首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Context: The study was aimed to develop a polymeric nanoparticle formulation of anticancer drug carboplatin using biodegradable polymer polycaprolactone (PCL). The formulation is intended for intranasal administration to treat glioma anticipating improved brain delivery as nasal route possess direct access to brain and nanoparticles have small size to overcome the mucosal and blood–brain barrier.

Objective: Development and evaluation of carboplatin-PCL nanoparticles for brain delivery by nasal route.

Methodology: Carboplatin-loaded PCL nanoparticles (CPCs) were prepared by double emulsion-solvent evaporation technique and characterized by particle size, zeta potential, entrapment efficiency, scanning electron microscopy and differential scanning calorimetry. The CPCs were assessed for in vitro release kinetics, ex vivo permeation and in situ nasal perfusion. Cytotoxic potential of CPCs in vitro was evaluated on LN229 human glioblastoma cells.

Results and discussion: The optimized formulation of carboplatin-PCL nanoparticle CPC-08 with particle size of 311.6?±?4.7?nm and zeta potential ?16.3?±?3.7?mV exhibited percentage entrapment efficiency of 27.95?±?4.21. In vitro drug release showed initial burst release followed by slow and continues release indicating biphasic pattern. The ex vivo permeation pattern through sheep nasal mucosa also exhibited a similar release pattern as for in vitro release studies. In situ nasal perfusion studies in Wistar rats demonstrate that CPCs show better nasal absorption than carboplatin solution. In vitro cytotoxicity studies on LN229 cells showed an enhancement in cytotoxicity by CPCs compared to carboplatin alone.

Conclusion: CPC-08 effectively improves nasal absorption of carboplatin and can be used for intranasal administration of carboplatin for improved brain delivery.  相似文献   

2.
Paclitaxel is not effective for treatment of brain cancers because it cannot cross the blood–brain barrier (BBB) due to efflux by P-glycoprotein (P-gp). In this work, glutathione-coated poly-(lactide-co-glycolide) (PLGA) nanoparticles (NPs) of paclitaxel were developed for brain targeting for treatment of brain cancers. P-gp ATPase assay was used to evaluate the NP as potential substrates. The NP showed a particle size suitable for BBB permeation (particle size around 200?nm) and higher cellular uptake of the NP was demonstrated in RG2 cells. The P-gp ATPase assay suggested that the NP were not substrate for P-gp and would not be effluxed by P-gp present in the BBB. The in vitro release profile of the NP exhibited no initial burst release and showed sustained drug release. The proposed coated NP showed significantly higher cytotoxicity in RG2 cells compared with uncoated NP (p?≤?0.05). Tubulin immunofluorescent study showed higher cell death by the NP due to increased microtubule stabilization. In vivo brain uptake study in mice showed higher brain uptake of the NP containing coumarin-6 compared with solution. The proposed brain-targeted NP delivery of paclitaxel could be an effective treatment for the brain cancers.  相似文献   

3.
Background: Generally, chemotherapeutic drugs attack on both normal and tumor cells non-specifically causing life threatening side effects, necessitating targeted drug delivery to tumors.

Purpose: The purpose of this study is to formulate albumin-based nanoparticles for tumor targeted drug delivery and noninvasive diagnosis.

Methods: Albumin based nanoparticles (NPs) were developed as a potential tumor theragnostic agent by entrapping an anti cancer drug, doxorubicin and a near infrared dye, indocyanine green. Theragnostic nanoparticles were prepared using a well established coacervation/nanoprecipitation method followed by lyophilization. The formulation was optimized by varying process parameters using full factorial design of experiments. Release of dye and drug from NPs and physical state of the drug in NPs was studied using DSC. The NPs were injected into tumor bearing mice intravenously and imaged using a bio-imager.

Results: The optimized nanoparticle formulation had a particle size of 125.0?±?1.8?nm, poly dispersity index of 0.180?±?0.057 and zeta potential of ?32.7?±?0.9 mV. The release of dye and drug from the nanoparticles was determined to be quasi-fickian diffusion mediated. Differential scanning calorimetry (DSC) studies revealed the stability of drug in the NP. The in-vivo studies showed enhanced accumulation of the dye loaded NPs at the tumor site than the dye solution, thus allowing noninvasive tumor monitoring.

Conclusion: These results project the newly proposed and evaluated nanoparticle formulation as a potential tumor targeting and imaging delivery system.  相似文献   

4.
Purpose: The main objective of the study was to formulate and characterize testosterone (TS) solid lipid microparticles (SLM) to be applied as a transdermal delivery system.

Methods: Testosterone SLMs were formulated using an emulsion melt homogenization method. Various types and concentrations of fatty materials, namely glyceryl monostearate (GM), glyceryl distearate (GD), stearic acid (SA) and glyceryl behanate (GB) were used. The formulations contained 2.5 or 5?mg TS?g?1. Morphology, particle size, entrapment efficiency (EE), rheological properties and thermal behaviour of the prepared SLM were examined. In vitro release characteristics of TS from various prepared SLM were also evaluated over 24?h using a vertical Franz diffusion cell. In addition, the effect of storage and freeze-drying on particle size and release pattern of TS from the selected formulation was evaluated.

Results: The results indicated that the type of lipid affected the morphology and particle size of SLM. A relatively high drug percentage entrapment efficiency ranging from 80.7–95.7% was obtained. Rheological studies showed plastic flow characteristics of the prepared formulations. DSC examination revealed that TS existed in amorphous form in the prepared SLM. Release studies revealed the following rank order of TS permeation through cellophane membrane after application of various formulations: 5% GM?<?5% GD?<?5% SA?<?5% GB?<?2.5% GM?<?2.5% SA?<?10% GD?<?10% GB. The drug permeation through excised abdomen rat skin after application of 10% GB–2.5?mg TS?g?1 SLM was lower than that permeated through cellophane membrane. Moreover, SLM containing 10% GB–2.5?mg TS?g?1 stored at 5°C showed good stability as indicated by the release study and particle size analysis. Trehalose showed high potential as a cryoprotectant during freeze drying of the selected SLM formulation.

Conclusions: The developed TS SLM delivery system seemed to be promising as a TS transdermal delivery system.  相似文献   

5.
Purpose: The blood–brain barrier (BBB) presents both a physical and electrostatic barrier to limit brain permeation of therapeutics. Previous work has demonstrated that nanoparticles (NPs) overcome the physical barrier, but there is little known regarding the effect of NP surface charge on BBB function. Therefore, this work evaluated: (1) effect of neutral, anionic and cationic charged NPs on BBB integrity and (2) NP brain permeability.

Methods: Emulsifying wax NPs were prepared from warm oil-in-water microemulsion precursors using neutral, anionic or cationic surfactants to provide the corresponding NP surface charge. NPs were characterized by particle size and zeta potential. BBB integrity and NP brain permeability were evaluated by in situ rat brain perfusion.

Results: Neutral NPs and low concentrations of anionic NPs were found to have no effect on BBB integrity, whereas, high concentrations of anionic NPs and cationic NPs disrupted the BBB. The brain uptake rates of anionic NPs at lower concentrations were superior to neutral or cationic formulations at the same concentrations.

Conclusions: (1) Neutral NPs and low concentration anionic NPs can be utilized as colloidal drug carriers to brain, (2) cationic NPs have an immediate toxic effect at the BBB and (3) NP surface charges must be considered for toxicity and brain distribution profiles.  相似文献   

6.
The blood-brain barrier is a major barrier in the neurological diseases treatment and precludes the entry of drugs from blood to brain. Here, we developed 29-amino-acid peptide derived from rabies virus glycoprotein (RVG29) peptide conjugated itraconazole-loaded albumin nanoparticles (RVG29-ITZ-NPs). The RVG29 peptide was conjugated to the albumin NPs using biotin-binding streptavidin as crosslinker. The NPs were characterized in terms of particle size, zeta potential, drug loading and release behavior in vitro. Cellular uptake of RVG29-ITZ-NPs was investigated by flow cytometry. Pharmacokinetics and brain distribution of RVG29-ITZ-NPs were investigated after intravenous administration of NPs. The particle size of RVG29-ITZ-NPs was 89.3?±?1.9?nm as determined by dynamic light scattering. The zeta potential of RVG29-ITZ-NPs was ?33.1?±?0.9 mV. RVG29-ITZ-NPs exhibited a sustained release profile within 24?h. In vitro cellular uptake studies demonstrated that RVG29 significantly facilitated the intracellular delivery of NPs. A significant (P?<?0.05) accumulation of ITZ in brain was observed for RVG29-ITZ-NPs as compared with ITZ-NPs and cyclodextrin formulation of ITZ (ITZ-CD). These results suggested that RVG29-ITZ-NPs can be exploited as a potential therapeutic formulation for the intracranial fungal infection.  相似文献   

7.
Context: Osteoporosis (OP) is the most common metabolic bone disease predominantly found in elderly people. It is associated with reduced bone mineral density, results in a higher probability of fractures, especially of the hip, vertebrae, and distal radius. Worldwide prevalence of OP is considered a serious public health concern.

Objective: The purpose of the present work was to develop and evaluate polymeric nanoparticles (NPs) of risedronate sodium (RIS) for the treatment of OP using intranasal (IN) route in order to reduce peripheral toxic effects.

Materials and methods: Polymeric NPs of RIS were prepared by nanoprecipitation methods. Formulations were developed and evaluated in context to in vitro drug release, ex vivo permeation, in vivo study, and biochemical studies.

Results and discussions: The particles size, entrapment efficiency (EE) (%), and loading capacity (LC) (%) of optimized formulations were found to be 127.84?±?6.33?nm, 52.65?±?5.21, and 10.57?±?1.48, respectively. Release kinetics showed diffusion-controlled, Fickian release pattern. Ex vivo permeation study showed RIS from PLGA-NPs permeated significantly (p?<?0.05) through nasal mucosa. In vivo study showed a marked difference in micro-structure (trabeculae) in bone internal environment. Biochemical estimation of treated group and RIS PLGA indicated a significant recovery (p?<?0.01) as compared with the toxic group.

Conclusion: Polymeric NPs of RIS were prepared successfully using biodegradable polymer (PLGA). Intranasal delivery showed a good result in in vivo study. Thus PLGA-NPs have great potential for delivering the RIS for the treatment and prevention of OP after clinical evaluation in near future.  相似文献   

8.
Context: The unique physiological limitations of the eye have been assigned as reason of low bioavailability by conventional drug delivery systems. There is need of such drug carriers, which ensure improved bioavailability as well as patient compliance upon instillation into the eye.

Objective: The present investigation deals with development of solid lipid nanoparticles (SLNs) containing celecoxib (CXB) for treatment of ophthalmic inflammations.

Materials and methods: The SLNs were formulated by melt-emulsion sonication and low temperature-solidification process and evaluated for particle size, surface morphology, physicochemical properties, percentage drug incorporation efficiency, in vitro drug release, in vitro trans-corneal permeation, in vivo efficacy in ocular inflammation, stability study and gamma scintigraphy study to assess the residence of solid lipid nanoparticles over ocular surfaces.

Results: The SLNs were spherical and the optimized formulation had particle size of 198.77?±?7.5?nm, which is quite suitable for ocular applications. The maximum entrapment efficiency of 92.46?±?0.07% was achieved for formulation SLN 20. The permeation across the cornea was also significantly better than aqueous suspension (8.21?±?0.67 versus 4.61?±?0.71) at p?<?0.05.

Discussion and conclusion: The SLN formulations demonstrated improved performance of entrapped CXB while mitigating the key parameters of ocular inflammation in rabbits. The particulate formulations have exhibited prolonged retention over ocular surfaces as evident from results of gamma scintigraphy using 99mTc labeled SLNs.  相似文献   

9.
Context: Polymeric nanoparticles (NPs) have been used frequently as drug delivery vehicles. Surface modification of polymeric NPs with specific ligands defines a new biological identity, which assists in targeting of the nanocarriers to specific cancers cells.

Objective: The aim of this study is to develop a kind of modified vector which could target the cancer cells through receptor-mediated pathways to increase the uptake of doxorubicin (DOX).

Methods: Folate (FA)-conjugated PEG–PE (FA–PEG–PE) ligands were used to modify the polymeric NPs. The modification rate was optimized and the physical–chemical characteristics, in vitro release, and cytotoxicity of the vehicle were evaluated. The in vivo therapeutic effect of the vectors was evaluated in human nasopharyngeal carcinoma KB cells baring mice by giving each mouse 100?µl of 10?mg/kg different solutions.

Results: FA–PEG–PE-modified NPs/DOX (FA-NPs/DOX) have a particle size of 229?nm, and 86% of drug loading quantity. FA-NPs/DOX displayed remarkably higher cytotoxicity (812?mm3 tumor volume after 13?d of injection) than non-modified NPs/DOX (1290?mm3) and free DOX solution (1832?mm3) in vivo.

Conclusion: The results demonstrate that the modified drug delivery system (DDS) could function comprehensively to improve the efficacy of cancer therapy. Consequently, the system was shown to be a promising carrier for delivery of DOX, leading to the efficiency of antitumor therapy.  相似文献   

10.
Abstract

Aim: The present work investigates the efficacy of Polysorbate 80(P80) coated Kokum butter (KB) solid lipid nanoparticles (P80NvKLNs) for the brain targeted delivery of Nevirapine (Nv).

Methods: Solid lipid nanoparticles (SLNs) were prepared by nanoprecipitation technique and evaluated for drug excipient compatibility studies, z- average particle size (nm), zeta potential (mv), percentage drug entrapment efficiency (%EE), surface morphology and in-vitro drug release properties. The in-vivo biodistribution and brain targeting efficiency of nanoparticles were studied in healthy male Wistar rat (150–200?g).

Results: P80NvKLNs were found to be smooth surfaced, spherical shaped having average particle size of 177.80?±?0.82?nm, zeta potential of ?8.91?±?4.36?mv and %EE of 31.32?±?0.42%. P80NvKLNs remained in blood circulation for 48?h maintaining a sustained release in brain for 24?h (p?<?0.05).

Conclusion: The study proves the efficacy of Polysorbate 80 coated Kokum butter nanoparticles for brain-targeted delivery of drugs providing ample opportunities for further study.  相似文献   

11.
Abstract

The objective of this study is to develop a new textile-based drug delivery system containing naproxen (NAP) microparticles and to evaluate the potential of the system as the carrier of NAP for topical delivery. Microparticles were prepared by spray-drying using an aqueous ethyl cellulose dispersion. The drug content and entrapment efficiency, particle size and distribution, particle morphology and in vitro drug release characteristics of microparticles were optimized for the application of microparticles onto the textile fabrics. Microparticles had spherical shape in the range of 10–15?μm and a narrow particle size distribution. NAP encapsulated in microparticles was in the amorphous or partially crystalline nature. Microparticles were tightly fixed onto the textile fabrics. In vitro drug release exhibited biphasic release profile with an initial burst followed by a very slow release. Skin permeation profiles were observed to follow near zero-order release kinetics.  相似文献   

12.
The purpose of this research was the fabrication, statistical optimization, and in vitro characterization of insulin-loaded poly(hydroxybutyrate-co-hydroxyvalerate) (PHBV) nanoparticles (INS-PHBV-NPs). Nanopar-ticles were successfully developed by double emulsification solvent evaporation method. The NPs were characterized for particle size, entrapment efficiency (EE%), and polydispersity index (PDI). The NPs also were characterized by scanning electron microscopy (SEM), Fourier transformed infrared spectroscopy (FTIR), X-ray diffraction (XRD), differential scanning calorimetry (DSC), and circular dichroism (CD). The optimum conditions were found to be 1.6% polyvinyl alcohol (PVA), 0.9% of PHBV, and 15?mg/ml of insulin with the aid of the Box–Behnken experimental design results. The optimized NPs showed spherical shape with particle size of 250.21?±?11.37?nm, PDI of 0.12?±?0.01, and with EE% of 90.12?±?2.10%. In vitro drug release pattern followed Korsmeyer–Peppas model and exhibited an initial burst release of 19% with extended drug release of 63.2% from optimized NPs within 27?d. In conclusion, these results suggest that INS-PHBV-NPs could be a promising candidate for designing an injectable sustained release formulation for insulin.  相似文献   

13.
Objective: Chitosan-based nanoparticles (NPs) were prepared to promote intracellular sustained delivery of the synthetic delta opioid D-Ala(2)-D-Leu(5)-enkephalin (DADLE), prolonging peptide activity and inducing a safe and reversible hypometabolic state.

Materials and methods: NPs were prepared by combining ionotropic gelation and ultrasonication treatment. NP uptake studies and the effects of encapsulated DADLE on HeLa cells proliferation were tested by transmission electron microscopy (TEM) analysis, by immuno-fluorescence and immuno-cytochemistry.

Results: DADLE-loaded NPs are produced with suitable characteristics, a satisfactory process yield (55.4%?±?2.4%) and encapsulation efficiency (64.6%?±?2.1%). NPs are effective in inducing a hypometabolic stasis at a 10?4?M DADLE concentration. Moreover, as seen from the immunofluorescence study, the effect persists through the recovery period (72?h). Indeed, NPs labelled by anti-enkephalin antibody inside cell nucleus reassert that the in vivo release of the peptide can be prolonged with respect to the case of free peptide supply.

Conclusion: The nanoparticulate drug delivery system described seems to be effective in inducing and prolonging a sort of hibernation-like state in the cells.  相似文献   

14.
Dermal delivery of fluconazole (FLZ) is still a major limitation due to problems relating to control drug release and achieving therapeutic efficacy. Recently, solid lipid nanoparticles (SLNs) were explored for their potential of topical delivery, possible skin compartments targeting and controlled release in the skin strata. The retention and accumulation of drug in skin is affected by composition of SLNs. Hence, the aim of this study was to develop FLZ nanoparticles consisted of various lipid cores in order to optimize the drug retention in skin. SLNs were prepared by solvent diffusion method and characterized for various in vitro and in vivo parameters. The results indicate that the SLNs composed of compritol 888 ATO (CA) have highest drug encapsulation efficiency (75.7?±?4.94%) with lower particle size (178.9?±?3.8?nm). The in vitro release and skin permeation data suggest that drug release followed sustained fashion over 24?h. The antifungal activity shows that SLNs made up of CA lipid could noticeably improve the dermal localization. In conclusion, CA lipid based SLNs are represents a promising carrier means for the topical treatment of skin fungal infection as an alternative to the systemic delivery of FLZ.  相似文献   

15.
《Drug delivery》2013,20(5):210-215
Abstract

The aim of the present study was to investigate the potential of developed thiolated microspheres for insulin delivery through nasal route. In the present study, cysteine was immobilized on carbopol using EDAC. A total of 269.93?µmol free thiol groups per gram polymer were determined. The prepared nonthiolated and thiolated microspheres were studied for particle shape, size, drug content, swellability, mucoadhesion and in vitro insulin release. The thiolated microspheres exhibited higher mucoadhesion due to formation of covalent bonds via disulfide bridges with the mucus gel layer. Drug permeation through goat nasal mucosa of nonthiolated and thiolated microspheres were found as 52.62?±?2.4% and 78.85?±?3.1% in 6?h, respectively. Thiolated microspheres bearing insulin showed better reduction in blood glucose level (BGL) in comparison to nonthiolated microspheres as 31.23?±?2.12% and 75.25?±?0.93% blood glucose of initial BGL were observed at 6?h after nasal delivery of thiolated and nonthiolated microspheres in streptozotocin-induced diabetic rabbits.  相似文献   

16.
Abstract

The effective treatment of brain cancer is hindered by the poor transport across the blood–brain barrier (BBB) and the low penetration across the blood–tumor barrier (BTB). The objective of this work was to formulate transferrin-conjugated docetaxel (DTX)-loaded d-alpha-tocopheryl polyethylene glycol 1000 succinate (vitamin E TPGS or TPGS) micelles for targeted brain cancer therapy. The micelles with and without transferrin conjugation were prepared by the solvent casting method and characterized for their particle size, polydispersity, drug encapsulation efficiency, drug loading, in vitro release study and brain distribution study. Particle sizes of prepared micelles were determined at 25?°C by dynamic light scattering technique. The external surface morphology was determined by transmission electron microscopy analysis and atomic force microscopy. The encapsulation efficiency was determined by spectrophotometery. In vitro release studies of micelles and control formulations were carried out by dialysis bag diffusion method. The particle sizes of the non-targeted and targeted micelles were <20?nm. About 85% of drug encapsulation efficiency was achieved with micelles. The drug release from transferrin-conjugated micelles was sustained for >24?h with 50% of drug release. The in vivo results indicated that transferrin-targeted TPGS micelles could be a promising carrier for brain targeting due to nano-sized drug delivery, solubility enhancement and permeability which provided an improved and prolonged brain targeting of DTX in comparison to the non-targeted micelles and marketed formulation.  相似文献   

17.
Paclitaxel (PTX), an antimicrotubular agent used in the treatment of ovarian and breast cancer, was encapsulated in nanoparticles (NPs) of poly(lactide-co-glycolide) (PLGA) and poly(ε-caprolactone) (PCL) polymers using the spray-drying technique. Morphology, size distribution, drug encapsulation efficiency, thermal degradation and drug release were characterized. MCF7 cells were employed to evaluate the efficacy of the systems on cell cycle and cytotoxicity. The particle size was in the range 0.8–1?µm. The incorporation efficiency of PTX was more than 80% in all NPs obtained. In vitro drug release took place during 35 days, and drug release rates were in the order PCL?>?PLGA 50:50?>?PLGA 75:25. Unloaded NPs showed to be cytocompatible at MCF7 cells. PTX-loaded NPs demonstrated the release of the drug block cells in the G2/M phase. All PTX-loaded formulations showed their efficacy in killing MCF7 cells, mainly PTX-loaded PLGA 50:50 and PLGA 75:25 that cause a decrease in cell viability lower than 20%.  相似文献   

18.
Abstract

Context: This study presents novel self-nanoemulsifying drug delivery system potential of oral delivering which leads poorly aqueous soluble drug glimepiride.

Objective: The objective of this study was to prepare solid self-nanoemulsifying drug delivery system (S-SNEDDS) for the improved oral delivery of glimepiride and to evaluate its therapeutic efficacy in albino rabbits.

Results and discussion: The droplet size analyses revealed a droplet size of less than 200?nm. The solid state characterization of S-SNEDDS by scanning electron microscopy (SEM), X-ray powder diffraction and differential scanning calorimetry (DSC) revealed the absence of crystalline glimepiride in the S-SNEDDS. The in vitro dissolution studies revealed that the significant improvement in glimepiride release characteristics. The effect of S-SNEDDS on therapeutic efficacy of glimepride was assessed in albino rabbits by monitoring blood glucose levels and compared with free drug suspension, L-SNEDDS. The S-SNEDDS showed significant (p?<?0.05) increase in in vitro drug release and therapeutic efficacy as compared with free drug.

Conclusion: This study demonstrated that S-SNEDDS is a promising novel drug delivery system of glimepride to enhance oral delivery.  相似文献   

19.

Purpose

To investigate the effects of the particle size and surface coating on the cellular uptake of the polymeric nanoparticles for drug delivery across the physiological drug barrier with emphasis on the gastrointestinal (GI) barrier for oral chemotherapy and the blood–brain barrier (BBB) for imaging and therapy of brain cancer.

Methods

Various sizes of commercial fluorescent polystyrene nanoparticles (PS NPs) (viz 20 50, 100, 200 and 500 nm) were modified with the d-α-tocopheryl polyethylene glycol 1,000 succinate (vitamin E TPGS or TPGS). The size, surface charge and surface morphology of PS NPs before and after TPGS modification were characterized. The Caco-2 and MDCK cells were employed as an in vitro model of the GI barrier for oral and the BBB for drug delivery into the central nerve system respectively. The distribution of fluorescent NPs after i.v. administration to rats was analyzed by the high performance liquid chromatography (HPLC).

Results

The in vitro investigation showed enhanced cellular uptake efficiency for PS NPs in both of Caco-2 and MDCK cells after TPGS surface coating. In vivo investigation showed that the particle size and surface coating are the two parameters which can dramatically influence the NPs biodistribution after intravenous administration. The TPGS coated NPs of smaller size (< 200 nm) can escape from recognition by the reticuloendothelial system (RES) and thus prolong the half-life of the NPs in the blood system.

Conclusions

TPGS-coated PS NPs of 100 and 200 nm sizes have potential to deliver the drug across the GI barrier and the BBB.  相似文献   

20.
Brain-targeted Tempol-loaded poly-(lactide-co-glycolide) (PLGA) nanoparticles (NPs) conjugated with a transferrin antibody (OX 26) were developed using the nanoprecipitation method. These NPs may have utility in treating neurodegenerative diseases such as Parkinson’s disease and Alzheimer’s disease. Central to these diseases is an increased production of reactive oxygen and nitrogen species which may take part in the development of these conditions. As proof of principle, the NPs were loaded with Tempol, a free radical scavenger that has been shown to be protective against oxidative insults. To enhance the delivery of NPs to the central nervous system (CNS), we conjugated the transferrin receptor antibody covalently to PLGA NPs using the NHS-PEG3500-Maleimide crosslinker. The NPs showed a particle size suitable for blood brain barrier (BBB) permeation (particle size 80–110?nm) and demonstrated a sustained drug release behavior. A high cellular uptake of antibody-conjugated NPs was demonstrated in RG2 rat glioma cells. The ability of the Tempol-loaded NPs to prevent cell death by resveratrol in RG2 cells was determined using the MTT assay. The conjugated NPs containing Tempol were more effective in preventing cell viability by resveratrol when compared with unconjugated NPs or free Tempol in solution. Our findings suggest that transferrin-conjugated NPs containing antioxidants may be useful in the treatment of neurodegenerative diseases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号