首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Kritzer MF  Adler A  Bethea CL 《Neuroscience》2003,122(3):757-772
The serotonergic and dopaminergic inputs to the corpus striatum in human and non-human primates participate in diverse sensorimotor, cognitive, and affective functions, are implicated in dysfunction in diseases such as Parkinson's disease and schizophrenia, and are targets for many of the drugs used to treat these disorders. Sex differences in the incidence and/or clinical course of these disorders and in the effectiveness of related dopaminergic and serotonergic drug therapies suggest that primate striatal indolamines and catecholamines are also influenced by gonadal hormones. However, while well studied in rats, relatively little is known about precisely how gonadal steroids modulate stratial dopamine and serotonin systems in primates. To begin to address this issue, the present studies explored the effects of ovarian steroids on the serotonergic and dopaminergic innervation densities of the caudate, putamen, and the nucleus accumbens in young adult rhesus monkeys. Using densitometry to quantify immunoreactivity for serotonin and for the catecholamine-synthesizing enzyme tyrosine hydroxylase, innervation densities were compared in identified, functionally specialized striatal subdomains across animals that were either ovariectomized or ovariectomized and supplemented with estradiol and/or progesterone, i.e. in a primate model of surgical menopause, with and without hormone replacement therapy. These analyses revealed clear examples of structure-, hemisphere-, and replacement regimen-specific effects of changes in circulating steroids on the densities of each afferent system examined. Further, the predominantly stimulatory effects observed occurred in striatal areas analogous to those suspected as sites of localized dopamine and/or serotonin compromise in Parkinson's disease and schizophrenia. Thus, the hormone actions identified in this study could hold relevance for some of the sex differences identified in relation to these disorders, including the findings of decreased incidence and/or symptom severity in women that have led to hypotheses of protective effects for estrogen.  相似文献   

2.
Sex differences in the magnitude of response to thermal and tactile stimuli have been demonstrated in both clinical and animal studies. Female rats typically display lower thresholds to painful stimuli and display more robust responses following nerve injury as compared with males. There is a body of evidence implicating the sex hormones in mediating this sex difference. In the present study, we sought to determine which gonadal hormones were involved in mediating the observed female hypersensitivity in female rats both prior to and following experimental nerve root injury using a chronic hormone replacement paradigm. Female rats were ovariectomized and hormone pellets containing 17beta-estradiol, progesterone (P), 17beta-estradiol+progesterone or placebo were implanted s.c. Our results demonstrate that only the group of female rats that received progesterone alone maintained the hypersensitive phenotype following ovariectomy, compared with gonadally intact male rats. This result was observed both in response to thermal stimuli in non-injured female rats and to thermal and tactile stimuli following L5 nerve root ligation, a model of low back pain associated with lumbar radiculopathy. Postmortem analysis of serum gonadal hormone concentrations demonstrates that the hormonal manipulations were successful and the exogenous hormones were similar to physiological levels observed in the sham-ovariectomized controls. Taken together, these results demonstrate the critical role for progesterone in mediating enhanced female tactile and thermal hypersensitivity following L5 nerve root ligation.  相似文献   

3.
We review evidence that sex steroid hormones including estrogen, progesterone and testosterone are involved in the central neural control of breathing. Sex hormones may exert their effects on respiratory motoneurons via neuromodulators, in particular, the serotonergic system. Recent studies have shown that levels of serotonin (5HT) in the hypoglossal and phrenic nuclei are greater in female than in male rats. Serotonin-dependent plasticity in hypoglossal and phrenic motor output also differs in male and female rats. Changing levels of gonadal hormones throughout the estrus cycle coincide with changing levels of 5HT in respiratory motor nuclei, and gonadectomy in male rats results in a decrease in 5HT-dependent plasticity in respiratory motor output. We speculate that sex steroid hormones are critically involved in adaptations in the neural control of breathing throughout life, and that decreasing levels of these hormones with increasing age may have a negative influence on the respiratory control system in response to challenge.  相似文献   

4.
Gonadal hormones modulate fear acquisition, but less is known about the influence of gonadal hormones on fear extinction. We assessed sex differences and the influence of gonadal hormone fluctuations and exogenous manipulations of estrogen and progesterone on acquisition, extinction learning and extinction recall in a 3 day auditory fear conditioning and extinction protocol. Experiments were conducted on males and naturally cycling female rats. Regarding female rats, significant differences in fear extinction were observed between subgroups of females, depending on their phase of the estrous cycle. Extinction that took place during the proestrus (high estrogen/progesterone) phase was more fully consolidated, as evidenced by low freezing during a recall test. This suggests that estrogen and/or progesterone facilitate extinction. In support of this, injection of both estrogen and progesterone prior to extinction learning in female rats during the metestrus phase of the cycle (low estrogen/progesterone) facilitated extinction consolidation, and blockade of estrogen and progesterone receptors during the proestrus phase impaired extinction consolidation. When comparing male to female rats without consideration of the estrous cycle phase, no significant sex differences were observed. When accounting for cycle phase in females, sex differences were observed only during extinction recall. Female rats that underwent extinction during the metestrus phase showed significantly higher freezing during the recall test relative to males. Collectively, these data suggest that gonadal hormones influence extinction behavior possibly by influencing the function of brain regions involved in the consolidation of fear extinction. Moreover, the elevated fear observed in female relative to male rats during extinction recall suggests that gonadal hormones may in part play a role in the higher prevalence of anxiety disorders in women.  相似文献   

5.
Female Sprague-Dawley rats were ovariectomized at 13 months of age. Four groups received different regimens of estrogen or estrogen plus progesterone replacement beginning either immediately, 3 months, or 10 months after ovariectomy and were compared with non-hormone-treated controls. Eight to twelve months after ovariectomy, animals were trained on a delayed matching-to-position (DMP) spatial memory task. Long-term treatment with estrogen or estrogen plus progesterone significantly enhanced acquisition of the DMP task by aged animals after long-term loss of ovarian function. Weekly administration of estrogen and progesterone was at least as effective as, if not more effective than, continuous treatment with estrogen alone. In addition, treatment initiated 3 months, but not 10 months, after ovariectomy was as effective at enhancing DMP acquisition as continuous estrogen treatment initiated immediately after ovariectomy, suggesting a window of opportunity after the loss of ovarian function during which hormone replacement can effectively prevent the effects of aging and hormone deprivation on cognitive function. These findings suggest that repeated treatment with estrogen and progesterone initiated within a specific period of time after the loss of ovarian function may be effective at preventing specific negative effects of hormone deprivation on brain aging and cognitive decline.  相似文献   

6.
Recent studies using the water maze (WM) found marked sex differences in behavioral strategy employed in place learning tasks in adult rats. When a change in the platform position is introduced following learning the place of a platform (visible or hidden) in a different position, female rats escape to the newly positioned visible platform faster than males. Nitric oxide (NO) is implicated in place learning, and there are regional sex differences in its stable metabolites, NO(2)(-)+NO(3)(-), in rat brain. Furthermore, NO(2)(-)+NO(3)(-) levels are sensitive to ovariectomy in female rats. The effect of sex hormones on brain development and function is well documented. The present study was undertaken to study the effects of ovariectomy and hormonal manipulations on cognitive performance in a WM task designed to test differences in behavioral strategy in Sprague-Dawley rats (n=48) of both sexes. Some of the females rats were ovariectomised and received either hormone replacement (estrogen or progesterone alone or in combination) or the vehicle. Cortical and hippocampal NO(2)(-)+NO(3)(-) levels were determined after behavioral testing. There were no group differences in cognitive ability or non-cognitive factors such as motivation or swim speed. Males and intact females differed in their cognitive style, but hormonal manipulations in female rats did not affect this relative use of behavioral strategy. There was a correlation between performance on the trial where sex differences were most prominent and NO(2)(-)+NO(3)(-) levels in the cortex. Our results suggest that the activational effects of circulating gonadal hormones do not play a major role in sexually dimorphic cognitive styles.  相似文献   

7.
Brailowsky and Garcia (1999) proposed the existence of a relationship between epilepsy and addiction. To prove this hypothesis, pentylenetetrazol kindled rats were tested in the conditioned place preference (CPP) paradigm for their reaction to various addictive drugs with different modes of action (morphine, cocaine and ethanol). In separate experiments, locomotor activity and body temperature after application of the same drugs were tested in kindled and non-kindled rats. In the CPP experiment there were significant differences between both groups of rats. Non-kindled animals showed place preference to morphine (5.0 mg/kg) or cocaine (20.0 mg/kg). This reaction was abolished in the kindled rats. Moreover, control rats demonstrated aversion to 2.0 g/kg ethanol. However, ethanol aversion was not detectable in kindled rats. Moreover, there was no difference between non-kindled and kindled rats in locomotor activity and body temperature after morphine (1.0 and 5.0 mg/kg), cocaine (10.0 and 20.0 mg/kg), or ethanol (0.5 and 2.0 g/kg) application. This suggests alterations in reward systems as a consequence of kindling. It is hypothesised that GABAergic neurones in the ventral tegmental area might play a major role in the alterations found.  相似文献   

8.
The activity of dopamine neurons in the ventral tegmental area is modulated by excitatory (glutamatergic) and inhibitory (GABAergic) afferents. GABA, released by intrinsic neurons and by projection neurons originating in the nucleus accumbens and other regions, inhibits dopamine neurons via activation of GABA(A) and GABA(B) receptor subtypes. Using in vivo microdialysis in freely moving rats, we investigated the role of ventral tegmental area GABA(B) receptors in modulating levels of dopamine and glutamate within the ventral tegmental area, both in naive rats and in rats treated repeatedly with saline or amphetamine (5 mg/kg i.p., for 5 days). In naive rats, administration of a potent and selective GABA(B) receptor antagonist (CGP 55845A) into the ventral tegmental area elicited a concentration-dependent increase in dopamine levels, but did not alter glutamate levels. In rats tested 3 days after discontinuing repeated amphetamine administration, 50 microM CGP 55845A increased dopamine levels to a greater extent than in saline controls. This difference was no longer present in rats tested 10-14 days after discontinuing repeated amphetamine injections. CGP 55845A (50 microM) had no effect on glutamate levels in the ventral tegmental area of saline-treated rats. However, it produced a robust increase in glutamate levels in rats tested 3 days, but not 10-14 days, after discontinuing repeated amphetamine injections.These results suggest that somatodendritic dopamine release is normally under strong tonic inhibitory control by GABA(B) receptors. Repeated amphetamine administration enhances GABA(B) receptor transmission in the ventral tegmental area during the early withdrawal period, increasing inhibitory tone on both dopamine and glutamate levels. This is the first demonstration, in an intact animal, that drugs of abuse alter GABA(B) receptor transmission in the ventral tegmental area.  相似文献   

9.
The manner in which drug-evoked synaptic plasticity affects reward circuits remains largely elusive. We found that cocaine reduced NMDA receptor excitatory postsynaptic currents and inserted GluA2-lacking AMPA receptors in dopamine neurons of mice. Consequently, a stimulation protocol pairing glutamate release with hyperpolarizing current injections further strengthened synapses after cocaine treatment. Our data suggest that early cocaine-evoked plasticity in the ventral tegmental area inverts the rules for activity-dependent plasticity, eventually leading to addictive behavior.  相似文献   

10.
Sex differences in basal extracellular striatal dopamine concentrations in gonadectomized male and female rats have been reported previously. In the current experiment, estrous cycle-dependent variation, sex differences and the effect of gonadectomy on extracellular striatal dopamine concentrations were determined using quantitative microdialysis. Female rats were found to have significantly higher extracellular striatal dopamine concentrations in proestrus and estrus than in diestrus or after ovariectomy. In contrast, castration of male rats had no effect on extracellular striatal dopamine concentrations. Thus, endogenous ovarian hormones, but not testicular hormones, modulate extracellular striatal dopamine concentrations in rats.  相似文献   

11.
Cocaine sensitization is a marker for some facets of addiction, is greater in female rats, and may be influenced by their sex hormones. We compared the modulatory effects of endogenous or exogenous estradiol and progesterone on cocaine-induced behavioral sensitization in 106 female rats. Ovariectomized female rats received progesterone (0.5 mg/mL), estradiol (0.05 mg/mL), progesterone plus estradiol, or the oil vehicle. Sham-operated control females received oil. Control and acute subgroups received injections of saline, while the repeated group received cocaine (15 mg/kg, ip) for 8 days. After 10 days, the acute and repeated groups received a challenge dose of cocaine, after which locomotion and stereotypy were monitored. The estrous cycle phase was evaluated and blood was collected to verify hormone levels. Repeated cocaine treatment induced overall behavioral sensitization in female rats, with increased locomotion and stereotypies. In detailed analysis, ovariectomized rats showed no locomotor sensitization; however, the sensitization of stereotypies was maintained. Only females with endogenous estradiol and progesterone demonstrated increased locomotor activity after cocaine challenge. Estradiol replacement enhanced stereotyped behaviors after repeated cocaine administration. Cocaine sensitization of stereotyped behaviors in female rats was reduced after progesterone replacement, either alone or concomitant with estradiol. The behavioral responses (locomotion and stereotypy) to cocaine were affected differently, depending on whether the female hormones were of an endogenous or exogenous origin. Therefore, hormonal cycling appears to be an important factor in the sensitization of females. Although estradiol increases the risk of cocaine sensitization, progesterone warrants further study as a pharmacological treatment in the prevention of psychostimulant abuse.  相似文献   

12.
This study was done to determine whether social and environmental factors alter cocaine reward and proteins implicated in mediating drug reward in rats during early adolescence. On postnatal day (PND) 23, rats were housed under conditions where both social (number of rats per cage) and environmental (availability of toys) factors were manipulated. Socially isolated rats were housed alone impoverished with no toys (II) or enriched with toys (IE). Social rats were housed two rats/cage with no toys (SI2) or with toys (SE2), or three/cage with (SE3) or without (SI3) toys. On PND 43, cocaine conditioned place preference (CPP) sessions began with the post-test done on PND 47. Cocaine CPP was established in response to 5 or 10 mg/kg cocaine in II rats, and CPP was decreased with the addition of cage mates or toys. No CPP was seen to any dose in SI3 or SE3 rats. Enriched housing (SE3) increased dopamine transporter (DAT) protein in the nucleus accumbens compared to II. There also were differential effects of cocaine on tyrosine hydroxylase and DAT depending on housing, with both increased by cocaine in II but not SE3 rats. DARPP-32 was unchanged by housing or cocaine, while phospho-Thr34-DARPP-32 was increased by cocaine treatment across conditions. Thus, both social and environmental enrichment decrease cocaine CPP during adolescence and different housing alters proteins that regulate dopaminergic neurotransmission in a manner that may account for the observed differences in cocaine-induced reward.  相似文献   

13.
It is well-known that cocaine dependence is a public health issue, and several studies stress the need to look for new and more effective treatments. Although the mesolimbic dopamine (DA) system, which originates in the ventral tegmental area (VTA) and projects to several forebrain structures, is known to be critically involved in the neurobiology of cocaine dependence, acetylcholine (ACh) has also been shown to play an important role in cocaine dependence via its action on this reward system. ACh is also important in the formation of hippocampal memory associated with appetitive behavior. Thus, the aim of this study was to evaluate the effect of biperiden, an ACh antagonist with high affinity for muscarinic M1 type receptors, on the acquisition of cocaine-conditioned place preference (CPP) in mice. The cocaine and biperiden were dissolved in sterile saline and were administered intraperitoneally at a dose of 10mg/kg. The conditioning regime was 8 days long, and the cholinergic antagonist was given immediately at the end of each conditioning session. The test for CPP occurred 24h after the last session. The results showed that animals treated with biperiden spent significantly less time in the cocaine-paired compartment than did the ones treated with saline. This finding represents a reduction in the consolidation of cocaine-induced CPP. One hypothesis that could explain this outcome focuses on the action of cholinergic antagonists on the consolidation of contextual memories. The amnesic effect of M1 antagonists on aversive tasks and on morphine CPP has been demonstrated when administered before the training or the conditioning session. The present study highlights the possibility of impairment in the acquisition of an appetitive memory, even when the cholinergic drug is administered after the conditioning session. This protocol also rejects the possibility of performance disturbance and suggests a possible pharmacological tool in the treatment of cocaine dependence.  相似文献   

14.
Withdrawal from an escalating-dose, bingelike regimen of cocaine administration in rats produced significantly depressed levels of locomotor activity during the nocturnal portion of the day-night cycle. This effect was observed during the first 48 hr of testing. Extracellular single-unit recordings of ventral tegmental area (VTA) dopamine (DA) neurons revealed no differences between saline- and cocaine-treated rats with respect to basal firing rates. However, significantly fewer spontaneously active VTA DA neurons were encountered in rats withdrawn from binge cocaine. As with the nocturnal hypoactivity, this effect was observed only during the first 48 hr of withdrawal. These findings suggest that short-term DA neuron dysfunction during cocaine withdrawal temporally corresponds to behavioral disruptions that are similar to those described in human addicts.  相似文献   

15.
The dopamine system is thought to be involved in making decisions about reward. Here we recorded from the ventral tegmental area in rats learning to choose between differently delayed and sized rewards. As expected, the activity of many putative dopamine neurons reflected reward prediction errors, changing when the value of the reward increased or decreased unexpectedly. During learning, neural responses to reward in these neurons waned and responses to cues that predicted reward emerged. Notably, this cue-evoked activity varied with size and delay. Moreover, when rats were given a choice between two differently valued outcomes, the activity of the neurons initially reflected the more valuable option, even when it was not subsequently selected.  相似文献   

16.
Aked J  Coizet V  Clark D  Overton PG 《Neuroscience》2005,134(2):361-367
Circumstantial evidence suggests that sensitization to the behavioral effects of d-amphetamine is mediated by increased glutamate levels in the ventral tegmental area. To test this directly, the present study examined whether increasing glutamate levels in the ventral tegmental area with a glutamate uptake inhibitor is sufficient, in the absence of d-amphetamine administration, to elicit sensitization to a subsequent d-amphetamine challenge. Rats were treated bilaterally once a day for 2 days with either intra-ventral tegmental area L-trans-pyrollidine-2,4-dicarboxylic acid (50 nmol), saline, L-trans-pyrollidine-2,4-dicarboxylic acid coadministered with the competitive N-methyl-d-aspartate antagonist (+/-)-3-(2-carboxy-piperazin-4-yl)-propyl-1-phosphonic acid; CPP, 0.5 nmol), or CPP alone (0.5 nmol; all 1.0 microl/side). Following a 2 day withdrawal period, all rats were administered systemic d-amphetamine (1 mg/kg, i.p.). Repeated intra-ventral tegmental area injection of L-trans-pyrollidine-2,4-dicarboxylic acid sensitized animals to the behavioral effects of a systemic d-amphetamine challenge, an action which was blocked by co-administration of CPP. The results directly implicate ventral tegmental area glutamate in the process of sensitization to d-amphetamine. Furthermore, they demonstrate that inhibition of glutamate uptake produces the neuroadaptations necessary to induce sensitization, adding support to the contention that d-amphetamine sensitizes by modulating glutamate uptake.  相似文献   

17.
Both females and individuals with Attention-Deficit/Hyperactivity Disorder (ADHD) have been found to be at increased risk for a range of smoking outcomes, and recent empirical findings have suggested that women with ADHD may be particularly vulnerable to nicotine dependence. On a neurobiological level, the dopamine reward processing system may be implicated in the potentially unique interaction of nicotine with sex and with ADHD status. Specifically, nicotine appears to mitigate core ADHD symptoms through interaction with the dopamine reward processing system, and ovarian hormones have been found to interact with nicotine within the dopamine reward processing system to affect neurotransmitter release and functioning. This article synthesizes data from research examining smoking in women and in individuals with ADHD to build an integrative model through which unique risk for cigarette smoking in women with ADHD can be systematically explored. Based upon this model, the following hypotheses are proposed at the intersection of each of the three variables of sex, ADHD, and smoking: (1) individuals with ADHD have altered functioning of the dopamine reward system, which diminishes their ability to efficiently form conditioned associations based on environmental contingencies; these deficits are partially ameliorated by nicotine; (2) nicotine interacts with estrogen and the dopamine reward system to increase the positive and negative reinforcement value of smoking in female smokers; (3) in adult females with ADHD, ovarian hormones interact with the dopamine reward system to exacerbate ADHD-related deficits in the capacity to form conditioned associations; and (4) during different phases of the menstrual cycle, nicotine and ovarian hormones may interact differentially with the dopamine reward processing system to affect the type and value of reinforcement smoking provides for women with ADHD. Understanding the bio-behavioral mechanisms underlying cigarette addiction in specific populations will be critical to developing effectively tailored smoking prevention and cessation programs for these groups. Overall, the goal of this paper is to examine the interaction of sex, smoking, and ADHD status within the context of the dopamine reward processing system not only to elucidate potential mechanisms specific to female smokers with ADHD, but also to stimulate consideration of how the examination of such individual differences can inform our understanding of smoking more broadly.  相似文献   

18.
Z B You  Y Q Chen  R A Wise 《Neuroscience》2001,107(4):629-639
Rewarding hypothalamic brain stimulation is thought to depend on trans-synaptic activation of high-threshold (and thus rarely directly depolarized by rewarding stimulation) dopaminergic fibers of the medial forebrain bundle. We used in vivo microdialysis and high-performance liquid chromatography coupled with electrochemical or fluorometric detection to investigate the concurrent release of dopamine and glutamate in the nucleus accumbens septi and in the ventral tegmental area, as a function of lateral hypothalamic self-stimulation.Self-stimulation at a variety of stimulation frequencies and pulse widths increased levels of dopamine and its primary metabolites, dihydroxyphenylacetic acid and homovanillic acid in the nucleus accumbens. Lateral hypothalamic self-stimulation also induced significant increases in ventral tegmental area dopamine and metabolite levels, and the percentage increase of dopamine was higher in this region than in the nucleus accumbens. Local perfusion with the dopamine uptake inhibitor nomifensine (10 microM) increased dopamine levels in the nucleus accumbens about three-fold and potentiated the increase of dopamine levels induced by self-stimulation. Nomifensine perfusion also induced a delayed decrease in nucleus accumbens glutamate levels, and self-stimulation did not modify this effect of the drug. Local perfusion with the D2-type dopamine receptor antagonist raclopride significantly increased both basal and self-stimulation induced dopamine release in the nucleus accumbens. Neither nomifensine nor raclopride perfusion significantly affected the maximal rates of self-stimulation.Perfusion with tetrodotoxin (2 microM) into nucleus accumbens significantly decreased basal and prevented stimulation-induced increases in accumbens dopamine levels but only slightly decreased the rate of self-stimulation. In contrast, perfusion of tetrodotoxin (0.5 microM) into the ventral tegmental area decreased basal and blocked stimulation-induced increases in both nucleus accumbens and ventral tegmental area dopamine levels; this treatment also blocked or strongly inhibited self-stimulation. While it had no effect on glutamate levels in the nucleus accumbens, lateral hypothalamic self-stimulation induced a significant and tetrodotoxin-sensitive increase in glutamate levels in the ventral tegmental area.Taken together, the present results indicate that, across a broad range of stimulation parameters, rewarding lateral hypothalamus stimulation causes major and persistent activation of the mesolimbic dopamine system, and suggest descending glutamatergic fibers in the medial forebrain bundle as a candidate for the directly activated descending pathway in lateral hypothalamus brain stimulation reward.  相似文献   

19.
Epidemiological and clinical studies provide growing evidence for marked sex differences in the incidence of certain neurological disorders that are largely attributed to the neuroprotective effects of estrogen. Thus there is a keen interest in the clinical potential of estrogen-related compounds to act as novel therapeutic agents in conditions of neuronal injury and neurodegeneration such as Parkinson's disease. Studies employing animal models of neurodegeneration in ovariectomised female rats treated with estrogen support this hypothesis, yet experimental evidence for sex differences in the CNS response to direct neurotoxic insult is limited and, as yet, few studies have addressed the role played by endogenously produced hormones in neuroprotection. Therefore, in this study we aimed to determine (1) whether the prevailing levels of sex steroid hormones in the intact rat provide a degree of protection against neuronal assault in females compared with males and (2) whether sex differences depend solely on male/female differences in circulating estrogen levels or whether androgens could also play a role. Using the selective, centrally administered neurotoxin 6-hydroxydopamine, which induces a lesion in the nigrostriatal dopaminergic pathway similar to that seen in Parkinson's disease, we have demonstrated a sexually dimorphic (male-dominant), dose-dependent susceptibility in rats. Furthermore, following gonadectomy, dopamine depletion resulting from a submaximal dose of 6-hydroxydopamine (1 microg) was reduced in male rats, whereas in females, ovariectomy enhanced dopamine depletion. Administration of the nonaromatizable androgen dihydrotestosterone to gonadectomized animals had no significant effect on 6-hydroxydopamine toxicity in either males or females, whereas treatment of gonadectomized males and females with physiological levels of estrogen restored the extent of striatal dopamine loss to that seen in intact rats, viz, estrogen therapy reduced lesion size in females but increased it in males. Taken together, our findings strongly suggest that there are sex differences in the mechanisms whereby nigrostriatal dopaminergic neurones respond to injury. They also reveal that the reported clinically beneficial effects of estrogen in females may not be universally adopted for males. While the reasons for this gender-determined difference in response to the activational action of estrogen are unknown, we hypothesize that they may well be related to the early organizational events mediated by sex steroid hormones, which ultimately result in the sexual differentiation of the brain.  相似文献   

20.
Two studies compared the quinine aversion and shock thresholds of intact and gonadectomized female rats. Using food deprivation to modify body weight, the first study measured the reactivity of gonadectomized and intact rats at the same weight level and compared their behavior to a food deprived, but heavier, gonadectomized group. While maintained at the same weight levels, no differences in either shock thresholds or quinine aversion were found between gonadectomized and intact animals. The heavier gonadectomized group showed decreased reactivity on both measures. The second study manipulated body weight with gonadal hormones. Estrogen and the combination of estrogen and progesterone maintained the body weight of gonadectomized rats at the level of the intact control group. During this period the reactivity of both estrogen injected groups was not different from the control group. Progesterone had no effect on weight gain and the progesterone injected group did not differ in reactivity from an oil injected gonadectomized group. Both the progesterone and oil injected gonadectomized groups were heavier and showed less reactivity to both shock and quinine. These results were interpreted as direct support for previous work suggesting that the effects of alterations in gonadal hormones are mediated by the weight changes attendant on hormone level changes and are not direct effects of gonadal hormones, themselves.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号