首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Xanthan is a well-known biopolymer. It is an anionic polysaccharide, whose primary structure depends on the bacterial strain and fermentation conditions. Xanthan was extensively studied in combination with galactomannans, and over 90 patents cover the technology of this preparation. Our aim was to investigate the relation between the physical properties of a xanthan matrix in the absence or presence of calcium ions and its influence on the release of pentoxifylline. The release of pentoxifylline from xanthan tablets in purified water was shown to be very slow and governed by the process of polymer relaxation. The presence of calcium ions significantly increased the drug release, changing the release mechanism into a more diffusion controlled one. Xanthan matrices showed substantially faster and more extensive swelling in water than in the presence of Ca2+ ions. Surprisingly, negative correlation between drug release and degree of swelling was obtained for xanthan: the higher the swelling, the slower the drug release. Higher ionic strength led to lower erosion of xanthan tablets, and the gel layers formed were more rigid and of firmer texture, as shown by rheological experiments and textural profiling. The results indicate that the presence of Ca2+ ions in the solution or in matrices does not cause crosslinking of xanthan polymers, but causes charge screening of ionized groups on the trisaccharide side chains of xanthan, leading to lower inter-molecular repulsion and changing water arrangement. The understanding of the parameters influencing drug release leads to the conclusion that xanthan is suitable for controlled release formulations, especially with the incorporation of certain small counterions.  相似文献   

2.
Solid dispersions in water-soluble carriers have attracted considerable interest as a means of improving the dissolution rate, and hence possibly bioavailability, of a range of hydrophobic drugs. The aim of the present study was to improve the solubility and dissolution rate of a poorly water-soluble drug, Lovastatin, by a solid dispersion technique. Solid dispersions were prepared by using polyethylene glycol 4000 (PEG 4000) and polyvinylpyrrolidone K30 (PVP K30) in different drug-to‐carrier ratios. Dispersions with PEG 4000 were prepared by fusion-cooling and solvent evaporation, whereas dispersions containing PVP K30 were prepared by solvent evaporation technique. These new formulations were characterized in the liquid state by phase solubility studies and in the solid state by differential scanning calorimetry, X-ray powder diffraction, and FT-IR spectroscopy. The aqueous solubility of Lovastatin was favored by the presence of both polymers. The negative values of the Gibbs free energy and enthalpy of transfer explained the spontaneous transfer from pure water to the aqueous polymer environment. Solid-state characterization indicated Lovastatin was present as amorphous material and entrapped in polymer matrix. In contrast to the very slow dissolution rate of pure Lovastatin, the dispersion of the drug in the polymers considerably enhanced the dissolution rate. This can be attributed to improved wettability and dispersibility, as well as decrease of the crystalline and increase of the amorphous fraction of the drug. Solid dispersion prepared with PVP showed the highest improvement in wettability and dissolution rate of Lovastatin. Even physical mixture of Lovastatin prepared with both polymers also showed better dissolution profile than that of pure Lovastatin. Tablets containing solid dispersion prepared with PEG and PVP showed significant improvement in the release profile of Lovastatin compared with tablets containing Lovastatin without PEG or PVP.  相似文献   

3.
Solid dispersions in water-soluble carriers have attracted considerable interest as a means of improving the dissolution rate, and hence possibly bioavailability, of a range of hydrophobic drugs. The aim of the present study was to improve the solubility and dissolution rate of a poorly water-soluble drug, Lovastatin, by a solid dispersion technique. Solid dispersions were prepared by using polyethylene glycol 4000 (PEG 4000) and polyvinylpyrrolidone K30 (PVP K30) in different drug-to-carrier ratios. Dispersions with PEG 4000 were prepared by fusion-cooling and solvent evaporation, whereas dispersions containing PVP K30 were prepared by solvent evaporation technique. These new formulations were characterized in the liquid state by phase solubility studies and in the solid state by differential scanning calorimetry, X-ray powder diffraction, and FT-IR spectroscopy. The aqueous solubility of Lovastatin was favored by the presence of both polymers. The negative values of the Gibbs free energy and enthalpy of transfer explained the spontaneous transfer from pure water to the aqueous polymer environment. Solid-state characterization indicated Lovastatin was present as amorphous material and entrapped in polymer matrix. In contrast to the very slow dissolution rate of pure Lovastatin, the dispersion of the drug in the polymers considerably enhanced the dissolution rate. This can be attributed to improved wettability and dispersibility, as well as decrease of the crystalline and increase of the amorphous fraction of the drug. Solid dispersion prepared with PVP showed the highest improvement in wettability and dissolution rate of Lovastatin. Even physical mixture of Lovastatin prepared with both polymers also showed better dissolution profile than that of pure Lovastatin. Tablets containing solid dispersion prepared with PEG and PVP showed significant improvement in the release profile Lovastatin compared with tablets containing Lovastatin without PEG or PVP.  相似文献   

4.
Metoprolol tartrate sustained-release tablets (100 mg) were prepared using xanthan/guar gums and also hydroxypropyl methyl cellulose (HPMC) carboxymethyl-Cellulose (CMC) polymers by direct compression method. Physical characteristics of the tablets and water uptake in addition to their dissolution profiles were compared with standard (Lopressor® SR) tablets. Dissolution test was performed in the phosphate buffer solution (pH 6.8) and the samples were analyzed spectrophotometerically in 275.7 nm. Dissolution studies showed that formulations containing 100 and 80% of HPMC, 100% of guar, and 20% of xanthan followed the Higuchi model, while those containing 60 and 40% HPMC and 100 and 80% xanthan followed a zero-order model. The tablets with 40% xanthen followed a Hixon-Crowell model. In cellulose derivatives the highest MDT and dissolution efficiency until 8 hr (DE8%) belonged to tablets with 40% HPMC, increasing the amount of CMC decreased the drug release rate, and formulations containing 60 and 40% of HPMC had the USP dissolution standards. While, in the gum formulations, the highest mean dissolution time and the lowest DE8% belonged to tablets with 100% xanthan, increasing the xanthan decreased the release rate of metoprolol, and formulations containing 80 and 100% xanthan had the USP dissolution standards. Results showed that natural gums are suitable for production of sustained-release tablets of metoprolol.  相似文献   

5.
Different liquisolid formulations of carbamazepine were accomplished by dissolving the drug in the non-toxic hydrophilic liquids, and adsorbing the solution onto the surface of silica. In order to reduce the amounts of carrier and aerosil in liquisolid formulations, some additives namely polyvinylpyrrolidone (PVP), hydroxypropyle methylcellulose (HPMC) and polyethylene glycol (PEG 35000) were added to liquid medication to increase loading factor. The effects of various ratios of carrier to coating material, PVP concentration, effect of aging and type of the carrier on dissolution rate of liquisolid compacts were studied. X-ray crystallography and differential scanning calorimetery (DSC) were used for evaluation of physicochemical properties of carbamazepine in liquisolid formulations. The results showed that the drug loading factor was increased significantly in the presence of additives. Liquisolid formulations containing PVP as additive, exhibited significantly higher drug dissolution rates compared to the compacts prepared by the direct compression technique. It was shown that microcrystalline cellulose had more liquid retention potential in comparison with lactose, and the formulations containing microcrystalline cellulose as carrier, showed higher dissolution rate. By decreasing the ratio of microcrystalline cellulose to silica from 20 to 10, an improvement in dissolution rate was observed. Further decrease in the ratio of microcrystalline cellulose:silica from 10 to 5 resulted in a significant reduction in dissolution rate. Increasing of PVP concentration in liquid medication caused a dramatic increase in dissolution rate at first 30min. The results showed that the dissolution rate of liquisolid tablets was not significantly affected by storing the tablets at 25 degrees C/75% relative humidity for a period of 6 months. The results of DSC and X-ray crystallography did not show any changes in crystallinity of the drug and interaction between carbamazepine and exipients during the process.  相似文献   

6.
Nystatin is commonly employed to treat fungal infections in the mouth. It is not absorbed via the stomach and it will therefore not treat fungal infections in any part of the body other than the mouth. Nystatin buccoadhesive tablets release the drug very slowly due to the poor solubility of nystatin in water and also the presence of polymers with mucoadhesive properties. Therefore, the aim of the present study was to improve drug release from buccoadhesive tablets, while retaining adequate mucoadhesive properties. To this end, a solid dispersion of nystatin: lactose (1:3) was prepared and mixed with xanthan. The effects of hydrophilic surfactants such as cremophor RH40 and Tween 80 on drug release and mucoadhesive properties of nystatin tablets were also investigated as were swelling and erosion indices and strength of bioadhesion in vitro to a biological membrane. The interaction between nystatin and lactose in solid dispersion formulation was investigated by XRPD, FT-IR and DSC. The results showed that a solid dispersion formulation and mucoadhesive tablets containing surfactants led to faster drug release than their simple physical mixtures. Drug release was also faster from a solid dispersion compared to tablets containing surfactants. Swelling and erosion results showed that tablets made of a solid dispersion swelled and eroded faster than a physical mixture formulation. The presence of surfactant slightly increased the degree of swelling and erosion of buccoadhesive tablets.  相似文献   

7.
A new commercially available extended release matrix material, Kollidon SR, composed of polyvinylacetate (PVA) and polyvinylpyrrolidone (PVP), was evaluated with respect to its ability to modulate the in vitro release of the weakly basic drug ZK 811 752. The effect of different formulation and process parameters on the release kinetics of ZK 811 752 from PVA/PVP based matrix tablets was investigated as a function of the (i) nature of excipient added to the drug-polymer mixtures, (ii) method of manufacturing (direct compression versus wet granulation), and (iii) effect of a post-compression curing step. ZK 811 752 containing extended release matrix tablets were successfully prepared by using Kollidon SR. The drug release from the matrix tablets increased by the addition of excipients such as maize starch, lactose and calcium phosphate. Addition of the highly swellable maize starch and the water-soluble lactose accelerated the drug release in a more pronounced manner compared to the water-insoluble calcium phosphate. Compound release from matrix tablets prepared by wet granulation was faster compared to the drug release from tablets prepared by direct compression. Post compression curing did not influence the drug release rate from drug-lactose-Kollidon SR formulations. Stability studies demonstrated no degradation of the drug substance and reproducible drug release patterns for matrix tablets stored at 25 degrees C/60% RH and 30 degrees C/70% RH for up to 6 months.  相似文献   

8.
The effect of complexation of glimepiride, a poorly water-soluble antidiabetic drug, with β-cyclodextrin and its derivatives (HP-β-CyD and SBE-β-CyD) in presence of different concentrations of water-soluble polymers (HPMC, PVP, PEG 4000 and PEG 6000) on the dissolution rate of the drug has been investigated. The results revealed that the dissolution rate of the drug from these ternary systems is highly dependent on polymer type and concentration. The dissolution rate of the drug from ternary systems containing PEG 4000 or PEG 6000 seems to be generally higher than from systems containing HPMC or PVP. An optimum increase in the dissolution rate of the drug was observed at a polymer concentration of 5% for PEG 4000 or PEG 6000 and at 20% concentration of HPMC or PVP. The dissolution rate of the drug from the ternary system glimepiride–HP-β-CyD–5% PEG 4000 was high compared to the other systems. Tablets containing the drug or its equivalent amount of this ternary system were prepared and subjected to accelerated stability testing at 40 °C/75% R.H. to investigate the effect of storage on the chemical stability as well as therapeutic efficacy of the tablets. The results revealed stability of the tablets and consistent therapeutic efficacy on storage.  相似文献   

9.
This paper addressed the application of deacetylated xanthan (XGDS) and chitosan (CTS) as a mixture blend forming hydrophilic matrices for Tramadol (TD) sustained release tablets. XGDSs derivatives were obtained by alkaline treatment of xanthan gum (XG) with various degrees of deacetylation (DD). The obtained products were characterized in terms of structural, thermal and physicochemical properties. Different tablet formulations containing CTS/XGDSs were prepared by direct compression method and compared to CTS/XG tablets. Flow properties of powder mixtures and pharmaceutical characteristics were evaluated. The dissolution test of TD was realized under simulated gastric and intestinal conditions to achieve drug release more than 24 h. All developed tablets were found conforming to standard evaluation tests. It was shown that CTS/XGDSs matrices ensure a slower release of TD in comparison with CTS/XG based formulations. Meanwhile, increasing DD resulted in a decrease of drug release. In addition, TD release from XGDS matrices was faster at pH (6.8) than at acidic pH (1.2). The matrix tablets based on CTS/XGDS4 (DD = 98.08%) were selected as the best candidates compared to the other systems in prolonging drug release. The optimal formulation was found to release 99.99% of TD after 24 h following a non-Fickian type.  相似文献   

10.
This work investigated the feasibility of developing benznidazole (BZL) tablets, allowing fast, reproducible, and complete drug dissolution, by compressing BZL-Polyethylene Glycol (PEG) 6000 physical mixtures (PMs) and solid dispersions (SDs). SDs were prepared by the solvent evaporation method at different drug:polymer ratios (w/w). BZL-PEG 6000 formulations were characterized by X-ray diffraction (XRD), scanning electron microscopy, and dissolution studies. The preparation of SD-based BZL tablets by the wet granulation method was carried out and the influence of pregelatinized starch (PS) and starch (S) on the disintegration time and drug dissolution rate was analyzed. SDs showed a significant improvement in the release profile of BZL as compared with the pure drug. As demonstrated by XRD, the crystalline character of BZL remained almost unaltered in both PMs and SDs. BZL release from the PEG 6000 tablets increased by the presence of PS instead S. Unexpectedly, the BZL release from tablets containing PMs was almost equal as compared with the BZL release from tablets containing SDs. In conclusion, the results suggest that PEG 6000 and PS are suitable additives for the development of BZL tablets with enhanced dissolution behavior through the preparation of ordinary PMs, instead the laborious SDs. © 2013 Wiley Periodicals, Inc. and the American Pharmacists Association J Pharm Sci 102:1016–1023, 2013  相似文献   

11.
The present paper describes development of a polysaccharide based compression coated tablets of secnidazole for colon delivery. Core tablet containing secnidazole was compression coated with various proportions of guar gum, xanthan gum and chitosan, either alone or in combinations. Drug release studies were performed in simulated gastric fluid (SGF) for 2 h followed by simulated intestinal fluid (SIF, pH 7.4) up to 24 h. Secnidazole release from the prepared formulations was dependent on the type and concentration of polymer used in the formulation. Tablets coating containing either guar gum or xanthan gum showed ~30-40% drug release in 8 h. Further, in vitro dissolution studies of selected formulations performed in the dissolution media with rat caecal contents showed 54.48±0.24 - 60.42±0.16% of drug release. Formulations with single polymer in coating layer were unsuitable for targeting secnidazole release to colon region. Combination of chitosan with guar gum or xanthan gum exhibited control over secnidazole release.  相似文献   

12.
Das NG  Das SK 《Drug delivery》2004,11(2):89-95
The development of mucoadhesive formulations of buprenorphine for intended sublingual usage in the treatment of drug addiction is described. The formulations include mucoadhesive polymer films, with or without plasticizers, and mucoadhesive polymer tablets, with or without excipients that enhance drug release and/or improve tablet compaction properties. The mucoadhesive polymers studied include carbomers such as Carbopol 934P, Carbopol 974P, and the polycarbophil Noveon AA-1, with excipients chosen from pregelatinized starch, lactose, glycerol, propylene glycol, and various molecular weights of polyethylene glycol. The development of plasticizer-containing mucoadhesive polymer films was feasible; however, these films failed to release their entire drug content within a reasonable period. Thus, they were not determined suitable for sublingual usage because of possible loss by ingestion during routine meal intakes. The mucoadhesive strength of tablet formulations containing Noveon AA-1 appears to be slightly superior to the Carbopol-containing tablets. However, the Carbopol 974P formulations exhibited superior drug dissolution profiles while providing adequate mucoadhesive strength. The tablet formulations containing Carbopol 974P as mucoadhesive polymer, lactose as drug release enhancer, and PEG 3350 as compaction enhancer exhibited the best results. Overall, the mucoadhesive tablet formulations exhibited superior results compared with the mucoadhesive film formulations.  相似文献   

13.
The development of mucoadhesive formulations of buprenorphine for intended sublingual usage in the treatment of drug addiction is described. The formulations include mucoadhesive polymer films, with or without plasticizers, and mucoadhesive polymer tablets, with or without excipients that enhance drug release and/or improve tablet compaction properties. The mucoadhesive polymers studied include carbomers such as Carbopol 934P, Carbopol 974P, and the polycarbophil Noveon AA-1, with excipients chosen from pregelatinized starch, lactose, glycerol, propylene glycol, and various molecular weights of polyethylene glycol. The development of plasticizer-containing mucoadhesive polymer films was feasible; however, these films failed to release their entire drug content within a reasonable period. Thus, they were not determined suitable for sublingual usage because of possible loss by ingestion during routine meal intakes. The mucoadhesive strength of tablet formulations containing Noveon AA-1 appears to be slightly superior to the Carbopol-containing tablets. However, the Carbopol 974P formulations exhibited superior drug dissolution profiles while providing adequate mucoadhesive strength. The tablet formulations containing Carbopol 974P as mucoadhesive polymer, lactose as drug release enhancer, and PEG 3350 as compaction enhancer exhibited the best results. Overall, the mucoadhesive tablet formulations exhibited superior results compared with the mucoadhesive film formulations.  相似文献   

14.
Directly compressed theophylline tablets, containing commercial xanthan (X) (Keltrol) and a highly hydrophilic galactomannan (G) from the seeds of Mimosa scabrella (a brazilian leguminous tree called bracatinga) as release-controlling agents, were obtained. Gums were used at 4, 8, 12.5 and 25% (w/w), either alone or in mixture (X:G 1:1). During galactomannan extraction process, the biopolymer was dried in a scale up, by vacuum oven (VO) or spray dryer (SD). The in vitro drug release was evaluated at different time intervals during 8 h using apparatus 1 (USP 26) at 100 rpm. The pH of the dissolution medium (1.4) was changed to 4.0 and 6.8 after 2 and 3 h, respectively. Tablets containing G(SD) resulted in more uniform drug release than G(VO) ones, due to their smaller particle size. The drug release decreased with the increase of polymer concentration and all formulations at 25% w/w of gums showed excessive sustained release effect. The matrices made with alone X showed higher drug retention for all concentrations, compared with G matrices that released the drug too fast. The XG matrices were able to produce near zero-order drug release. The XG(SD) 8% tablets provided the required release rate (about 90% at the end of 8 h), with zero-order release kinetics. Tablets containing G(VO) in low concentration showed a complete erosion, while the others demonstrated fast hydration and swelling in contact with the dissolution medium. The release mechanism was a combination of diffusion and relaxation. The relative importance of these two processes varied with matrix composition. The XG(SD) 8% matrix showed higher contribution of polymer relaxation.  相似文献   

15.
ABSTRACT

The aim of this research was to investigate the effect of pseudoephedrine (PE), polymer ratio, and polymer loading on the release of acetaminophen (APAP) from hydroxypropyl methyl cellulose (HPMC)/polyvinylpyrrolidone (PVP) matrices. Granules formulated with APAP or both APAP and PE, and various blends of HPMC and PVP were compressed into tablets at varying compression forces ranging from 2000 to 6000 lb. In vitro drug release from the matrix tablets was determined and the results correlated with those of tablet water uptake and erosion studies. Drug release from the formulations containing both APAP and PE was slower than those containing only APAP (P < 0.05, F = 3.10). Drug release from tablets formulated with APAP only showed an initial burst at pH 1.16 or 7.45, and at high total polymer loading (≥ 9.6%). Formulations containing both APAP and PE showed slower drug release at pH 1.16 than at pH 7.45. At pH 1.16, a decline in the percentage of APAP released occurred after 18 hours. This was due to the hydrolysis of APAP to p-aminophenol. The drug dissolution data showed good fit to the Korsmeyer and Peppas model, and the values of the release exponents ranged from 0.20 to 0.62, indicating a complex drug release pattern. Tablet erosion studies indicated that the amount of APAP released was linearly related to the percentage of tablet weight loss. The kinetics of tablet water uptake was consistent with a diffusion and stress relaxation controlled mechanism. Overall, the results of this study indicated that PE, as a co-active in the formulation, modified the matrix, and hence retarded APAP release.  相似文献   

16.
The aim of this work was to investigate and quantitatively evaluate the effect of presence of alcohol on in vitro release of ionizing and non-ionizing drug from hydrophilic, lipophilic and hydrophilic-lipophilic matrix tablets. The Food and Drug Administration (FDA) recommends in vitro dissolution testing of extended release formulations in ethanolic media up to 40% because of possible alcohol-induced dose dumping effect. This study is focused on comparison of the dissolution behavior of matrix tablets (based on hypromellose and/or glyceryl behenate as retarding agent) of the same composition containing different type of drug – ionizing tramadol hydrochloride (TH) and non-ionizing pentoxifylline (PTX). The dissolution tests were performed in acidic medium (pH 1.2) and in alcoholic medim (20%, 40% of ethanol) and the changes of tablets were observed also photographically.It was found that the alcohol resistence of the hydrophilic-lipophilic formulations with TH and the hydrophilic-lipophilic formulations with PTX containing a higher amount of hypromellose does not reflect the alcohol resistence of the formulations with pure hypromellose or glyceryl behenate. Both hydrophilic-lipophilic formulation with TH and more lipophilic formulation with PTX show significant alcohol dose dumping effect.  相似文献   

17.
The present study was designed to develop a suitable matrix type transdermal drug delivery system (TDDS) of dexamethasone using blends of two different polymeric combinations, povidone (PVP) and ethylcellulose (EC) and Eudragit with PVP. Physical studies including moisture content, moisture uptake, flatness to study the stability of the formulations and in vitro dissolution of the experimental formulations were performed to determine the amount of dexamethasone present in the patches were performed and scanning electron microscopy (SEM) photographs of the prepared TDDS were taken to see the drug distribution pattern. Drug-excipient interaction studies were carried out using Fourier transform infrared (FTIR) spectroscopic technique. In vitro skin permeation study was conducted in a modified Franz's diffusion cell. All the formulations were found to be suitable for formulating in terms of physicochemical characteristics and there was no significant interaction noticed between the drug and polymers used. In vitro dissolution studies showed that the drug distribution in the matrix was homogeneous and the SEM photographs further demonstrated this. The formulations of PVP:EC provided slower and more sustained release of drug than the PVP:Eudragit formulations during skin permeation studies and the formulation PVP:EC (1:5) was found to provide the slowest release of drug. Based on the above observations, it can be reasonably concluded that PVP-EC polymers are better suited than PVP-Eudragit polymers for the development of TDDS of dexamethasone.  相似文献   

18.
Effect of calcium gluconate (CG) content on release of dextromethorphan hydrobromide (DMP), model drug, from capsules containing low and medium viscosity grades of sodium alginate (SA) was investigated in different dissolution media. Matrix erosion of the SA matrix capsules in distilled water and pH 7.4 phosphate buffer was compared. Molecular interaction of SA with calcium ion in surface gel layer of the SA matrix capsules was examined using Fourier transform infrared spectroscopy and differential scanning calorimetry. In distilled water and pH 7.4 phosphate buffer, DMP release rate depended on the viscosity grade of SA, whereas a comparable DMP release rate was found in 0.1N HCl. Incorporation of CG into the SA matrix capsules caused a faster drug release in acidic medium because CG acted as a channeling agent in the hydrated insoluble gel matrix of alginic acid. Interaction of calcium ions with carboxyl groups of SA could be formed in surface gel layer of hydrated matrix capsules in distilled water. This led to a more rigid matrix gel structure that caused a slower drug release and matrix erosion. In contrast, the extent of this interaction in pH 7.4 phosphate buffer was less than that in distilled water because the common ion effect and high concentration of sodium ion retarded the hydration of SA and the binding of calcium ions with carboxyl groups of SA. Thus, a small change in drug release and matrix erosion was observed. This finding suggests that microenvironmental interaction between hydrated SA and calcium ion in distilled water could be created in the formulations prepared using low compression force. Moreover, incorporation of CG could moderate drug release and matrix erosion of the SA matrix capsules.  相似文献   

19.
Phenoporlamine hydrochloride is a novel compound that is used for the treatment of hypertension. The purpose of this study was to develop a sustained release tablet for phenoporlamine hydrochloride because of its short biological half-life. Three floating matrix formulations of phenoporlamine hydrochloride based on gas forming agent were prepared. Hydroxypropyl methylcellulose K4M and Carbopol 971P NF were used in formulating the hydrogel drug delivery system. Incorporation sodium bicarbonate into matrix resulted in the tablet floating over simulated gastric fluid for more than 6 h. The dissolution profiles of all tablets showed non-Fickian diffusion in simulated gastric fluid. Moreover, release of the drug from these tablets was pH-dependent. In vivo evaluations of these formulations of phenoporlamine hydrochloride were conducted in six healthy male human volunteers to compare the sustained release tablets with immediate release tablets. Data obtained in these studies demonstrated that the floating matrix tablet containing more Carbopol was capable of sustained delivery of the drug for longer periods with increased bioavailability and the relative bioavailability of formulation (containing 25% Carbopol 971P NF, 8.3% HPMC K4M) showed the best bioequivalency to the reference tablet (the relative bioavailability was 1.11 ± 0.19).  相似文献   

20.
Marketed glyburide tablets present unsatisfying dissolution profiles that give rise to variable bioavailability. With the purpose of developing a fast-dissolving tablet formulation able to assure a complete drug dissolution, we investigated the effect of the addition to a reference tablet formulation of different types (anionic and nonionic) and amounts of hydrophilic surfactants, as well as the use of a new technique, based on ternary solid dispersions of the drug with an hydrophilic carrier (polyethylene glycol [PEG] 6000) and a surfactant. Tablets were prepared by direct compression or previous wet granulation of suitable formulations containing the drug with each surfactant or drug:PEG:surfactant ternary dispersions at different PEG:surfactant w/w ratios. The presence of surfactants significantly increased (p<0.01) the drug dissolution rate, but complete drug dissolution was never achieved. On the contrary, in all cases tablets containing ternary solid dispersions achieved 100% dissolved drug within 60 min. The best product was the 10:80:10 w/w ternary dispersion with PEG 6000 and sodium laurylsulphate, showing a dissolution efficiency 5.5-fold greater than the reference tablet formulation and 100% drug dissolution after only 20 min.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号