首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract

Objective: In this study, attempt has been focused to prepare a nanoemulsion (NE) gel for topical delivery of amphotericin B (AmB) for enhanced as well as sustained skin permeation, in vitro antifungal activity and in vivo toxicity assessment.

Materials and methods: A series of NE were prepared using sefsol-218 oil, Tween 80 and Transcutol-P by slow spontaneous titration method. Carbopol gel (0.5%?w/w) was prepared containing 0.1%?w/w AmB. Furthermore, NE gel (AmB-NE gel) was characterized for size, charge, pH, rheological behavior, drug release profile, skin permeability, hemolytic studies and ex vivo rat skin interaction with rat skin using differential scanning calorimeter. The drug permeability and skin irritation ability were examined with confocal laser scanning microscopy and Draize test, respectively. The in vitro antifungal activity was investigated against three fungal strains using the well agar diffusion method. Histopathological assessment was performed in rats to investigate their toxicological potential.

Results and discussion: The AmB-NE gel (18.09?±?0.6?µg/cm2/h) and NE (15.74?±?0.4?µg/cm2/h) demonstrated the highest skin percutaneous permeation flux rate as compared to drug solution (4.59?±?0.01?µg/cm2/h) suggesting better alternative to painful and nephrotoxic intravenous administration. Hemolytic and histopathological results revealed safe delivery of the drug. Based on combined results, NE and AmB-NE gel could be considered as an efficient, stable and safe carrier for enhanced and sustained topical delivery for AmB in local skin fungal infection.

Conclusion: Topical delivery of AmB is suitable delivery system in NE gel carrier for skin fungal infection.  相似文献   

2.
Abstract

The objective of this study was to prepare poly lactic-co-glycolic acid (PLGA)-based microparticles as potential carriers for recombinant human epidermal growth factor (rhEGF). In order to optimize characteristic parameters of protein-loaded microspheres, bovine serum albumin (BSA) was selected as the model protein. To reduce burst release as a common problem of microspheres, a proper alteration in the particle composition was used, such as addition of poly vinyl alcohol and changes in initial drug loading. The effects of these parameters on particle size, encapsulation efficiency and in vitro release kinetics of BSA in PLGA microspheres were investigated using a Box–Behnken response surface methodology. The biological activity of the released rhEGF was assessed using human skin fibroblasts cell proliferation assay. The prepared rhEGF-loaded microspheres had an average size of 6.44?±?2.45?µm, encapsulation efficiency of 97.04?±?1.13%, burst release of 13.06?±?1.35% and cumulative release of 22.56?±?2.41%. The proliferation of human skin fibroblast cells cultivated with rhEGF releasate of microspheres was similar to that of pure rhEGF, indicating the biological activity of released protein confirming the stability of rhEGF during microsphere preparation. These results are in agreement with the purpose of our study to prepare rhEGF-entrapped PLGA microparticles with optimized characteristics.  相似文献   

3.
《Drug delivery》2013,20(6):795-802
Abstract

5-fluorouracil (5-Fu) is an antineoplastic drug, topically used for the treatment of actinic keratosis and nonmelanoma skin cancer. It shows poor percutaneous permeation through the conventionally applicable creams and thus inefficient for the treatment of deep-seated skin cancer. In the present article, transfersomal gel containing 5-Fu was investigated for the treatment of skin cancer. Different formulation of tranfersomes was prepared using Tween-80 and Span-80 as edge activators. The vesicles were characterized for particle size, shape, entrapment efficiency, deformability and in vitro skin permeation. Optimized formulation was incorporated into 1% carbopol 940 gel and evaluated for efficacy in the treatment of skin cancer. 5-Fu-loaded transfersomes (TT-2) has the size of 266.9?±?2.04?nm with 69.2?±?0.98% entrapment efficiency and highest deformability index of 27.8?±?1.08. Formulation TT-2 showed maximum skin deposition (81.3%) and comparable transdermal flux of 21.46?µg/cm2?h. The TT-2-loaded gel showed better skin penetration and skin deposition of the drug than the marketed formulation. Composition of the transfersomal gel has been proved nonirritant to the skin. We concluded that the developed 5-Fu-loaded transfersomal gel improves the skin absorption of 5-Fu and provide a better treatment for skin cancer.  相似文献   

4.
Dermal delivery of fluconazole (FLZ) is still a major limitation due to problems relating to control drug release and achieving therapeutic efficacy. Recently, solid lipid nanoparticles (SLNs) were explored for their potential of topical delivery, possible skin compartments targeting and controlled release in the skin strata. The retention and accumulation of drug in skin is affected by composition of SLNs. Hence, the aim of this study was to develop FLZ nanoparticles consisted of various lipid cores in order to optimize the drug retention in skin. SLNs were prepared by solvent diffusion method and characterized for various in vitro and in vivo parameters. The results indicate that the SLNs composed of compritol 888 ATO (CA) have highest drug encapsulation efficiency (75.7?±?4.94%) with lower particle size (178.9?±?3.8?nm). The in vitro release and skin permeation data suggest that drug release followed sustained fashion over 24?h. The antifungal activity shows that SLNs made up of CA lipid could noticeably improve the dermal localization. In conclusion, CA lipid based SLNs are represents a promising carrier means for the topical treatment of skin fungal infection as an alternative to the systemic delivery of FLZ.  相似文献   

5.
Abstract

Cetirizine is indicated for the treatment of allergic conditions such as insect bites and stings, atopic and contact dermatitis, eczema, urticaria. This investigation deals with development of a novel ethosome-based topical formulation of cetirizine dihydrochloride for effective delivery. The optimised formulation consisting of drug, phospholipon 90 G? and ethanol was characterised for drug content, entrapment efficiency, pH, vesicular size, spreadability and rheological behaviour. The ex vivo permeation studies through mice skin showed highest permeation flux (16.300?±?0.300?µg/h/cm2) and skin retention (20.686?±?0.517?µg/cm2) for cetirizine-loaded ethosomal vesicles as compared to conventional formulations. The in vivo pharmacodynamic evaluation of optimised formulation was assessed against oxazolone-induced atopic dermatitis (AD) in mice. The parameters evaluated were reduction in scratching score, erythema score, skin hyperplasia and dermal eosinophil count. Our results suggest that ethosomes are effective carriers for dermal delivery of antihistaminic drug, cetirizine, for the treatment of AD.  相似文献   

6.
5-Fluorouracil (5-FU), a hydrosoluble anti-neoplastic drug, was encapsulated in microspheres of poly(D,L-lactide) (PLA) and poly(lactide-co-glycolide) (PLGA) polymers using the spray-drying technique, in order to obtain small size microspheres with a significant drug entrapment efficiency. Drug-loaded microspheres included between 47?±?11 and 67?±?12?µg 5-FU?mg?1 microspheres and the percentage of entrapment efficiency was between 52?±?12 and 74?±?13. Microspheres were of small size (average diameter: 0.9?±?0.4–1.4?±?0.8?µm microspheres without drug; 1.1?±?0.5–1.7?±?0.9?µm 5-FU-loaded microspheres) and their surface was smooth and slightly porous, some hollows or deformations were observed in microspheres prepared from polymers with larger Tg. A fractionation process of the raw polymer during the formation of microspheres was observed as an increase of the average molecular weight and also of Tg of the polymer of the microspheres. The presence of 5-FU did not modify the Tg values of the microspheres. Significant interactions between the drug and each one of the polymers did not take place and total release of the included drug was observed in all cases. The time needed for the total drug release (28–129?h) was in the order PLA?>?PLGA 75/25?>?PLGA 50/50. A burst effect (17–20%) was observed during the first hour and then a period of constant release rate (3.52?±?0.82–1.46?±?0.26?µg 5-FU?h?1 per milligram of microspheres) up to 8 or 13?h, depending on the polymer, was obtained.  相似文献   

7.
Abstract

The purpose of the current investigation was to evaluate the skin delivery potential of the different nano-carrier gels including liposomal gel, ethosomal gel and microemulsion gel bearing testosterone propionate (TP) as a testosterone deficient therapy. The prepared nano-particles were characterized for their shape, particle size distribution and zeta potential. In vitro skin permeation and in vivo transdermal delivery of nano-carrier gels were studied with the Franz diffusion cells and confocal laser scanning microscopy (CLSM). The results showed that all of nano-particles were almost spherical with low polydispersity and nano-metric size range from 40 to 200?nm. TP ethosomal gel also provided an enhanced transdermal flux of 7.64?±?1.4?μg/cm2/h and a decreased lag time of 0.69?h across rat skin as compared with the other two formulations. The skin penetration efficiency of TP nano-carrier gels also revealed that TP ethosomal gel would enhanced penetration of rhodamine red (RR)-loaded formulation to the deeper layers of the skin (268?µm) than the liposomal gel (192?µm) and microemulsion gel (228?µm). This study demonstrated TP ethosomal gel is a promising nano-carrier for delivering TP through the skin.  相似文献   

8.
Context: The systemic treatment of onychomycosis has been hampered by the reported side effects of antifungals in addition to the limited blood circulation to the affected nails. Topical ungual treatment would circumvent the limitations of systemic onychomycosis treatment.

Objective: Preparation and characterization of nail penetration enhancer containing nanovesicles (nPEVs) loaded with sertaconazole for topical treatment of onychomycosis.

Materials and methods: nPEVs were prepared using different nail penetration enhancers (N-acetyl-L-cysteine, thioglycolic acid, thiourea and ethanol) by the thin film hydration method, and characterized for their particle size, zeta potential, entrapment efficiency (EE%), elasticity, viscosity, physical stability and morphology. The selected nPEVs formula and the marketed Dermofix® cream were compared in terms of nail hydration, transungual drug uptake and antifungal activity against Trichophyton rubrum.

Results: N-acetyl-l-cysteine was the optimum nail penetration enhancer for incorporation within vesicles. nPEVs showed high EE% of sertaconazole ranging from 77 to 95%, a size ranging from 38–538?nm and a zeta potential ranging from +48 to +72?mV. The selected nPEVs formula displayed spherical morphology and good storage stability. Compared to the conventional marketed cream, the selected nPEVs formula showed 1.4-folds higher hydration and drug uptake enhancement into nail clippings. Furthermore, it showed significantly higher zone of inhibition for Trichophyton rubrum (20.9?±?0.25?mm) than the marketed cream (11.6?±?0.44?mm).

Conclusion: Nail penetration enhancer containing nanovesicles (nPEVs) present a very promising option, worthy of clinical experimentation on onychomycotic patients.  相似文献   

9.
Context: (?)-6,6′-Dinitrohinokinin (DNHK) display remarkable antiparasitic activity and was, therefore, incorporated into a nanoparticle formulation.

Objective: Incorporation of DNHK in poly lactic-co-glycolic acid (PLGA) nanoparticles aiming to improve its biological activities.

Materials and methods: Synthesis, characterization and incorporation of DNHK into glycolic acid (PLGA) nanoparticles by nanoprecipitation method. The nanoparticles were characterized by ultraviolet-visible spectroscopy, X-ray diffraction, field emission electron microscopic scanning mansoni (FESEM), and dynamic light scattering (DLS). For the in vitro test with Schistosoma mansoni, the DNHK-loaded PLGA was diluted into the medium, and added at concentrations 10–200?µM to the culture medium containing one adult worm pair. The parasites were kept for 120?h and monitored every 24?h to evaluate their general condition, including: pairing, alterations in motor activity and mortality.

Results: The loaded PLGA nanoparticles gave an encapsulation efficiency of 42.2% and showed spherical characteristics in monodisperse polymeric matrix. The adult worm pairs were separated after 120?h of incubation for concentrations higher than 50?µM of DNHK-loaded PLGA. The groups incubated with 150 and 200?µM of DNHK-loaded PLGA for 24 and 120?h killed 100% of adult worms, afforded LC50 values of 137.0?±?2.12?µM and 79.01?±?1.90?µM, respectively, which was similar to the effect displayed by 10?µM of praziquantel.

Discussion and conclusions: The incorporation of DNHK-loaded showed schistosomicidal activity and allowed its sustained release. The loaded PLGA system can be administered intravenously, as well as it may be internalized by endocytosis by the target organisms.  相似文献   

10.
The present research work is designed to prepare and optimize butenafine (BT) loaded poly lactic co glycolic acid (PLGA) nanoparticles (BT-NPs). BT-NPs were prepared by emulsification probe sonication method using PLGA (A), PVA (B) as polymer and stabilizer, respectively. The optimum composition of BT-NPs was selected based on the point prediction method given by the Box Behnken design software. The optimized composition of BT-NPop showed a particle size of 267.21 ± 3.54 nm with an entrapment efficiency of 72.43 ± 3.11%. The optimum composition of BT-NPop was further converted into gel formulation using chitosan as a natural polymer. The prepared topical gel formulation (BT-NPopG) was further evaluated for gel characterization, drug release, permeation study, irritation, and antifungal studies. The prepared BT-NPopG formulation showed optimum pH, viscosity, spreadability, and drug content. The release and permeation study results revealed slow BT release (42.76 ± 2.87%) with significantly enhanced permeation across the egg membrane. The irritation study data showed negligible irritation with a cumulative score of 0.33. The antifungal study results conclude higher activity than marketed as well as pure BT. The overall conclusion of the results revealed BT-NPopG as an ideal delivery system to treat topical fungal infection.  相似文献   

11.
In order to improve the therapeutic index of adapalene, a new drug under development for the treatment of acne, site-specific delivery to the hair follicles using 50:50 poly(DL-lactic-co-glycolic acid) microspheres as particulate carriers was investigated in vitro and in vivo. The percutaneous penetration pathway of the microspheres was shown to be dependent on their mean diameter. Thus, after topical application onto hairless rat or human skin, adapalene-loaded microspheres (5-µm diameter) were specifically targeted to the follicular ducts and did not penetrate via the stratum corneum. The in vitro release of adapalene from the microspheres into artificial sebum at 37°C was controlled and faster than the in vivo sebum excretion in humans. Aiming to reduce either the applied dose of drug or the frequency of administration, different formulations of adapalene-loaded microspheres were evaluated in vivo in the rhino mouse model. A dose-related comedolytic activity of topical formulations of adapalene-loaded microspheres was observed in this model. Furthermore, by applying a site-specific drug delivery system (0.1% adapalene) every other day or by administering a 10-fold less concentrated targeted formulation (0.01%) every day, a pharmacological activity equivalent to a daily application of an aqueous gel containing drug crystals (0.1% adapalene) was observed. Since an aqueous gel containing 10% adapalene-loaded microspheres was not irritating in a rabbit skin irritancy test, this formulation was applied onto forearms of human volunteers. Site-specific drug delivery was further evidenced by follicular biopsy. These results support the view that follicular drug targeting using 5-µm polymeric microspheres may represent a promising therapeutic approach for the treatment of pathologies associated with pilosebaceous units.  相似文献   

12.
Abstract

The treatment of invasive candidiasis associated with growing numbers of immunocompromised patients remains a major challenge complicated by increasing drug resistance. A novel class of branched histidine-lysine (bHK) peptides has promising antifungal activity, and exhibits a mechanism similar to natural histatins, and thus may avoid drug resistance. The present studies evaluate ligand targeting of bHK peptides to fungal surface integrins by determining whether a cyclic RGD (cRGD) peptide with a large PEG linker could enhance bHK peptide antifungal activity. Whereas conjugates containing only the PEG linker reduced bHK peptide activity, conjugates with the cRGD-PEG ligand resulted in marked enhancement of activity against Candida albicans. This study provides the first demonstration of benefit from ligand targeting of antifungal agents to fungal surface receptors.  相似文献   

13.
《Drug delivery》2013,20(5):210-215
Abstract

The aim of the present study was to investigate the potential of developed thiolated microspheres for insulin delivery through nasal route. In the present study, cysteine was immobilized on carbopol using EDAC. A total of 269.93?µmol free thiol groups per gram polymer were determined. The prepared nonthiolated and thiolated microspheres were studied for particle shape, size, drug content, swellability, mucoadhesion and in vitro insulin release. The thiolated microspheres exhibited higher mucoadhesion due to formation of covalent bonds via disulfide bridges with the mucus gel layer. Drug permeation through goat nasal mucosa of nonthiolated and thiolated microspheres were found as 52.62?±?2.4% and 78.85?±?3.1% in 6?h, respectively. Thiolated microspheres bearing insulin showed better reduction in blood glucose level (BGL) in comparison to nonthiolated microspheres as 31.23?±?2.12% and 75.25?±?0.93% blood glucose of initial BGL were observed at 6?h after nasal delivery of thiolated and nonthiolated microspheres in streptozotocin-induced diabetic rabbits.  相似文献   

14.
Context: Commiphora molmol Engl (Burseraceae) or myrrh has been traditionally used for the treatment of skin fungal infections.

Objective: This study evaluates the antifungal activity of myrrh ethanol extract and essential oil against skin dermatophytes.

Materials and methods: The antifungal evaluations were performed by the food poisoning technique (250?ppm) and micro-broth dilution assay (800–6.25?µg/mL) against Trichophyton rubrum, T. mentagrophytes, Microsporum canis, M. gypseum, and T. verrucosum. The chemical composition of myrrh oil and ethanol extract was analyzed by GC and GC-MS.

Results: Furanoeudesma 1,3-diene and menthofuran were the main components of myrrh oil, while 2-tert-butyl-1,4-naphthoquinone, benzenemethanol,3-methoxy-α-phenyl, and curzerene were the main components of myrrh ethanol extract. The inhibitory effect of myrrh oil and ethanol extract against dermatophytes were 43.1–61.6% and 12.5–27.5%, respectively. The MIC and MFC values of myrrh oil were 25–100 and 25–200?µg/mL while these amounts for ethanol extract were 25–400 and 25–400?µg/mL, respectively. Therefore, myrrh oil had higher antifungal activity than that of the ethanol extract. Both extracts showed good anti-elastase activity.

Conclusion: The results of our investigation confirmed the traditional uses of C. molmol as a poultice for the treatment of cutaneous fungal infections.  相似文献   

15.
Abstract

Objective: The purpose of this study was to formulate stable Ganoderma lucidum (GLT) nanogels suitable for topical delivery with a view to improve the therapeutic effect for frostbite.

Methods: GLT nanosuspensions were formulated using the high-pressure homogenization technique and then suitably gelled for characterized. In order to confirm the advantages of GLT nanogel for dermal application, skin permeation studies in vitro and pharmacodynamic evaluation in vivo were studied and compared with GLT–carbopol gel.

Results: The particle size analysis and SEM studies revealed that GLT nanosuspensions were still stably kept their particle size after suitably gelled by carbopol preparation. The drug content, pH, and spreadability of the GLT nanogel was found to be 99.23?±?1.8%, 6.07?±?0.1, and 26.42 (g·cm)/s, which were within acceptable limits. In vitro permeation studies through rat skin indicated that the amount of GLT permeated through skin of GLT nanogel after 24?h was higher than GLT–carbopol gel, and GLT nanogel increased the accumulative amount of GLT in epidermis five times than GLT–carbopol gel. No oedema and erythema were observed after administration of GLT nanogel on the rabbits' skin. Pharmacodynamic study showed that GLT nanogel was more effective than GLT–carbopol gel in treatment of frostbite.

Conclusion: The GLT nanogel possess superior therapeutic effect for frostbite compared with the GLT–carbopol gel, which indicates that nanogels are eligible for the use as a suitable nanomedicine for dermal delivery of poorly soluble drugs such as GLT.  相似文献   

16.
The investigation was aimed at developing thermodynamically stable topical delivery system of nanostructured lipid carrier of econazole nitrate (EN) for the treatment of deep seated fungal infection by improving its permeability. Fifteen formulations (F1–F15) of nanostructured lipid carriers (NLCs) were prepared by solvent injection technique using central composite design and characterized for particle size and % entrapment efficiency. Closeness in the results, guided the selection of five NLC formulations which were formulated as hydrogels (G1–G5) using Carbopol 934. The permeation studies of gels demonstrated G3 with flux rate of 3.21?±?0.03 µg/cm2/min (> target flux of 1.46 µg/cm2/min) as the best formulation that exhibited zero order permeation. The amount of drug/unit area demonstrated linear dependency on flux rate. Confocal laser scanning microscopy demonstrated penetration of rhodamine red till the stratum basale due to hydration of stratum corneum. Hydrogel G3 containing NLC formulation (F5) was selected as the optimized topical gel. TEM of F5 revealed spherical particles that presented low recrystallization index of 72.35%. Stability profile for 90 days revealed insignificant change (p?<?0.05) in the particle size and zeta potential indicating substantial stability of the system. Thus, EN-loaded NLC indicated better permeability and thermodynamic stability as effective topical delivery system for deep seated fungal infection.  相似文献   

17.
Abstract

The purpose was to improve the encapsulation efficiency of cetirizine hydrochloride (CTZ) microspheres as a model for water soluble drugs and control its release by applying response surface methodology. A 33 Box–Behnken design was used to determine the effect of drug/polymer ratio (X1), surfactant concentration (X2) and stirring speed (X3), on the mean particle size (Y1), percentage encapsulation efficiency (Y2) and cumulative percent drug released for 12?h (Y3). Emulsion solvent evaporation (ESE) technique was applied utilizing Eudragit RS100 as coating polymer and span 80 as surfactant. All formulations were evaluated for micromeritic properties and morphologically characterized by scanning electron microscopy (SEM). The relative bioavailability of the optimized microspheres was compared with CTZ marketed product after oral administration on healthy human volunteers using a double blind, randomized, cross-over design. The results revealed that the mean particle sizes of the microspheres ranged from 62 to 348?µm and the efficiency of entrapment ranged from 36.3% to 70.1%. The optimized CTZ microspheres exhibited a slow and controlled release over 12?h. The pharmacokinetic data of optimized CTZ microspheres showed prolonged tmax, decreased Cmax and AUC0–∞ value of 3309?±?211 ng?h/ml indicating improved relative bioavailability by 169.4% compared with marketed tablets.  相似文献   

18.
Abstract

Background: Anti-inflammatory agents are widely used to relieve inflammation caused by various factors.

Aim: This study was initiated with the intention to deliver low aqueous soluble ketoprofen to enhance its solubility by developing microemulsion system as a template and then incorporating it into gel phase.

Materials and methods: Initially ketoprofen was solubilized into microemulsion preparation made up of clove oil, Tween 20 and propylene glycol as oil phase, surfactant and co-surfactant respectively, then it was incorporated into different concentration of gelling phase using gelling agents namely Carbopol 940, Carbopol 934 and hydroxypropyl methyl cellulose K4M (HPMC K4M). Formulated emulgels were evaluated for their physical appearance, pH, rheological properties, globule size, extrudability, drug content, spreadability, bioadhesion strength, in vitro and ex vivo drug release, skin irritation test and anti-inflammatory activity.

Results: Microemulsion had shown globule size 396?nm, pH 6–6.7, viscosity 29.4?cps and zeta potential ?12?mV indicating good stability. Formulated emulgels showed good physical appearance, skin acceptable pH 6–6.9, non-Newtonian shear thinning system, drug content 99.28?±?0.16%, bioadhesion strength 48.4 gram force, globule size 473?nm, spreadability 22.96?gm.cm/s, good extrudability, in vitro release, ex vivo release did not showed any irritation reaction and possess a good anti-inflammatory activity.

Conclusions: Selected batch showed enhanced drug release (92.42?±?4.66%) as compared to marketed gel (65.94?±?3.30). Similarly ex vivo release of formulation showed 72.22% release through mice skin compared with marketed gel. Formulations followed Korsmeyer–Peppas diffusion kinetic model. It was observed from the results that the formulated emulgel can provide promising delivery of ketoprofen.  相似文献   

19.
The objective of the current study was to prepare microspheres of salmeterol (SM) using poly (lactide-co-glycolide) (PLGA) and assess its viability to enhance the oral bioavailability. Microspheres of SM were prepared by oil-in-water emulsion-solvent evaporation method. The formulations were characterized in encapsulation efficiency, particle size, zeta potential, and in vitro release. The prepared microspheres were found to be spherical in shape with smooth surface. The size of microspheres ranged from 14.7 to 16.5?µm. The polydispersity index (PDI) was 0.12?±?0.05 and the zeta potential was ?33.2?±?1.4?mV. In vitro release profile, SM was graduated released from the microspheres as time lapsed, suggesting that SM was well entrapped in SM-loaded PLGA microspheres. The model that fitted best for SM released from the microspheres was Higuchi equation. In vivo study, SM-loaded PLGA microspheres are thought to have the potential to maintain SM concentration within target ranges for a long time, decreasing side effects caused by concentration fluctuation, ensuring the efficiency of treatment and improving patient compliance by reducing dosing frequency.  相似文献   

20.
For the treatment of glioblastoma multiforme, an “anticancer drug cocktail” delivered by biodegradable poly-lactide-co-glycolide (PLGA)-microspheres is proposed. Celecoxib, etoposide, and elacridar were encapsulated by an oil/water emulsification solvent evaporation method. Drug-loaded microspheres were analyzed for their physicochemical properties and evaluated in a rat glioblastoma model. Microspheres had a mean diameter 10–20?µm, and encapsulation rates varied upon lipophilicity of the drug (celecoxib: 97.4?±?0.4%; elacridar: 98.1?±?0.3%; and etoposide: 38.7?±?8.3%). Drug release of celecoxib and elacridar resulted in a burst (t50: 3.1?h and 1.0?h, respectively) while etoposide release was slower (t50: 45.3?h). The comparison of celecoxib (p?=?0.021) and etoposide microspheres (p?=?0.002) as well as their combination (p?=?0.011) led to a significant increase in the probability of survival compared to blank microspheres. Local delivery of celecoxib and etoposide microspheres was found to be suitable for the treatment of glioblastoma in rats although simultaneous drug administration did not improve the therapeutic outcome.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号