文献   

15.
Key growth factor-receptor interactions involved in angiogenesis are possible targets for therapy of CNS tumors. Vascular endothelial growth factor (VEGF) is a highly specific endothelial cell mitogen that has been shown to stimulate angiogenesis, a requirement for solid tumor growth. The expression of VEGF, the closely related placental growth factor (PIGF), the newly cloned endothelial high affinity VEGF receptors KDR and FLT1, and the endothelial orphan receptors FLT4 and Tie were analyzed by in situ hybridization in normal human brain tissue and in the following CNS tumors: gliomas, grades II, III, IV; meningiomas, grades I and II; and melanoma metastases to the cerebrum. VEGF mRNA was up-regulated in the majority of low grade tumors studied and was highly expressed in cells of malignant gliomas. Significantly elevated levels of Tie, KDR, and FLT1 mRNAs, but not FLT4 mRNA, were observed in malignant tumor endothelia, as well as in endothelia of tissues directly adjacent to the tumor margin. In comparison, there was little or no receptor expression in normal brain vasculature. Our results are consistent with the hypothesis that these endothelial receptors are induced during tumor progression and may play a role in tumor angiogenesis.  相似文献   

16.
17.
Vascular endothelial growth factor-D (VEGF-D) promotes angiogenesis, lymphangiogenesis and metastatic spread via the lymphatics, however, the mode of VEGF-D action (e.g. paracrine vs. autocrine) was unknown. We analyzed VEGF-D action in human tumors and a mouse model of metastasis. VEGF-D was localized in tumor cells and endothelium in human non-small cell lung carcinoma and breast ductal carcinoma in situ. Tumor vessels positive for VEGF-D were also positive for its receptors, VEGF receptor-2 (VEGFR-2) and/or VEGFR-3 but negative for VEGF-D mRNA, indicating that VEGF-D is secreted by tumor cells and subsequently associates with endothelium via receptor-mediated uptake. The mature form of VEGF-D was detected in tumors demonstrating that VEGF-D is proteolytically processed and bioactive. In a mouse model of metastasis, VEGF-D synthesized in tumor cells became localized on the endothelium and thereby promoted metastatic spread. These data indicate that VEGF-D promotes tumor angiogenesis, lymphangiogenesis and metastatic spread by a paracrine mechanism.  相似文献   

18.
Neuropilin-1 Participates in Wound Angiogenesis   总被引:5,自引:0,他引:5       下载免费PDF全文
Angiogenesis, the formation of new capillaries from existing vasculature, plays an essential role in tissue repair. The rapid onset and predominance of proangiogenic factors optimizes healing in damaged tissues. One factor that directly mediates wound vessel angiogenesis is vascular endothelial growth factor (VEGF). Although much is known about the biology of VEGF and its cognate receptors, VEGFR1 and VEGFR2, the role of a recently identified co-receptor for VEGF, neuropilin-1, is not well understood. Using a murine model of dermal wound repair, we found that neuropilin-1 was abundantly expressed on new vasculature in healing wounds. Moreover, mice treated with anti-neuropilin-1 antibodies exhibited a significant decrease in vascular density within these wounds (67% decrease, P = 0.0132). In in vitro assays, VEGF induced formation of endothelial cord-like structures on collagen gel and endothelial cell migration toward VEGF was inhibited by antibodies directed against neuropilin-1. These results provide both in vitro and in vivo evidence for a critical role of neuropilin-1 in wound angiogenesis.  相似文献   

19.
Vascular permeability factor (VPF), also known as vascular endothelial growth factor (VEGF), plays an important role in the angiogenesis associated with the growth of many human and animal tumors. VPF/VEGF stimulates endothelial cell growth and increases microvascular permeability by interacting with two endothelial cell tyrosine kinase receptors, KDR and flt-1. We studied 16 cases of AIDS-associated Kaposi's sarcoma (KS), 2 cases of cutaneous angiosarcoma, and 6 cases of capillary hemangioma by in situ hybridization for expression of VPF/VEGF, KDR, and flt-1 mRNAs. We also performed immunohistochemical staining for VPF/VEGF protein in 15 cases. Tumor cells in KS and angiosarcoma strongly expressed KDR but not flt-1 mRNA. Endothelial cells in small stromal vessels in and around these tumors strongly expressed both KDR and flt-1 mRNAs. Tumor cells expressed VPF/VEGF mRNA strongly in only one case of KS, adjacent to an area of necrosis. This was also the only case in which the tumor cells stained substantially for VPF/VEGF protein. VPF/VEGF mRNA and protein were, however, strongly expressed by squamous epithelium in areas of hyperplasia and near areas of ulceration overlying tumors. VPF/VEGF mRNA was also expressed focally at lower levels by infiltrating inflammatory cells, probably macrophages. The strong expression of both KDR and flt-1 in small stromal vessels in and around tumors suggests that VPF/VEGF may be an important regulator of the edema and angiogenesis seen in these tumors. The strong expression of KDR by tumor cells in KS and angiosarcoma implies that VPF/VEGF may also have a direct effect on tumor cells. Tumor cells in four of six capillary hemangiomas strongly expressed both KDR and flt-1 mRNAs in contrast to the high level expression of only KDR observed in the malignant vascular tumors studied. Neither VPF/VEGF mRNA or protein were strongly expressed in capillary hemangiomas. VPF/VEGF and its receptors may play an important but as yet incompletely understood role in the pathogenesis of both benign and malignant vascular tumors.  相似文献   

20.
Surgical attenuation of a congenital portosystemic shunt (CPSS) results in increased liver mass, development of intrahepatic portal vasculature and improved liver function. Vascular endothelial growth factor (VEGF) is a key regulator of angiogenesis. The aim of this study was to investigate the role of VEGF and its receptor in the hepatic response to CPSS surgery. The study included 99 dogs with CPSS treated with either partial or complete suture attenuation. Forty-four dogs with partial attenuation underwent a second surgery for complete attenuation. The expression of VEGF and VEGF receptor 2 (VEGFR2) in biopsy samples of liver was assessed by immunohistochemistry with rabbit anti-human VEGF polyclonal antibody and mouse anti-human VEGFR2 monoclonal antibody. Expression of these molecules was graded. The proportion of samples expressing VEGF was significantly greater in samples from dogs with CPSS compared with control samples (P=0.04) and the proportion of samples expressing VEGFR2 was significantly greater in control samples compared with samples from dogs with CPSS (P=0.04). VEGF labelling grade decreased significantly (P=0.038) and VEGFR2 increased significantly (P=0.046) between first and second surgery. The decrease in VEGF may reflect transient expression, preferential expression of other factors, reperfusion of existing vessels and/or increased angiogenesis before surgery in the form of arterialization and subsequent reduction due to improved portal blood flow. Partial suture attenuation was associated with a degree of 'normalization' of VEGF and VEGFR2 expression when compared with the control samples. Further investigation is needed to provide more information on the hepatic response to CPSS surgery.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号