首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The aim of this study was to investigate the use of liquisolid technique in improving the dissolution profiles of naproxen in a solid dosage form. This study was designed to evaluate the effects of different formulation variables, i.e. type of non-volatile liquid vehicles and drug concentrations, on drug dissolution rates. The liquisolid tablets were formulated with three different liquid vehicles, namely Cremophor® EL (polyoxyl 35 castor oil), Synperonic® PE/L61 (poloxamer 181, polyoxyethylene-polyoxypropylene copolymer) and poly ethylene glycol 400 (PEG400) at two drug concentrations, 20%w/w and 40%w/w. Avicel® PH102 was used as a carrier material, Cab-o-sil® M-5 as a coating material and maize starch as a disintegrant. The empirical method as introduced by Spireas and Bolton (1999) [1] was applied strictly to calculate the amounts of coating and carrier materials required to prepare naproxen liquisolid tablets. Quality control tests, i.e. uniformity of tablet weight, uniformity of drug content, tablet hardness, friability test, disintegration and dissolution tests were performed to evaluate each batch of prepared tablets. In vitro drug dissolution profiles of the liquisolid formulations were studied and compared with conventional formulation, in simulated gastric fluid (pH 1.2) and simulated intestinal fluid (pH 7.2) without enzyme. Stability studies were carried out to evaluate the stability of the tablets under humid conditions. Differential scanning calorimetry and Fourier transform infrared were used to investigate physicochemical interaction between naproxen and the excipients. It was found that liquisolid tablets formulated with Cremophor® EL at drug concentration of 20%w/w produced high dissolution profile with acceptable tablet properties. The stability studies showed that the dissolution profiles of liquisolid tablets prepared with Cremophor® EL were not affected by ageing significantly. Furthermore, DSC revealed that drug particles in liquisolid formulations were completely solubilised.  相似文献   

2.
Abstract

Spironolactone (SL) is a poorly water-soluble drug. Being poorly soluble affects its dissolution rate which in turn affects its oral bioavailability. This work aimed to prepare freeze-dried SL-Soluplus®/polyvinyl alcohol (PVA) oral thin film in an attempt to enhance the drug solubility on one hand and at the same time prepare a solid dosage form convenient for the pediatric use. SL-Soluplus®/PVA films were prepared using polyethylene glycol 400 (PEG 400) as a plasticizer applying the solvent-casting technique. The prepared films were evaluated for their thickness, tensile strength, and in vitro dissolution studies. Box–Behnken design (17 runs) was applied to optimize the effects of the formulation variables on the film properties. The optimized film formulation was freeze-dried after casting so as to enhance the drug dissolution. Moreover, the optimized freeze-dried film was re-characterized in vitro and evaluated in vivo in human volunteers to investigate its palatability and satisfaction. The results showed that the optimized formulation composed of 10% polymer concentration containing Soluplus®:PVA (0.33:0.66) and plasticized with 30% PEG 400 possessed the highest desirability value (0.836). Freeze-drying of the optimized formulation succeeded to improve SL in vitro dissolution due to the preparation of a more porous film compared to the non-freeze-dried one. In vivo evaluation of the optimized freeze-dried film showed high satisfaction among the participating volunteers concerning the ease of administration and sensation thereafter, where all the film specimens dissolved without the need for water and no film residues remained in the mouth following film dissolution. In conclusion, freeze-dried Soluplus®/PVA-based oral thin film proved to be a successful carrier for the oral delivery of insoluble drugs like SL for pediatrics.  相似文献   

3.
Although famotidine was reported to be 7.5 and 20 times more potent than ranitidine and cimetidine, respectively, its oral bioavailability is low and variable; due mainly to its poor aqueous solubility. The purpose of this study was to improve famotidine dissolution through its formulation into liquisolid systems and then to investigate the in vitro and in vivo performance of the prepared liquisolid tablets. The new mathematical model was utilized to formulate various liquisolid powder systems. Both DSC and XRD suggested loss of famotidine crystallinity upon liquisolid formulation which was further confirmed by SEM indicating that even though the drug existed in a solid dosage form, it is held within the powder substrate in a solubilized, almost molecularly dispersed state, which contributed to the enhanced drug dissolution properties. All the tested liquisolid tablet formulations showed higher drug dissolution rates (DR) than the conventional, directly compressed tables. In addition, the selected optimal formula released 78.36% of its content during the first 10 min which is 39% higher than that of the directly compressed tablets. Further, the bioavailability study indicated that the prepared optimal liquisolid formula did not differ significantly from the marketed famotidine tablets concerning Cmax, tmax, and AUC(0-8) at P<0.05.  相似文献   

4.
Marketed glyburide tablets present unsatisfying dissolution profiles that give rise to variable bioavailability. With the purpose of developing a fast-dissolving tablet formulation able to assure a complete drug dissolution, we investigated the effect of the addition to a reference tablet formulation of different types (anionic and nonionic) and amounts of hydrophilic surfactants, as well as the use of a new technique, based on ternary solid dispersions of the drug with an hydrophilic carrier (polyethylene glycol [PEG] 6000) and a surfactant. Tablets were prepared by direct compression or previous wet granulation of suitable formulations containing the drug with each surfactant or drug:PEG:surfactant ternary dispersions at different PEG:surfactant w/w ratios. The presence of surfactants significantly increased (p<0.01) the drug dissolution rate, but complete drug dissolution was never achieved. On the contrary, in all cases tablets containing ternary solid dispersions achieved 100% dissolved drug within 60 min. The best product was the 10:80:10 w/w ternary dispersion with PEG 6000 and sodium laurylsulphate, showing a dissolution efficiency 5.5-fold greater than the reference tablet formulation and 100% drug dissolution after only 20 min.  相似文献   

5.
目的 设计非洛地平自微乳给药系统,并进行体外评价。方法 测定非洛地平的溶解度,考察油相与乳化剂的相容性,绘制伪三元相图,初步设计自微乳处方;运用星点设计效应面法优化自微乳处方;评价自乳化性能和体外溶出行为。结果 非洛地平自微乳处方:油相LABRAFIL M 1944CS为4.4 g,乳化剂Cremophor EL35为5.5 g,助乳化剂PEG400为1.1 g,非洛地平1.0 g;自乳化效率高,乳液澄明稳定,平均粒径为30.4 nm,PDI为0.16;水中溶出很快,5 min内平均溶出度>85%,30 min达99%,24 h后乳滴依然稳定。结论 星点设计-效应面法优化的非洛地平自微乳,自乳化性能高,乳液稳定,显著提高非洛地平的体外溶出度。  相似文献   

6.
A liquisolid system has the ability to improve the dissolution properties of poorly water soluble drugs. Liquisolid compacts are flowing and compactable powdered forms of liquid medications. The aim of this study was to enhance the in vitro dissolution properties of the practically water insoluble loop diuretic furosemide, by utilising liquisolid technique. Several liquisolid tablets were prepared using microcrystalline cellulose (Avicel® pH-101) and fumed silica (Cab-O-Sil® M-5) as the carrier and coating materials, respectively. Polyoxy-ethylene-polyoxypropylene-polyoxyethylene block copolymer (Synperonic® PE/L 81); 1,2,3-propanetriol, homopolymer, (9Z)-9-octadecenoate (Caprol® PGE-860) and polyethylene glycol 400 (PEG 400) were used as non- volatile water-miscible liquid vehicles. The liquid loading factors for such liquid vehicles were calculated to obtain the optimum amounts of carrier and coating materials necessary to produce acceptable flowing and compactible powder admixtures viable to produce compacts. The ratio of carrier to coating material was kept constant in all formulations at 20 to 1. The formulated liquisolid tablets were evaluated for post compaction parameters such as weight variation, hardness, drug content uniformity, percentage friability and disintegration time. The in-vitro release characteristics of the drug from tablets formulated by direct compression (as reference) and liquisolid technique, were studied in two different dissolution media. Differential scanning calorimetry (DSC) and Fourier-Transform infrared spectroscopy (FT-IR) were performed. The results showed that all formulations exhibited higher percentage of drug dissolved in water (pH 6.4–6.6) compared to that at acidic medium (pH 1.2). Liquisolid compacts containing Synperonic® PE/L 81 demonstrated higher release rate at the different pH values. Formulations with PEG 400 displayed lower drug release rate, compared to conventional and liquisolid tablets. DSC and FT-IR indicated a possible interaction between furosemide and tablet excipients that could explain the dissolution results. Caprol® PGE-860, as a liquid vehicle, failed to produce furosemide liquisolid compacts.  相似文献   

7.
The aim of this study was to evaluate the use of maltodextrin as a sugar-matrix former along with several cellulosic binders in the preparation of freeze—dried orally disintegrating tablets (ODT). The ODT was prepared by freeze—drying an aqueous dispersion of nimesulide (NM) containing maltodextrin and a cellulosic binder. The influence of formulation parameters on the in vitro/in vivo disintegration time and in vitro dissolution of NM from ODTs along with other tablet characteristics was investigated using full factorial design. The optimized ODT contained 5% w/v maltodextrin DE 29, 2% w/v Methocel®E15, and 5% w/v NM, disintegrated in less than 10 s and showed more than 70% of NM in ODTs dissolved within 2?min, compared to only 1.52% of NM plain drug and 7.25% of NM in immediate release commercial tablet. Crystalline state evaluation of NM in the optimized ODT was conducted through differential scanning calorimetry, and X-ray powder diffraction. The study suggests that the optimized ODT formulation developed in this work may be an alternative to conventional formulations of NM inconvenient to the patients such as intramuscular or rectal administration.  相似文献   

8.
The potential of hydrophilic aerogel formulations and liquisolid systems to improve the release of poorly soluble drugs was investigated using griseofulvin as model drug. The in vitro release rates of this drug formulated as directly compressed tablets containing crystalline griseofulvin were compared to aerogel tablets with the drug adsorbed onto hydrophilic silica aerogel and to liquisolid compacts containing the drug dissolved or suspended in PEG 300. Furthermore, the commonly used carrier and coating materials in liquisolid systems Avicel® and Aerosil® were replaced by Neusilin®, an amorphous magnesium aluminometasilicate with an extremely high specific surface area of 339 m2/g to improve the liquisolid approach.Both the liquisolid compacts containing the drug dissolved in PEG 300 and the aerogel tablets showed a considerably faster drug release than the directly compressed tablets. With liquisolid compacts containing the drug suspended in PEG 300, the release rate increased with rising fraction of dissolved drug in the liquid portion. It could be shown that Neusilin® with its sevenfold higher liquid adsorption capacity than the commonly used Avicel® and Aerosil® allows the production of liquisolid formulations with lower tablet weights.  相似文献   

9.
Abstract: The use of in vitro models for the study of cardiovascular effects of drugs may not be representative for the in vivo therapeutic effects. However, drug effects in vivo are often difficult to assess because of counteracting reflexes and auto-regulatory rearrangements. To solve this dilemma, the present study presents a two-step method using both in vivo and in vitro techniques to investigate vascular versus myocardial selectivity of three dihydropyridine calcium antagonists: amlodipine, felodipine and nifedipine. The ratio between intravenous drug doses causing 25% reduction in mean arterial blood pressure (vascular potency) and in heart rate (cardiac chronotropic potency) was determined in anaesthetised spontaneously hypertensive rats during autonomic cardiac blockade. In isolated hearts from spontaneously hypertensive rats, the inotropic versus chronotropic potency ratio was determined between the two drug concentrations producing a 25% reduction in cardiac contractility (dP/dt max) and in heart rate, respectively. The vascular versus chronotropic selectivity in vivo was higher for felodipine (121) than for nifedipine (47) and amlodipine (15). The inotropic versus chronotropic potency ratios obtained from the in vitro studies were: felodipine (1), amlodipine (2) and nifedipine (20). The in vitro results were used to extrapolate the vascular versus cardiac chronotropic selectivity obtained in vivo to a vascular versus myocardial selectivity drug ratio, being 20 and 60 times higher for felodipine than for amlodipine and nifedipine, respectively.  相似文献   

10.
A tablet formulation based on hydrophilic matrix with a controlled drug release was developed, and the effect of polymer concentrations on the release of primaquine diphosphate was evaluated. To achieve this purpose, a 20-run, four-factor with multiple constraints on the proportions of the components was employed to obtain tablet compositions. Drug release was determined by an in vitro dissolution study in phosphate buffer solution at pH 6.8. The polynomial fitted functions described the behavior of the mixture on simplex coordinate systems to study the effects of each factor (polymer) on tablet characteristics. Based on the response surface methodology, a tablet composition was optimized with the purpose of obtaining a primaquine diphosphate release closer to a zero order kinetic. This formulation released 85.22% of the drug for 8 h and its kinetic was studied regarding to Korsmeyer–Peppas model, (Adj-R2 = 0.99295) which has confirmed that both diffusion and erosion were related to the mechanism of the drug release. The data from the optimized formulation were very close to the predictions from statistical analysis, demonstrating that mixture experimental design could be used to optimize primaquine diphosphate dissolution from hidroxypropylmethyl cellulose and polyethylene glycol matrix tablets.  相似文献   

11.
Abstract

A promising glipizide formulation comprising compression of four-layer coated beads into tablets was prepared. The tablet offered the advantages of: a two-hour lag time before drug release, retaining sustained release characteristics and providing approximately zero-order drug release. Drug release was nearly independent of paddle speeds of 50 and 100?rpm releasing 80% over 14?h similar to the commercial glipizide osmotic pump tablet during dissolution testing while keeping the benefits of multiparticular dosage forms. The tablets contain beads with four layers: (1) the innermost layer consists of 2.5?g glipizide and 3.75?g solid ethylcellulose (Surelease®) coated onto 71.25?g of sugar beads; (2) next a hardening layer of 5?g of hypromellose; (3) the controlled release layer of 7.5?g of Surelease®:lactose at a solids ratio of 100:7 and (4) an outermost layer of 20?g of lactose:sodium starch glycolate (Explotab®) at a 2:1 ratio. Then, beads were compressed into tablets containing 11?mg of glipizide using 1500?lbs of compression pressure. The dissolution test similarity factor (f2) was above 50 for all test conditions for formulation F13 and Glucotrol® with a high of 69.9. The two Surelease® layers both aid controlling drug release, with the Surelease®-drug layer affecting drug release to a greater extent.  相似文献   

12.
This investigation was aimed to improve the dissolution rate of the poorly soluble drug lovastatin, by formulating it as a liquisolid compact. Different liquisolid compacts were prepared using mathematical formulae to calculate the required quantities of powder and liquid ingredients to produce acceptably flowable and compressible admixture. Avicel PH 200, Cab-O-Sil, sodium starch glycolate and PEG 400 were employed as carrier, coating material, disintegrant and non-volatile liquid vehicle, respectively. The various drug to liquid and carrier to coating ratio were used to prepare liquisolid compacts. The formulated liquisolid tablets were evaluated for weight variation, hardness, drug content, friability and disintegration time. The in vitro release characteristics of the drug from tablets formulated by direct compression and liquisolid technique were compared in two different dissolution media. The tableting properties of the liquisolid compacts were within the acceptable limits and drug release rates were distinctly higher as compared to directly compressed tablets. The FTIR spectra showed no interaction between drug-excipient and disappearance of the characteristic absorption band of lovastatin in liquisolid formulations could be attributed to the formation of hydrogen bonding between the drug and liquid vehicle, which resulted in dissolution enhancement. Thus, the liquisolid technique was found to be a promising approach for improving the dissolution of a poorly soluble drug like lovastatin.  相似文献   

13.
The present study aimed to formulate orodispersible tablets of flutamide (FTM) to increase its bioavailability. Orodispersible tablets were prepared by direct compression technique using three different approaches namely; super-disintegration, effervescence and sublimation. Different combined approaches were proposed and evaluated to optimize tablet characteristics. Sodium starch glycolate (SSG) was used as the superdisintegrant. The prepared powder mixtures were subjected to both pre and post compression evaluation parameters including; IR spectroscopy, micromeritics properties, tablet hardness, friability, wetting time, disintegration time and in-vitro drug release. IR studies indicated that there was no interaction between the drug and the excipients used except Ludipress. The results of micromeritics studies revealed that all formulations were of acceptable to good flowability. Tablet hardness and friability indicated good mechanical strength. Wetting and dispersion times decreased from 46 to 38 s by increasing the SSG concentration from 3.33 to 6.66% w/w in tablets prepared by superdisintegration method. The F8 formulation which was prepared by combined approaches of effervescence and superdisintegrant addition gave promising results for tablet disintegration and wetting times but failed to give faster dissolution rate. The incorporation of 1:5 solid dispersion of FTM: PEG 6000 instead of the pure drug in the same formulation increased the drug release rate from 73.12 to 96.99% after 15 min. This increase in the dissolution rate may be due to the amorphization of the drug during the solid dispersion preparation. The presence of the amorphous form of the drug was shown in the IR spectra.  相似文献   

14.
甲磺酸多沙唑嗪控释片的制备及体外释放度考察   总被引:1,自引:0,他引:1       下载免费PDF全文
朱春柳  沈琦  俞洪珍  高一萍 《中国药师》2011,14(3):324-327,331
目的:制备甲磺酸多沙唑嗪控释片,并对其体外释放度进行考察。方法:以乙基纤维素-聚乙二醇复合材料作为控释衣膜,制备双层渗透泵控释片。以自制片与市售参比制剂体外释放度的相似因子f2为评价指标,采用正交试验设计优化甲磺酸多沙唑嗪双层渗透泵控释片的处方;同时,采用扫描电镜考察了释药过程中复合衣膜表面微孔的形成情况。结果:优化处方呈现良好的零级释药特征(r=0.9996),在不同释放介质的释药行为基本一致。结论:甲磺酸多沙唑嗪控释片的体外释放特征与市售参比制剂相比具有良好的相似性(f2=76.75)。  相似文献   

15.
Abstract

This study was aimed to statistically optimize CODES? based Piroxicam (PXM) tablet for colon targeting. A 32 full factorial design was used for preparation of core tablet that was subsequently coated to get CODES? based tablet. The experimental design of core tablets comprised of two independent variables: amount of lactulose and PEG 6000, each at three different levels and the dependent variable was %CDR at 12?h. The core tablets were evaluated for pharmacopoeial and non-pharmacopoeial test and coated with optimized levels of Eudragit E100 followed by HPMC K15 and finally with Eudragit S100. The in vitro drug release study of F1–F9 was carried out by change over media method (0.1?N HCl buffer, pH 1.2, phosphate buffer, pH 7.4 and phosphate buffer, pH 6.8 with enzyme β-galactosidase 120?IU) to select optimized formulation F9 that was subjected to in vivo roentgenography. Roentgenography study corroborated the in vitro performance, thus providing the proof of concept. The experimental design was validated by extra check point formulation and Diffuse Reflectance Spectroscopy revealed absence of any interaction between drug and formulation excipients. The shelf life of F9 was deduced as 12 months. Conclusively, colon targeted CODES? technology based PXM tablets were successfully optimized and its potential of colon targeting was validated by roentgenography.  相似文献   

16.
Liquisolid systems were originally designed to enhance dissolution of hydrophobic drugs. Recently, the same technique was explored to control drug release via hydrophobic carriers. This work aimed to study the effects of different liquid vehicles on release characteristics of griseofulvin as a model hydrophobic drug. Fast dissolution tablets were prepared using three different non-ionic surfactants namely Cremophor(?)EL, Synperonic(?)PE/L61 and Capryol? 90, on the contrary Kollicoat(?)SR 30D was used for production of grieseofulvin sustained release formulations. Avicel(?) PH102 and Cab-O-Sil(?) M5 were used as carrier and coat materials, respectively. The effect of formulation parameters, such as drug concentration and carrier to coat ratio, on enhancing drug dissolution was explored. Drug concentrations of 20% and 40% (w/w), and R-values (carrier to coat ratio) of 10 and 20 were used. The mathematical model was utilized to formulate liquisolid powder systems. All fast release liquisolid formulations showed higher percentage drug dissolution efficiency (%DE) than conventional directly compacted tablets. Cremophor(?)EL showed the best dissolution enhancement with %DE of about 90%, compared to only 23% for conventional tablets; DSC data suggested loss of griseofulvin crystallinity and thermal behavior. Kollicoat(?) SR 30D retarded the drug release even in the presence of hydrophilic carrier; DSC data suggested that only small fraction of the drug was present in the molecular state within the system. The used liquisolid vehicles showed promise to enhance and to control (depend on the choice of the liquid vehicle) the release of griseofulvin from liquisolid compacts.  相似文献   

17.
《Drug delivery》2013,20(6):412-435
Abstract

The present investigation was aimed to develop self-nanoemulsifying tablets (SNETs) as novel nanosized solid oral dosage forms for Irbesartan (IRB). In the first part of the investigation, IRB-loaded self-nanoemulsifying drug delivery systems (SNEDDS) were developed using Capryol 90 – Cremophor RH40 – Transcutol P as three component (oil – surfactant – cosurfactant) SNEDDS system. On the basis of ternary phase diagram IRB-loaded SNEDDS were optimized by using Design of Experiments (DoE) and Principal component analysis (PCA) with amount of oil and surfactant: cosurfactant ratio (Km) as factors. The optimized batch of IRB-loaded SNEDDS comprised of 31.62% w/w of Capryol 90 as oil phase, 49.90% w/w Cremophor RH40 as surfactant and 18.48% w/w of Transcutol P as cosurfactant exemplified a mean globule size as 23.94?nm. Further, with an aim to provide enhanced patient compliance the optimized batch of liquid SNEDDS was transformed into SNETs by liquisolid compaction technique. Solid state characterization of IRB-loaded liquisolid mixtures revealed a decrease in the magnitude of crystallinity of IRB. The results of in vitro drug release study of optimized batch of IRB-loaded SNET illustrated a remarkable improvement in the dissolution rate as compared to marketed tablets (Avapro® 75). The results of in vivo pharmacokinetic study on Wister rats revealed 1.78-fold enhancement in oral bioavailability for IRB-loaded SNETs against marketed tablets. The present study proposed SNEDDS as one of the suitable approach for developing nanosized solid oral dosage forms of poorly water soluble drugs like Irbesartan.  相似文献   

18.
Different liquisolid formulations of carbamazepine were accomplished by dissolving the drug in the non-toxic hydrophilic liquids, and adsorbing the solution onto the surface of silica. In order to reduce the amounts of carrier and aerosil in liquisolid formulations, some additives namely polyvinylpyrrolidone (PVP), hydroxypropyle methylcellulose (HPMC) and polyethylene glycol (PEG 35000) were added to liquid medication to increase loading factor. The effects of various ratios of carrier to coating material, PVP concentration, effect of aging and type of the carrier on dissolution rate of liquisolid compacts were studied. X-ray crystallography and differential scanning calorimetery (DSC) were used for evaluation of physicochemical properties of carbamazepine in liquisolid formulations. The results showed that the drug loading factor was increased significantly in the presence of additives. Liquisolid formulations containing PVP as additive, exhibited significantly higher drug dissolution rates compared to the compacts prepared by the direct compression technique. It was shown that microcrystalline cellulose had more liquid retention potential in comparison with lactose, and the formulations containing microcrystalline cellulose as carrier, showed higher dissolution rate. By decreasing the ratio of microcrystalline cellulose to silica from 20 to 10, an improvement in dissolution rate was observed. Further decrease in the ratio of microcrystalline cellulose:silica from 10 to 5 resulted in a significant reduction in dissolution rate. Increasing of PVP concentration in liquid medication caused a dramatic increase in dissolution rate at first 30min. The results showed that the dissolution rate of liquisolid tablets was not significantly affected by storing the tablets at 25 degrees C/75% relative humidity for a period of 6 months. The results of DSC and X-ray crystallography did not show any changes in crystallinity of the drug and interaction between carbamazepine and exipients during the process.  相似文献   

19.
消炎痛普通制剂口服吸收迅速,可出现不必要的高血药浓度,导致不良反应。为此我们对三种消炎痛缓释胶囊(A,B,C)和一种常用片剂(D)作了体外溶出试验和体内生物利用度比较。胶囊制剂由丙烯酸类树脂材料E30D包衣的药物小丸制成,其体外溶出行为显示缓慢释放图象。在8名成年男性交叉实验中,不同胶囊制剂和普通片剂之间的Tmax,Cmax和AUC0~12h经方差分析无统计学差异,但是在给药后4至12小时的血清浓度—时间曲线,均比普通片剂高而平滑。在第12小时,三种胶囊产生的血清浓度显著高于普通片剂(P<0.1)。根据体外溶出行为和体内生物利用度发现T50或Tmax和包衣厚度呈良好线性关系。  相似文献   

20.
《Drug delivery》2013,20(4):315-319
Abstract

To develop a novel PEGylated ibuprofen tablet formulations and evaluate its anti-inflammatory activity and pharmacokinetics profile in an animal model. Six batches of PEGylated ibuprofen tablets were prepared by direct compression using Avicel® and lactose as the binder diluents. In vivo anti-inflammatory activity of the tablets was carried out as well as the pharmacokinetics profiles. The PEGylated ibuprofen tablet reduced carrageenan-induced inflammation in experimental animals and sustained its anti-inflammatory action for over 10?h. The pharmacokinetics profile of the optimized formulations were greater than that of the marketed sample and the pure drug sample. In conclusion, PEGylation of ibuprofen conferred a high level of anti-inflammatory activity and slowed plasma clearance level, indicating sustained release. Thus, further exploration of this novel formulation to be used as an alternative carrier for this drug is required.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号