首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Solid lipid nanoparticles (SLNs) are very potential formulations for topical delivery of antifungal drugs. Hence, the purpose of this research was to formulate the well-known antifungal agent Fluconazole (FLZ)-loaded SLNs topical gel to improve its efficiency for treatment of Pityriasis Versicolor (PV). FLZ-SLNs were prepared by modified high shear homogenization and ultrasonication method using different concentration of solid lipid (Compritol 888 ATO, Precirol ATO5) and surfactant (Cremophor RH40, Poloxamer 407). The physicochemical properties and the in vitro release study for all FLZ-SLNs were investigated. Furthermore, the optimized FLZ-SLN formula was incorporated into gel using Carpobol 934. A randomized controlled clinical trial (RCT) of potential batches was carried out on 30 well diagnosed PV patients comparing to market product Candistan® 1% cream. Follow up was done for 4?weeks by clinical and KOH examinations. The results showed that FlZ-SLNs were almost spherical shape having colloidal sizes with no aggregation. The drug entrapment efficiency ranged from 55.49% to 83.04%. The zeta potential values lie between ?21 and ?33?mV presenting good stability. FLZ showed prolonged in vitro release from SLNs dispersion and its Carbapol gel following Higuchi order equation. Clinical studies registered significant improvement (p?® cream.  相似文献   

2.
Context: The unique physiological limitations of the eye have been assigned as reason of low bioavailability by conventional drug delivery systems. There is need of such drug carriers, which ensure improved bioavailability as well as patient compliance upon instillation into the eye.

Objective: The present investigation deals with development of solid lipid nanoparticles (SLNs) containing celecoxib (CXB) for treatment of ophthalmic inflammations.

Materials and methods: The SLNs were formulated by melt-emulsion sonication and low temperature-solidification process and evaluated for particle size, surface morphology, physicochemical properties, percentage drug incorporation efficiency, in vitro drug release, in vitro trans-corneal permeation, in vivo efficacy in ocular inflammation, stability study and gamma scintigraphy study to assess the residence of solid lipid nanoparticles over ocular surfaces.

Results: The SLNs were spherical and the optimized formulation had particle size of 198.77?±?7.5?nm, which is quite suitable for ocular applications. The maximum entrapment efficiency of 92.46?±?0.07% was achieved for formulation SLN 20. The permeation across the cornea was also significantly better than aqueous suspension (8.21?±?0.67 versus 4.61?±?0.71) at p?<?0.05.

Discussion and conclusion: The SLN formulations demonstrated improved performance of entrapped CXB while mitigating the key parameters of ocular inflammation in rabbits. The particulate formulations have exhibited prolonged retention over ocular surfaces as evident from results of gamma scintigraphy using 99mTc labeled SLNs.  相似文献   

3.
This study aimed at in vitro evaluation of α-lipoic acid-loaded lipid nanocapsules for topical delivery, which was prepared by hot high-pressure homogenisation. Stable particles could be formed and particle size was 148.54?±?2.31?nm with polydispersity index below 0.15. Encapsulation efficiency and drug loading of α-lipoic acid were 95.23?±?0.45% and 2.81?±?0.37%. Antioxidant study showed α-lipoic acid could be protected by lipid nanocapsules without loss of antioxidant activity. Sustained release of α-lipoic acid from lipid nanocapsules was obtained and cumulative release was 62.18?±?1.51%. In vitro percutaneous study showed the amount of α-lipoic acid distributed in skin was 1.7-fold than permeated. Cytotoxicity assay and antioxidant activity on L929 cells indicated this formulation had low cytotoxicity and ability of protecting cells from oxidative damage within specific concentration. These studies suggested α-lipoic acid-loaded lipid nanocapsules could be potential formulation for topical delivery.  相似文献   

4.
Diflunisal (DIF) is non-steroidal anti-inflammatory drug used in the treatment of rheumatoid arthritis, osteoarthritis. The current engrossment was aimed at formulation and assessment of DIF-loaded solid lipid nanoparticles (SLNs) for topical/dermal application. SLNs formulated by hot homogenisation method based on microemulsification technique were spherical with a mean size of 124.0?±?2.07?nm; PDI 0.294?±?0.15. The cumulative amount permeated/area was 109.99?±?0.008?μg/cm2, along with permeation flux (6.30?±?0.09?μg/cm2/h) and skin retention (11.74?±?0.155?μg/cm2) across mice skin. The SLNs of DIF showed significant decrease in fluid volume, granuloma tissue weight, leukocyte count/mm3 after application of SLN formulation in mice air pouch model. Similarly, in mice ear oedema and rat paw oedema model, there was 2.30 and 1.29 time increase in percentage inhibition of oedema after SLN formulation application, respectively, as compared with conventional cream. Hence, the SLNs of DIF may prove to be a potential nanocarrier to effectively treat the local inflammatory conditions associated with arthritis.  相似文献   

5.
Objective: To develop and evaluate solidified-reverse-micellar-solution (SRMS)-based oromucosal nano lipid gels for improved localised delivery of miconazole nitrate (MN).

Methods: Phospholipon® 90G and Softisan® 154 (3:7) were used to prepare SRMS by fusion. Solid lipid nanoparticles (SLNs, 0.25–1.0% w/w MN) formulated with the SRMS by high shear homogenisation were employed to prepare mucoadhesive nano lipid gels. Physicochemical characterisation, drug release in simulated salivary fluid (SSF) (pH 6.8) and anti-candidal activity were carried out.

Results: The SLNs were spherical nanoparticles, had mean size of 133.8?±?6.4 to 393.2?±?14.5?nm, low polydispersity indices, good encapsulation efficiency (EE) (51.96?±?2.33–67.12?±?1.65%) and drug loading (DL) (19.05?±?2.44–24.93?±?1.98%). The nano lipid gels were stable, spreadable, pseudoplastic viscoelastic mucoadhesive systems that exhibited better prolonged release and anti-candidal properties than marketed formulation (Daktarin® oral gel) (p?Conclusion: This study has shown that SRMS-based nano lipid gels could be employed to prolong localised oromucosal delivery of MN.  相似文献   

6.
Abstract

Aim: The present work investigates the efficacy of Polysorbate 80(P80) coated Kokum butter (KB) solid lipid nanoparticles (P80NvKLNs) for the brain targeted delivery of Nevirapine (Nv).

Methods: Solid lipid nanoparticles (SLNs) were prepared by nanoprecipitation technique and evaluated for drug excipient compatibility studies, z- average particle size (nm), zeta potential (mv), percentage drug entrapment efficiency (%EE), surface morphology and in-vitro drug release properties. The in-vivo biodistribution and brain targeting efficiency of nanoparticles were studied in healthy male Wistar rat (150–200?g).

Results: P80NvKLNs were found to be smooth surfaced, spherical shaped having average particle size of 177.80?±?0.82?nm, zeta potential of ?8.91?±?4.36?mv and %EE of 31.32?±?0.42%. P80NvKLNs remained in blood circulation for 48?h maintaining a sustained release in brain for 24?h (p?<?0.05).

Conclusion: The study proves the efficacy of Polysorbate 80 coated Kokum butter nanoparticles for brain-targeted delivery of drugs providing ample opportunities for further study.  相似文献   

7.
Objectives: The major objective is to target diethylcarbamazine citrate (DEC) to the lymphatics and to increase its retention time. The effect of various excipients on the physicochemical characteristics of the nanoparticles was also studied.

Materials and methods: Solid lipid nanoparticles (SLNs) of DEC were prepared by ultrasonication by varying the concentrations of compritol 888 ATO, poloxamer 188 and soya lecithin. The SLNs were evaluated for size, shape, texture, surface charge, physical nature of the entrapped drug, entrapment efficiency and in vitro drug release. In vivo animal studies were carried out to estimate the pharmacokinetic parameters in blood and drug concentration in lymph after oral administration.

Results: The size of the spherical particles was in the range of 27.25 ± 3.43 nm to 179 ± 3.08 nm and a maximum entrapment efficiency of 68.63 ± 1.53% was observed. In vitro release studies in pH 7.4 PBS displayed a rapid release and the maximum time taken for the complete drug to release was 150 min. In vivo studies indicated an enhancement in the amount of drug that reached lymphatics when administered via SLNs.

Conclusion: Targeting of DEC to the lymphatics is possible through SLNs and the retention time in the lymphatics can also be enhanced.  相似文献   

8.
Context: Solid lipid nanoparticles (SLN) are drug carriers possessing numerous features useful for topical application. A copious scientific literature outlined their ability as potential delivery systems for lipophilic drugs, while the entrapment of a hydrophilic drug inside the hydrophobic matrix of SLN is often difficult to obtain.

Objective: To develop SLN intended for loading caffeine (SLN-CAF) and to evaluate the permeation profile of this substance through the skin once released from the lipid nanocarriers. Caffeine is an interesting compound showing anticancer and protective effects upon topical administration, although its penetration through the skin is compromised by its hydrophilicity.

Materials and methods: SLN-CAF were formulated by using a modification of the quasi-emulsion solvent diffusion technique (QESD) and characterized by PCS and DSC analyses. In vitro percutaneous absorption studies were effected using excised human skin membranes (i.e. Stratum Corneum Epidermis or SCE).

Results: SLN-CAF were in a nanometric range (182.6?±?8.4?nm) and showed an interesting payload value (75%?±?1.1). DSC studies suggest the presence of a well-defined system and the successful drug incorporation. Furthermore, SLN-CAF generated a significantly faster permeation than a control formulation over 24?h of monitoring.

Discussion and conclusions: SLN-CAF were characterized by valid dimensions and a good encapsulation efficiency, although the active to incorporate showed a hydrophilic character. This result confirms the suitability of the formulation strategy employed in the present work. Furthermore, the in vitro evidence outline the key role of lipid nanoparticles in enhancing caffeine permeation through the skin.  相似文献   

9.
Context: Celecoxib (CXB, 0.2?g)-loaded anionic and cationic nanosized emulsions were prepared by a well-established combined emulsification method.

Objectives: To investigate the effect of non–phospholipid-based cationic and phospholipid-based anionic emulsions on skin retention and anti-inflammatory activity of CXB.

Methods: Using Keshary-Chien diffusion cells with cellulose acetate membrane or excised rat skin, in vitro release and skin retention of CXB from solution and emulsions were studied. The anti-inflammatory activity was evaluated by the carrageenan-induced hind paw edema method in Wistar rats.

Results: The amount of drug released through artificial membrane has decreased from 122.00?±?0.70?μg/cm2 for the CXB solution to 55.80?±?0.70?μg/cm2 for anionic emulsion, and then further decreased to 24.79?±?0.90?μg/cm2 for cationic emulsion. The JSS value obtained with solution, anionic, and cationic emulsions were 6825.79?±?920.86, 2513.15?±?382.71, and 1925.67?±?147.42, respectively. Cationic emulsion showed a significantly higher level (P?≤?0.05) of drug accumulation in full-thickness rat skin than anionic emulsion, and a substantially lesser percentage inhibition of edema values compared with both solution and anionic emulsion.

Discussion and conclusion: Sustained drug release together with increased skin accumulation and simultaneously decreased skin permeation as observed with cationic emulsion should substantiate its suitability as a topical delivery vehicle for CXB.  相似文献   

10.
Objective: Dermal delivery of Doxorubicin (Dox) would be an ideal way in maximising drug efficiency against skin cancer accompanying with minimising side effects. We investigated the potential of Dox-loaded Solid lipid nanoparticles (SLNs) for topical delivery against skin cancer.

Methods: In vitro and in vivo cytotoxicity of optimised formulation were evaluated on murine melanoma (B16F10) cells by MTT assay and melanoma induced Balb/C mice, respectively. Animal study followed by histological analysis.

Results: Optimised formulation showed mean particle size and encapsulation efficiency (EE) of 92?nm and 86% w/w (0.86% w/w value of encapsulated Dox in the lipid matrix), respectively. FTIR experiment confirmed drug–lipid interaction interpreting the observed high EE value for Dox. In vitro and in vivo results indicated the superiority of cytotoxic performance of Dox-loaded SLN compared to Dox solution.

Conclusion: Our findings may open the possibilities for the topical delivery of Dox to the skin cancerous tissues.  相似文献   

11.
Abstract

Objective: In this study, attempt has been focused to prepare a nanoemulsion (NE) gel for topical delivery of amphotericin B (AmB) for enhanced as well as sustained skin permeation, in vitro antifungal activity and in vivo toxicity assessment.

Materials and methods: A series of NE were prepared using sefsol-218 oil, Tween 80 and Transcutol-P by slow spontaneous titration method. Carbopol gel (0.5%?w/w) was prepared containing 0.1%?w/w AmB. Furthermore, NE gel (AmB-NE gel) was characterized for size, charge, pH, rheological behavior, drug release profile, skin permeability, hemolytic studies and ex vivo rat skin interaction with rat skin using differential scanning calorimeter. The drug permeability and skin irritation ability were examined with confocal laser scanning microscopy and Draize test, respectively. The in vitro antifungal activity was investigated against three fungal strains using the well agar diffusion method. Histopathological assessment was performed in rats to investigate their toxicological potential.

Results and discussion: The AmB-NE gel (18.09?±?0.6?µg/cm2/h) and NE (15.74?±?0.4?µg/cm2/h) demonstrated the highest skin percutaneous permeation flux rate as compared to drug solution (4.59?±?0.01?µg/cm2/h) suggesting better alternative to painful and nephrotoxic intravenous administration. Hemolytic and histopathological results revealed safe delivery of the drug. Based on combined results, NE and AmB-NE gel could be considered as an efficient, stable and safe carrier for enhanced and sustained topical delivery for AmB in local skin fungal infection.

Conclusion: Topical delivery of AmB is suitable delivery system in NE gel carrier for skin fungal infection.  相似文献   

12.
Ibuprofen is a non-steroidal anti-inflammatory drug for the treatment of Rheumatoid Arthritis and osteoarthritis. In this study, we prepared topical gel network for enhancement of ibuprofen penetration, maintenance of controlled release and increased patient compliance. Nanoparticles containing ibuprofen were prepared by means of emulsion formation/solvent diffusion method using synthesized copolymer. Nanoparticles were then conjugated with aminoethylmethacrylate, resulting in ibuprofen-loaded nanoparticles in PLGA-b-PEG-MA structure. Ibuprofen-loaded gel networks were developed by crosslinking nanoparticles via UV exposure. Suitability for topical application has been assessed through characterization of particle size, zeta potential, morphology, encapsulation efficiency, in vitro release, cytotoxicity and enhancement of in vitro wound healing. The mean diameter of nanoparticles was measured as 230?±?20?nm. Gel network formulations with higher particle size (2800?±?350?nm) and zeta potential (39.8?±?9.2?mV), depending on conjugation of methacrylate within copolymeric structure, and having encapsulation efficacy of 73.6?±?2.8% were prepared. The in vitro release of ibuprofen was sustained for more than 7?hours. Gel network improved collagen synthesis, type I collagen mRNA expression and fibrosis in dose dependent manner. Based on this, we can conclude that PLGA-b-PEG gel network might be a promising systems for the local delivery of ibuprofen in RA patients.  相似文献   

13.
The objective of the study was to develop, optimize and evaluate a nanoemulsion (NE) of Amphotericin B (AmB) using excipients with inherent antifungal activities (Candida albicans and Aspergillus niger) for topical delivery. AmB-loaded NE was prepared using Capmul PG8 (CPG8), labrasol and polyethylene glycol-400 by spontaneous titration method and evaluated for mean particle size, polydispersity index, zeta potential and zone of inhibition (ZOI). NE6 composed of CPG8 (15%w/w), Smix (24%w/w) and water (61%w/w) was finally selected as optimized NE. AmB-NE6 was studied for improved in vitro release, ex vivo skin permeation and deposition using the Franz diffusion cell across the rat skin followed with drug penetration using confocal laser scanning microscopy (CLSM) as compared to drug solution (DS) and commercial Fungisome®. The results of in vitro studies exhibited the maximum ZOI value of NE6 as 19.1?±?1.4 and 22.8?±?2.0?mm against A. niger and C. albicans, respectively, along with desired globular size (49.5?±?1.5?nm), zeta potential (?24.59?mV) and spherical morphology. AmB-NE6 revealed slow and sustained release of AmB as compared to DS in buffer solution (pH 7.4). Furthermore, AmB-NE6 elicited the highest flux rate (22.88?±?1.7?μg/cm2/h) as compared to DS (2.7?±?0.02?μg/cm2/h) and Fungisome® (11.5?±?1.0?μg/cm2/h). Moreover, the enhancement ratio and drug deposition were found to be highest in AmB-NE6 than DS across the stratum corneum barrier. Finally, CLSM results corroborated enhanced penetration of the AmB-NE6 across the skin as compared to Fungisome® and DS suggesting an efficient, stable and sustained topical delivery.  相似文献   

14.
The aim of this study was to compare physicochemical properties of solid lipid nanoparticles (SLN) made from different lipids. To make small, stable, uniform and highly encapsulated SLNs, many factors such as the components (lipid, stabilizer) and preparation condition (sonication time, power) can be considered. Out of those, we selected solid lipid as lipid matrix to investigate an effect on SLNs. The SLNs were characterized by particle size, zeta potential, solubility and in vitro release study. In this study, SLNs showed different physicochemical properties and release profiles according to used solid lipid. In case of particle size, M-SLN showed biggest particle size (412.5?±?29.4?nm) and highest encapsulation efficiency (61.2?±?4.8?%). And, B-SLN showed highest cumulative drug percentage (85.0?±?1.7?%, 24?h) in release study. These results suggest that lipids type affect physicochemical properties and release profile of SLN.  相似文献   

15.
Abstract

Collagen, a high molecular weight, hydrophilic and highly abundant protein is known to have anti-ageing, anti-wrinkle, anti-acne, anti-scar and wound healing properties. High molecular weight and hydrophilic nature hinder its effective topical delivery. So, the objective of present study was to develop effective topical nano-surfactant dispersion (NSD) for collagen delivery. NSD was prepared from sorbitan monostearate (Span60) and cholesterol using ethanol injection method followed by probe sonication. NSD was characterized for entrapment efficiency (%EE), size and size distribution (Z-avg and polydispersity index (PDI)), shape, zeta-potential (ζ), in vitro drug release, skin hydration and skin irritation test and histopathological examination. Optimized NSD (NSD3) had %EE, z-avg, PDI and ζ-potential of 77.56%?±?1.09%, 158.1?±?2.31?nm, 0.211 and ?17.2?±?0.64?mV, respectively. In in vivo skin hydration test, NSD treatment showed nearly 2.5-fold and 3-fold increase in the thickness of stratum corneum (SC) as compared to the collagen gel treated and untreated skin, respectively. The mean scores of skin irritation test in two animal species, rats and rabbits, were found to be 1.42?±?1.01 and 1.71?±?0.29, respectively, indicating the non-irritant nature of collagen loaded NSD. Histopathology of the skin after application of developed NSD showed non-significant changes in skin anatomy indicating its safe nature.  相似文献   

16.
The present study was designed to investigate the solubility and penetrability of norfloxacin after the topical application of developed lipid–polymer hybrid nanoparticle (LPN) formulation. The core shell of the LPNs formulation was composed of poly (lactic-co-glycolic acid) that is highly lipophilic in nature, thus control the release of drug. The developed formulations were characterised for size, shape (transmission electron microscopy [TEM], scanning electron microscopy [SEM], and atomic force microscopy), entrapment efficiency, Fourier transform infra-red (FTIR) spectroscopy, differential scanning calorimetry (DSC) and thermo gravimetric analysis (TGA). Moreover, in vitro skin permeation studies were performed to determine release profile of the drug. Norfloxacin loaded nanoparticles retained there antimicrobial efficacy against Staphylococcus aureus and Pseudomonas aeruginosa. Stability study was suggested that the suitable storage condition should be at 4?±?2?°C/60?±?5% RH for the LPNs. Therefore, these nanoparticles showed a safe and effective long-lasting approach for long treatment of bacterial infections due to burn.  相似文献   

17.
Ferritin coupled solid lipid nanoparticles were investigated for tumour targeting. Solid lipid nanoparticles were prepared using HSPC, cholesterol, DSPE and triolien. The SLNs without ferritin which has similar lipid composition were used for comparison. SLNs preparations were characterized for shape, size and percentage entrapment. The average size of SLNs was found to be in the range 110–152 nm and maximum drug entrapment was found to be 34.6–39.1%. In vitro drug release from the formulations is obeying fickian release kinetics. Cellular uptake and IC50 values of the formulation were determined in vitro in MDA-MB-468 breast cancer cells. In vitro cell binding of Fr-SLN exhibits 7.7-folds higher binding to MDA-MB-468 breast cancer cells in comparison to plain SLNs. Ex-vivo cytotoxicity assay on targeted nanoparticles gave IC50 of 1.28 µM and non-targeted nanoparticles gave IC50 of 3.56 µM. In therapeutic experiments, 5-FU, SLNs and Fr-SLNs were administered at the dose of 10 mg 5-FU/kg body weight to MDA-MB-468 tumour bearing Balb/c mice. Administration of Fr-SLNs formulation results in effective reduction in tumour growth as compared with free 5-FU and plain SLNs. The result demonstrates that this delivery system possessed an enhanced anti-tumour activity. The results warrant further evaluation of this delivery system.  相似文献   

18.
Abstract

The objective of this study was to evaluate the influence of solid lipid nanoparticles (SLN) loaded with the poorly water-soluble drug tamoxifen citrate (TC) on the in vitro antitumor activity and bioavailability of the drug. TC-loaded SLN were prepared by solvent injection method using glycerol monostearate (GMS) or stearic acid (SA) as lipid matrix. Poloxamer 188 or tween 80 were used as stabilizers. TC-loaded SLN (F3 and F4) prepared using GMS and stabilized by poloxamer 188 showed highest entrapment efficiency % (86.07?±?1.74 and 90.40?±?1.22%) and reasonable mean particle sizes (130.40?±?9.45 and 243.80?±?12.33?nm), respectively. The in vitro release of TC from F3 and F4 exhibited an initial burst effect followed by a sustained drug release. In vitro cytotoxicity of F3 against human breast cancer cell line MCF-7 showed comparable antitumor activity to free drug. Moreover, the results of bioavailability evaluation of TC-loaded SLN in rats compared to free TC indicated that 160.61% increase in the oral bioavailability of TC. The obtained results suggest that incorporation of the poorly water-soluble drug TC in SLN preserves the in vitro antitumor activity and significantly enhance oral bioavailability of TC in rats.  相似文献   

19.
《Drug delivery》2013,20(6):443-451
Topical application of the drugs at the pathological sites offers potential advantages of delivering the drug directly to the site of action. The main aim of this work was to formulate and evaluate Miconazole nitrate (MN) loaded solid lipid nanoparticles (SLN) for topical application. MN-loaded SLN were prepared by modified solvent injection method and characterized for shape, surface morphology, particle size, and drug entrapment. These solid lipid nanoparticles were spherical in shape with smooth surface and possessed mean average size of 206.39?±?9.37?nm. In vitro drug release of MN-loaded SLN-bearing hydrogel was compared with MN suspension and MN hydrogel; MN-loaded SLN-bearing hydrogel depicted a sustained drug release over a 24-h period. Tape stripping experiments demonstrated 10-fold greater retention with MN-loaded SLN-bearing hydrogel as compared to MN suspension and MN hydrogel. The in vivo studies were performed by infecting the rats with candida species. It was observed that MN-loaded SLN-bearing hydrogel was more efficient in the treatment of candidiasis. Results indicate that MN-loaded SLN-bearing hydrogel provides a sustaining MN topical effect as well as quicker relief from fungal infection.  相似文献   

20.
The aim of this study was to prepare diclofenac sodium (DNa) solid lipid nanoparticles (SLNs) by a modified emulsion/solvent evaporation method for transdermal delivery. Five independent processing parameters including the lipid matrix, emulsifiers, co-emulsifiers, water-dispersed phase and organic phase were assessed systematically to enhance the entrapment of DNa. The SLNs produced by optimal formulation were submicrometre size with low polydispersity index, the entrapment efficiency was about 89% and the drug loading was about 9.5%. Shape and surface morphology were determined by transmission electron microscopy, which revealed the fairly spherical and core-shell shapes of the SLNs. The in vitro release of SLNs showed a two-step release pattern: one initial burst release followed by a second slow-release phase. In the in vitro cutaneous permeation studies, value of flux obtained for DNa solution was higher than that of SLNs suspension. SLNs had also been shown to improve the dermal localization of DNa.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号