首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A number of research studies have related multiple hemodynamic parameters to the formation of distal anastomotic intimal hyperplasia (IH) at the sub-cellular, cellular, and tissue levels. Focusing on mitigating WSS-based parameters alone, several studies have suggested geometrically modified end-to-side anastomoses with the intent of improving synthetic graft patency rates. However, recent clinical trials of commercially available versions of these grafts indicate persistently high rates of failure. Furthermore, recent evidence suggests that platelet-wall interactions may play a significant role in the formation of IH, which is not captured by WSS-based parameters alone. In this study, numerical simulations have been conducted to assess the potential for IH formation in conventional and geometrically modified anastomoses based on both wall shear stress (WSS) conditions and platelet-wall interactions. Sites of significant particle-wall interactions, including elevated concentrations and stasis, were identified by a near-wall residence time model, which includes factors for platelet activation and surface reactivity. Conventional, pre-cuffed, and streamlined distal end-to-side anastomoses were considered with proximal and distal arterial outflow. It was found that a pre-cuffed anastomosis, similar to the Distaflo configuration, does not offer a hemodynamic advantage over the conventional design considered with respect to the magnitude of the WSS field and the potential for platelet interactions with the vessel surface. Streamlined configurations largely consistent with venous confluences resulted in an advantageous reduction of wall shear stress gradient values; however, particle-wall interactions remained significant throughout the anastomosis. Results of this study are not intended to be directly extrapolated to surgical recommendations. However, these results highlight the difficulty associated with designing an end-to-side distal anastomosis with two-way outflow that is capable of simultaneously reducing multiple hemodynamic parameters. Further testing will be necessary to determine if the observed elevated particle-wall interactions in a pre-cuffed anastomosis provide the stimulus responsible for the reported high failure rates of these grafts.  相似文献   

2.
Purpose: When sequential grafts are used in multivessel coronary artery bypass grafting, the graft first supplies blood to one or more coronary arteries via a side-to-side anastomosis. We studied hemodynamics in idealized models of parallel and diamond side-to-side anastomoses, identifying features that might promote restenosis. Methods: Blood flow was computed in three representative anastomosis configurations: parallel side-to-side, diamond side-to-side, and end-to-side. We compared configurations and the effect of host-graft diameter ratio. Results:Hemodynamic patterns depended strongly on anastomosis geometry and graft/host diameter ratio. In the distal graft, the diamond configuration had large areas of low wall shear stress (WSS) and high spatial WSS gradients. In the proximal graft the unfavorable WSS patterns were comparable for all models, while the distal portion of the host artery the diamond model was best. Models with smaller host arteries had smaller regions of low WSS. Conclusions: The parallel configuration was preferred over the diamond for maintaining graft patency, while the diamond configuration appeared best for maintaining host artery patency. Since graft patency is critical, parallel configurations seem hemodynamically advantageous. Larger graft/host ratios have better hemodynamic performance than smaller ones. © 2002 Biomedical Engineering Society. PAC2002: 8719Uv, 8710+e  相似文献   

3.
As hemodynamics is widely believed to correlate with anastomotic stenosis in coronary bypass surgery, this paper investigates the flow characteristics and distributions of the hemodynamic parameters (HPs) in a coronary bypass model (which includes both proximal and distal anastomoses), under physiological flow conditions. Disturbed flows (flow separation/reattachment, vortical and secondary flows) as well as regions of high oscillatory shear index (OSI) with low wall shear stress (WSS), i.e., high-OSI-and-low-WSS and low-OSI-and-high-WSS were found in the proximal and distal anastomoses, especially at the toe and heel regions of distal anastomosis, which indicate highly suspected sites for the onset of the atherosclerotic lesions. The flow patterns found in the graft and distal anastomoses of our model at deceleration phases are different from those of the isolated distal anastomosis model. In addition, a huge significant difference in segmental averages of HPs was found between the distal and proximal anastomoses. These findings further suggest that intimal hyperplasia would be more prone to form in the distal anastomosis than in the proximal anastomosis, particularly along the suture line at the toe and heel of distal anastomosis.  相似文献   

4.
Intimal hyperplasia at arterial bypass graft anastomoses is a major factor responsible for graft failure. A revised surgical technique, incorporating a Taylor vein patch into the distal anastomosis of PTFE grafts, results in a decrease in intimal hyperplasia and improved patency rates. Numerical simulations of pulsatile, non-Newtonian blood flow through life-like femorodistal bypass models have been performed to determine whether haemodynamic benefits arise from the modified geometry of the Taylor anastomosis. In a conventional bypass, the distal anastomotic flow exhibited considerable spatial and temporal variations. Steep spatial gradients in the shearing force acted along the floor during systole. The effect of the Taylor geometry was to reduce gradually the momentum of the blood approaching the junction. Thus, flow disturbances were abated, undesirable flow separation at the toe was diminished, and a less adverse floor shear stress distribution prevailed in that case. Intimal thickening should be alleviated at the toe in the Taylor model where separation is reduced, and where the thrombogenic graft surface is replaced with a vein patch. Intimal hyperplasia on the floor may be inhibited in the Taylor model due to more favourable shear stresses. The improved flow through the patched anastomosis should contribute to its enhanced performance.  相似文献   

5.
The development of Intimal Hyperplasia (IH) in saphenous vein coronary artery bypass grafts (SV-CABG) is responsible for the short-term patency of these grafts. Previous studies of SV-CABG models were performed on rigid anastomotic vessels. However, the effects of compliance, bulging and curvature at the anastomosis on the general hemodynamic field, due to compliance and geometric mismatch between the vein and the artery have not been evaluated. We studied axial and transverse velocities by Laser Doppler Velocimetry on a compliant, in vitro, anatomical model of an end-to-side saphenous vein graft (SVG) to left anterior descending (LAD). The model incorporated a bulge at the sinus and curvature at the graft-host junction. Physiologic pressure and flow conditions pertaining to SV-CABG were applied. The presence of the bulge and curvature showed differences in the velocity profiles in comparison with previous rigid model studies. Dynamic separation zones were temporally augmented at the flow divider. The moving stagnation point at the floor of the host vessel was observed to move past the toe of the model during the accelerating portion of the cycle. These findings suggest that the presence of the bulge curvature and compliance may further favor conditions for the development of intimal hyperplasia (IH) at the floor of a CABG.  相似文献   

6.
The present study is intended to investigate and compare the hemodynamics in two different sizes of hemodialysis arteriovenous grafts for upper arm hemodialysis vascular access: 8-mm tapered to 6-mm at the arterial side and straight 6 mm. A computational simulation approach is presented for this study, which is validated against the available experimental and numerical pressure measurements in the literature. The imposed boundary conditions at the arterial inlet and venous outlet boundaries of the models are physiological velocity and pressure waveforms, respectively. Blood flow fields and distribution patterns of the hemodynamic indices including wall shear stress (WSS) as one of the major hemodynamic parameters of the cardiovascular system and spatial wall shear stress gradient (SWSSG) as an indicator of disturbed flow patterns and hence susceptible sites of lesion developments are analyzed and compared between the two grafts. The tapered 6- to 8-mm graft seemingly is associated with less disturbed flow patterns within the venous anastomosis (VA) and the vein downstream while benefiting from higher blood flow rates within. Also, it shows a definitive advantage in terms of WSS and SWSSG distribution patterns around the VA and throughout the vein downstream with significantly lower values, which reduce the risk of thrombosis formation and stenotic lesion developments. The only disadvantage encountered in using 6- to 8-mm tapered graft is higher values of hemodynamic parameters at the arterial junction attributable to its significantly higher mean blood flow rate within. The results clearly indicate that the tapered 6- to 8-mm graft entirely outperforms straight 6-mm graft hemodynamically as an upper arm hemodialysis vascular access graft and confirms clinical data in the literature, which suggests advantageous use of tapered 6- to 8-mm grafts in the creation of upper arm brachioaxillary hemodialysis vascular access grafts in selected groups of patients with expectably higher patency rates and lower complications.  相似文献   

7.
The restenosis after coronary artery bypass graft(CABG) is attributed to the formation of intimal hyperplasia(IH) at the anastomosis,which is closely related to hemodynamic depend on the geometric model. In order to give a reasonable assessment of the surgery effect and judge the long-term patency rate,the hemodynamic of CABG surgery program is compared with that of surgery design of the junction angle changed.Based on in-vivo CT coronary angiography datasets,the individual geometric model of CABG reconstructed instead of idealized geometric models are applied to simulate the real physiological blood flow utilizing pulsatile flow boundary waveforms in the present study. The simulation results show that the maximum wall shear rate(WSS) value is at the bottom of anastomosis. Moreover,the stagnation zone growing gradually with the greater angle downstream the anastomosis is prone to form the IH,which is consistent with clinical observation. It is proved that the surgery being better suited to maintain graft patency is successful.  相似文献   

8.
This study was concerned with investigating the influence of mechanical factors on the hemodynamics of the end-to-side anastomosis in an attempt to identify critical factors and establish if it is possible to re-engineer existing, patient-specific, by-pass grafts with a view to increasing their patency. The study chose the femoral artery as the principal subject of interest. Wall shear stresses (WSS) and wall shear stress gradients (WSSG) were taken as the primary quantities of interest. Angle, graft calibre, interposition cuffs, proximal outflow and inlet waveform were studied. The study found that the use of cuffs and patches can significantly reduce abnormal WSS and WSSG by up to 70% when compared to a benchmark 45 conventional anastomosis. The Taylor patch was found to be more robust in reducing peak WSS magnitudes and gradients than the Miller cuff, where design variables proved to be more critical. On the addition of a Taylor patch to a realistic end-to-side femoral anastomosis, the peak WSS and WSSG were found to be reduced by 27% and 57%, respectively. In conclusion, it is possible to use idealised models to identify critical disease influencing factors and to use these findings to reduce the effects of abnormal hemodynamics in realistic, patient-dependant models.  相似文献   

9.
This study documents the superior hemodynamics of a novel coupled sequential anastomoses (SQA) graft design in comparison with the routine conventional end-to-side (ETS) anastomoses in coronary artery bypass grafts (CABG). The flow fields inside three polydimethylsiloxane (PDMS) models of coronary artery bypass grafts, including the coupled SQA graft design, a conventional ETS anastomosis, and a parallel side-to-side (STS) anastomosis, are investigated under pulsatile flow conditions using particle image velocimetry (PIV). The velocity field and distributions of wall shear stress (WSS) in the models are studied and compared with each other. The measurement results and WSS distributions, computed from the near wall velocity gradients reveal that the novel coupled SQA design provides: (i) a uniform and smooth flow at its ETS anastomosis, without any stagnation point on the artery bed and vortex formation in the heel region of the ETS anastomosis within the coronary artery; (ii) more favorable WSS distribution; and (iii) a spare route for the blood flow to the coronary artery, to avoid re-operation in case of re-stenosis in either of the anastomoses. This in vitro investigation complements the previous computational studies of blood flow in this coupled SQA design, and is another necessary step taken toward the clinical application of this novel design. At this point and prior to the clinical adoption of this novel design, in vivo animal trials are warranted, in order to investigate the biological effects and overall performance of this anastomotic configuration in vivo.  相似文献   

10.
Late-stage occlusions of peripheral synthetic bypass grafts are frequently due to intimal hyperplasia and/or thrombosis at the distal anastomosis, resulting in unacceptably high failure rates. It has been widely established that hemodynamic and blood particle interactions with the vascular surface as well as surgical injury and compliance mismatch are inciting mechanisms capable of eliciting various cellular level responses associated with distal anastomotic intimal hyperplasia (IH) formation. Primary geometric factors influencing anastomotic hemodynamics include the graft-to-artery diameter ratio and graft-hood shape, which are determined by the graft caliber and initial graft-end cut selected by the vascular surgeon. In this study, the particle-hemodynamic effects of graft-end cuts (straight, curved, and S-shaped) and graft-to-artery diameter ratios (2:1 vs. 1.5:1) have been numerically assessed in four common unexpanded anastomotic configurations with respect to vortical flow patterns, wall shear stress based parameters, and platelet interactions with the vascular surface. Sites of significant platelet–wall interactions have been identified by a novel near-wall residence time (NWRT) model, which includes shear stress based factors for platelet activation and endothelial cell expression of anti-thrombogenic compounds. Of the configurations evaluated, straight and curved graft-end cuts with a graft-to-artery diameter ratio of 1.5:1 were found to reduce the particle-hemodynamic potential for IH development at locations critical to flow delivery. Nevertheless, the potential for significant IH occurrence via platelet and/or endothelial response pathways was highly evident in all conventional anastomoses considered, such that a decisively superior configuration was not determined. These results illustrate the need for alternative anastomotic designs with the intent of reducing critical hemodynamic wall parameters and mitigating regions of significant particle–wall interactions.  相似文献   

11.
In this article, a numerical simulation of steady flow across an end-to-end vascular bypass graft anastomosis is presented.In vitro experiments were performed to determine the variations in the conduit cross section at the anastomosis. Penrose surgical drainage tubing was used to simulate an artery and was anastomosed with Polytetrafluoroethylene (PTFE) vascular grafts using a continuous suturing technique. Artery to artery anastomosis was simulated by suturing two Penrose tubing segments. The anastomotic specimens were subject to static transmural pressure in the physiologic range to determine the instantaneous diameter and compliance as a function of the distance from the anastomotic site. The experimentally determined geometries were used to simulate steady flow through an end-to-end anastomosis using the finite analytic (FA) numerical solution technique. The results demonstrated a region of flow separation 2 mm distal to the Penrose tubing-Penrose tubing anastomosis (simulating an artery-artery anastomosis) at higher transmural pressures. Moreover, wall shear stresses increased proximal to the anastomosis in flow from the Penrose tubing to the graft. In flow from the graft to the Penrose tubing, low wall shear stresses were observed distal to the anastomosis. Flow separation was observed distal to the anastomosis at higher transmural pressures with uniform inlet velocity condition. The region of low shear stress in flow from PTFE graft to the Penrose tubing was located nearer to the anastomosis with thin wall grafts than that with standard wall thickness grafts. Our steady flow model studies suggest a correlation between regions of low wall shear stress and the development of anastomotic neointimal fibrous hyperplasia in end-to-end anastomoses.  相似文献   

12.
目的 研究管径比对全阻塞动脉旁路移植流场的影响,为指导动脉旁路移植手术,减少术后再狭窄提供理论依据。方法 采用数值方法研究5种不同移植管与主血管的管径比对全阻塞情况下动脉旁路移植流场的影响,分析速度、二次流、壁面切应力和壁面切应力梯度等血流动力学参数的分布及其随管径比增大的改变。同时,为表明本文所采用模型的合理性,针对目前常使用的两类模型,比较在管径比1.0情况下全阻塞完整模型(Model A)、全阻塞局部模型(Model B)和75%狭窄完整模型(Model C)之间的血流动力学差异。结果 Model A和Model C的血流动力学特性是完全不同的;移植管顶部截面内的速度分布对下游吻合处的主血管底部壁面切应力的影响是显著的,最大相差达79%。大管径比时,主血管底部的壁面低切应力区较大,但壁面切应力分布均匀,壁面切应力梯度较小。而小管径比时,主血管底部的壁面低切应力区较小,但壁面切应力梯度较大。结论 采用整体模型单独研究全阻塞情况下的管径比对流场的影响是有必要的。管径比对全阻塞动脉旁路移植的流场具有显著影响,采用大管径比进行动脉旁路移植将有助于缓解吻合口处由于再狭窄而产生的阻塞。  相似文献   

13.
In this paper, the hemodynamics in a three-dimensional out-of-plane sequential bypass graft model is first investigated. Based on the advantageous flow characteristics observed within the side-to-side (STS) anastomosis in the sequential bypass graft simulation, a new CABG coupled-sequential anastomosis configuration is designed, entailing coupled STS and end-to-side (ETS) anastomotic components. In this new CABG design, the flow fields and distributions of various wall shear stress parameters within the STS and ETS anastomotic regions are studied, and compared to those of the conventional distal anastomosis, by means of computational fluid dynamics simulation of pulsatile Newtonian blood flow. Simulation results demonstrate that the new sequential anastomoses model provides: (i) a more uniform and smooth flow at the ETS anastomosis, without any stagnation point on the artery bed and vortex formation in the heel region of the ETS anastomosis within the coronary artery; (ii) a spare route for the blood flow to the coronary artery, to avoid re-operation in case of re-stenosis in either of the anastomoses; and (iii) improved distribution of hemodynamic parameters at the coronary artery bed and in the heel region of the ETS anastomosis, with more moderate shear stress indices. These advantages of the new design over the conventional ETS anastomosis are influenced by the occlusion ratio of the native coronary artery, and are most prominent when the proximal segment of the coronary artery is fully occluded. By varying the design parameters of the anastomotic angle and distance between the two anastomoses, the superior coupled STS–ETS anastomoses design is found to have the anastomotic angle of 30° and 30 mm distance between the two (STS and ETS) components.  相似文献   

14.
An analysis is presented of stresses developed with different junctional configurations of end-to-end vascular graft anastomoses with severe compliance mismatch. Junctions of circular transverse sections and junctions by bias cuts (beveled ends) are compared with an anastomosis of a graft constructed with an elliptical transverse section and a bevel end cut vessel. This latter substitutes midwall inextensional deformations for extensional deformations that occur with the former, conventional configurations. Applications to end-to-side anastomoses are also discussed. A range of parameters are considered:i.e., vascular wall thickness/radius ratios between 0.1 and 0.5 locations from the anastomotic plane between 1/2 and 3/2 times the vascular wall thickness, host vessel axial stretch by external forces between 0 and 15%, maximal vascular circumferential stretch distal from the anastomosis between 0 and 25%, and perimeter locations at the anastomotic junction 0° and 90°. The graft constructed with an elliptic cross-section developed peak stresses that are orders of magnitude lower than those developed with conventional configurations. The introduction of matching geometric compliance that domimates at the anastomotic junction minimizes consequences of material mismatch between graft and vessel and has the potential to reduce suture line stress greatly. This analysis may suggest designs for experimental studies to confirm relationships between neointimal hyperplasia and suture line stress levels, and provide a relatively simple solution for reduction of such stresses at the anastomotic junction. Choices may be permitted of graft materials with optimal surface properties despite less favorable elastic properties.  相似文献   

15.
For hemodialysis patients, arteriovenous grafts are omnipresent. Unfortunately, a large percentage of such grafts fail within the first year after surgery because of occlusive lesions mainly at the venous anastomotic site. It is textbook knowledge that critical values of certain hemodynamic parameters, such as low (oscillatory) wall shear stresses, large sustained wall shear stress gradients, significant changes in wall shear stress angles, excessive radial pressure gradients, etc., play significant roles in the onset and/or development of vascular diseases. The idea is to geometrically design graft-to-vein configurations such that aggravating flow patterns are reduced, and hence stenotic developments are minimized. Focusing on a new blood rheological model in conjunction with three graft-to-vein anastomotic configurations, that is, a base case, the Bard-IMPRA Venaflo graft, and a new graft-end design, the corresponding transient laminar 3-D hemodynamics are numerically simulated and compared. The design criterion for the best performance of these junction geometries is the most significant reduction in locally disturbed flow as expressed by equally weighted indicator functions for the onset and progression of stenotic developments. As a result of this comparison study, quantitative recommendations for arteriovenous loop graft designs toward increased patency rates are provided. The resulting improved graft design will be scrutinized in clinical trials.  相似文献   

16.
Enhanced hemodynamics via geometric alteration is believed to play a role in the favorable redistribution of intimal hyperplasia (IH) in infragenicular supplementary vein cuffs. We aimed to elucidate the consequence of altering geometric configuration in anastomotic hemodynamics in cuff models. A well-validated numerical scheme was used to simulate pulsatile flows in three cuffed anastomotic models with length-to-height ratio (LHR) of 1.4, 2.2 and 3.2, and a St. Mary’s boot with LHR of 2.2 at a mean flow rate of 130 mL/min. Characteristic flow patterns and wall shear stress (WSS) distributions were compared. A cohesive vortex is only present in the cuff of LHR = 1.4 and in the boot. The vortex in the cuffs becomes increasingly disorganized with increasing cuff LHR. The area of flow separation at the graft toe, prominent in the cuff of LHR = 3.2, is significantly reduced in the cuff of LHR = 1.4 and eliminated in the boot. All cuffs are characterized by flow separation, flow reversal and a sharp drop in WSS immediately distal to the cuff toe, phenomena not observed in the boot. The cuff configuration, specifically the LHR, is critical in controlling local hemodynamics. A large LHR could lead to reduced cuff performance. The study suggests the benefits of geometric optimization for reconstruction of cuffed anatomoses.  相似文献   

17.
Flow characteristics near the end-to-end anastomosis of vascular graft were studied in model tubes by flow visualization techniques. Artery and vascular graft were modelled by an elastic tube fabricated from an elastomeric polymer and a rigid plastic tube, respectively. Anastomotic models were made by connecting these two tubes, which had compliance mismatch at their anastomoses. These model tubes were installed into a mock circulatory loop and flow was visualized using hydrogen bubbles and aluminum powder as the tracer. Flow disturbances including flow separation and eddies were observed near the modelled distal anastomosis (graft-to-artery anastomosis). Peak values of the wall shear rate were high in the proximal anastomotic area (artery-to-graft anastomosis) and low in the distal region. These phenomena were enhanced in the models with increased compliance mismatch. The local abnormal flow observed in the anastomotic zone might cause thrombus formation and subintimal hyperplasia. To improve the patency in small-calibered arterial grafts, it is important to match their compliance to that of natural arteries.  相似文献   

18.
The long-term patency rate of peripheral artery bypass grafts remains low. Several theories exist which attempt to explain the disease forming mechanisms at the disease prone distal junction of the bypass graft. Common to these theories is that abnormal hemodynamics and wall mechanics contribute to the development of disease at the junction. This study describes a means by which the hemodynamics in the end-to-side anastomosis can be altered by inserting a flow-split into the junction, the function of which is to divert the flow away from the artery bed and toward the sidewalls. Velocity vectors through the junction are significantly altered, and artery centreline WSS magnitudes decrease by up to 36% during the deceleration phase of the flow pulse. Corresponding wall shear stress gradients are found to decrease by 49%. However, locations along the artery sidewall have been identified with increased WSS. It is possible to significantly alter junction hemodynamics using a flow-splitter.  相似文献   

19.
为了说明机械吻合器的引入对冠状动脉搭桥术近端吻合区血流动力学因素的影响,运用Solidworks软件构造了缝合式和机械吻合式两种搭桥模型。运用有限单元数值模拟的方法和Fluent6.3软件,对两种模型移植血管中脉动流进行数值化模拟和可视化分析。获得了吻合区在一个心动周期内不同时刻的速度场、二次流、压力及壁面切应力的分布情况。结果表明,机械吻合器的引入在增大移植血管中血流速度(大于缝合模型约0.2 m/s)的同时使得低速区范围增大,吻合区壁面切应力变化范围为0~50 Pa,应力集中现象明显,壁面切应力变化剧烈,易引起血小板活化和内膜增生。为了提高冠状动脉搭桥术的通畅率,对机械吻合器进行优化设计很有必要。  相似文献   

20.
Hemodynamic parameters and early intimal thickening in branching blood vessels   总被引:19,自引:0,他引:19  
Intimal thickening due to atherosclerotic lesions or intimal hyperplasia in medium to large blood vessels is a major contributor to heart disease, the leading cause of death in the Western World. Balloon angioplasty with stenting, bypass surgery, and endarterectomy (with or without patch reconstruction) are some of the techniques currently applied to occluded blood vessels. On the basis of the preponderance of clinical evidence that disturbed flow patterns play a key role in the onset and progression of atherosclerosis and intimal hyperplasia, it is of interest to analyze suitable hemodynamic wall parameters that indicate susceptible sites of intimal thickening and/or favorable conditions for thrombi formation. These parameters, based on the wall shear stress, wall pressure, or particle deposition, are applied to interpret experimental/clinical observations of intimal thickening. Utilizing the parameters as "indicator" functions, internal branching blood vessel geometries are analyzed and possibly altered for different purposes: early detection of possibly highly stenosed vessel segments, prediction of future disease progression, and vessel redesign to potentially improve long-term patency rates. At the present time, the focus is on the identification of susceptible sites in branching blood vessels and their subsequent redesign, employing hemodynamic wall parameters. Specifically, the time-averaged wall shear stress (WSS), its spatial gradient (WSSG), the oscillatory shear index (OSI), and the wall shear stress angle gradient (WSSAG) are compared with experimental data for an aortoceliac junction. Then, the OSI, wall particle density (WPD), and WSSAG are segmentally averaged for different carotid artery bifurcations and compared with clinical data of intimal thickening. The third branching blood vessel under consideration is the graft-to-vein anastomosis of a vascular access graft. Suggested redesigns reduce several hemodynamic parameters (i.e., the WSSG, WSSAG, and normal pressure gradient [NPG]), thereby reducing the likelihood of restenosis, especially near the critical toe region.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号