首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The noninvasive assessment of coronary stents by coronary CT angiography (CCTA) is an attractive method. However, the radiation dose associated with CCTA remains a concern for patients. The purpose of this study is to compare the radiation doses and image qualities of CCTA performed using tube voltages of 100 or 120 kVp for the evaluation of coronary stents. After receiving institutional review board approval, 53 consecutive patients with previously implanted stents (101 stents) underwent 64-slice CCTA. Patients were divided into three different protocol groups, namely, prospective ECG triggering at 100 kVp, prospective ECG triggering at 120 kVp, or retrospective gating at 100 kVp. Two reviewers qualitatively scored the quality of the resulting images for coronary stents and determined levels of artificial lumen narrowing (ALN), stent lumen attenuation increase ratio (SAIR), image noise, and radiation dose parameters. No significant differences were found between the three protocol groups concerning qualitative image quality or SAIR. Coronary lumen attenuation and in-stent attenuation of 100 kVp prospective CCTA (P-CCTA) were higher than in the 120 kVp P-CCTA protocol (all Ps < 0.001). Mean ALN was significantly lower for 100 kVp P-CCTA than for 100 kVp retrospective CCTA (R-CCTA, P = 0.007). The mean effective radiation dose was significantly lower (P < 0.001) for 100 kVp P-CCTA (3.3 ± 0.4 mSv) than for the other two protocols (100 kVp R-CCTA 6.7 ± 1.0 mSv, 120 kVp P-CCTA 4.6 ± 1.2 mSv). We conclude that the use of 100 kVp P-CCTA can reduce radiation doses for patients while maintaining the imaging quality of 100 kVp R-CCTA and 120 kVp P-CCTA for the evaluation of coronary stents.  相似文献   

2.
The exposure to ionizing radiation has raised concerns about coronary CT angiography (CCTA). Recently, prospective ECG-triggered sequential scan technique has been introduced in CCTA to significantly reduce radiation exposure. The purpose of this study was to analyze our experience with the sequential scan technique on a dual-source CT system with respect to image quality and radiation dose. Qualitative and quantitative image quality as well as radiation dose were assessed in 514 consecutive patients undergoing CCTA either with sequential or spiral image acquisition technique on dual-source CT. The selection of the applied scan technique was at the discretion of an experienced coronary CT angiographer. A multivariate logistic regression analysis was applied to identify predictors of diagnostic image quality. Diagnostic CCTA image quality was found in 1,395/1,429 (97.6%) versus 4,664/4,782 (97.5%) of the coronary segments in patients studied with sequential versus spiral scanning (P = 0.82). While the application of betablockers for CCTA was an independent factor for improved image quality in the multivariate regression analysis, heart rate variability and body mass index were indepentently associated with a deterioriated image quality. The scan technique had no independent impact on diagnostic image quality. Mean estimated radiation dose was reduced by 63% in patients studied with sequential scan technique (3.4 ± 2.2 vs. 7.6 ± 5.0 mSv, P < 0.01). In patients with a low and stable heart rate, the sequential scan technique is a promising method to effectively reduce radiation exposure in dual-source CCTA. Due to the comparable image quality in sequential and spiral dual-source CCTA, the sequential scan technique should be considered as the primary scan protocol in appropriate patients.  相似文献   

3.
To investigate the image quality and dose performance of 80 kV high-pitch spiral (HPS) coronary CT angiography (CCTA). 106 patients consecutively enrolled into prospectively ECG-triggering HPS CCTA (pitch = 3.4) exam using kV/ref. mAs = 80/400, 100/370, and 120/370 when patient BMI was ≤22.5 (n = 40), between 22.5 and 27.5 (n = 53) and >27.5 kg/m2 (n = 13). Image quality was assessed per-segment by two observers independently using a 4-point scale (1—excellent, 4—non-diagnosable). Image noise and signal-to-noise ratio (SNR), contrast-to-noise ratio were measured. Diagnostic image quality was obtained in 503 of 507, 687 of 693, 164 of 167 coronary segments in 80, 100, 120 kV groups without significant difference (P = 0.482). The proportions of segments with score 1–4 were not significantly different among three kV groups (all P > 0.05). Image noise were significantly higher in 80 kV group than 100 and 120 groups (P < 0.001), while SNR was not (P = 0.097). The effective dose of 80 kV group (0.36 ± 0.03 mSv) was significantly lower than that of 100 kV group (0.86 ± 0.08 mSv) and 120 kV group (1.77 ± 0.18 mSv). The mean ± SD of HR in all patients was 54.8 ± 5.1 bpm. 80 kV HPS CCTA is feasible for patient with BMI ≤ 22.5 kg/m2 which can save 58% dose than 100 kV group, while maintain diagnosable image quality.  相似文献   

4.
We sought to determine the cut-off point of the average heart rate (HR) and HR differences in obtaining diagnostic image quality using prospective electrocardiographically-triggered (PT) coronary computed tomographic angiography (CCTA) and to compare image quality and radiation dose for CCTA obtained with PT CCTA and retrospective electrocardiographically-gated (RG) CCTA. A total of 178 patients who were referred for CCTA were enrolled in the study. Two independent radiologists evaluated subjective image quality. The non-diagnostic coronary segments were 32 of 1,226 segments (2.6%) for PT CCTA and 12 of 1,346 segments (0.9%) for RG CCTA (P < 0.001). The mean image quality scores for PT CCTA and RG CCTA were 3.82 ± 0.29 and 3.93 ± 0.14, respectively. The mean radiation dose of patients that underwent PT CCTA was 3.83 ± 0.84 mSv and RG CCTA 10.7 ± 2.70 mSv. For patients who underwent PT CCTA, image quality was inversely related to HR (56.5 ± 4.3 bpm; r = 0.38; P < 0.001) and HR differences (2.8 ± 2.7 bpm; r = 0.49; P < 0.001). With the use of receiver operator characteristic analysis, a cut-off HR of 57 bpm (58% sensitivity, 67% specificity) and HR difference of 6 bpm (93% sensitivity, 46% specificity) were the best threshold for the prediction of diagnostic image quality. In patients with a regular, low HR, PT CCTA offers diagnostic image quality and substantially reduces effective radiation compared with the use of RG CCTA with dose modulation.  相似文献   

5.
The aim is to investigate the effect of tube voltage and chest wall thickness on image quality, stenosis measurement, and radiation dose in coronary CT angiography (CCTA) in a phantom study. A phantom with tubes in a box at its center and concentric cylindrical plastic chambers of three layers at its periphery was constructed. The concentric cylinders were filled with oil or left empty to simulate different degrees of obesity. Retrospective CT scanning was performed at different kVps and mAs. Image noise, contrast to noise ratio (CNR), stenosis measurement, and radiation dose were obtained. A CNR higher than 10 was considered to be acceptable for clinical practice. Mean image noise was 51.7 at 80 kVp, 31.6 at 100 kVp, and 24.7 at 120 kVp (P < 0.001). A CNR greater than 10 could be achieved with all the images using 80 kVp as well as using 100 or 120 kVp. However, CNRs at 100 and 120 kVp were significantly higher than the CNR at 80 kVp (P < 0.001). There were no significant differences between 100 and 120 kVp. All stenosis measurements were overestimated. Accuracy of stenosis measurement was significantly correlated with CNR (P < 0.05), but not with kVps. Mean doses were 2.07 mSv at 80 kVp, 3.37 mSv at 100 kVp, and 5.17 mSv at 120 kVp (P < 0.001). CNR per radiation dose was highest at 80 kVp, regardless of chest wall thickness. For CCTA, using 80 kVp with high mAs is the best choice, regardless of chest wall thickness, for minimal radiation dose and sufficient image quality.  相似文献   

6.
The exposure to ionizing radiation has raised concerns about coronary CT angiography (CCTA). Recently, prospective ECG-triggered sequential scan technique has been introduced in CCTA to significantly reduce radiation exposure. The purpose of this study was to analyze our experience with the sequential scan technique on a dual-source CT system with respect to image quality and radiation dose. Qualitative and quantitative image quality as well as radiation dose were assessed in 514 consecutive patients undergoing CCTA either with sequential or spiral image acquisition technique on dual-source CT. The selection of the applied scan technique was at the discretion of an experienced coronary CT angiographer. A multivariate logistic regression analysis was applied to identify predictors of diagnostic image quality. Diagnostic CCTA image quality was found in 1,395/1,429 (97.6%) versus 4,664/4,782 (97.5%) of the coronary segments in patients studied with sequential versus spiral scanning (P = 0.82). While the application of betablockers for CCTA was an independent factor for improved image quality in the multivariate regression analysis, heart rate variability and body mass index were indepentently associated with a deterioriated image quality. The scan technique had no independent impact on diagnostic image quality. Mean estimated radiation dose was reduced by 63% in patients studied with sequential scan technique (3.4 ± 2.2 vs. 7.6 ± 5.0 mSv, P < 0.01). In patients with a low and stable heart rate, the sequential scan technique is a promising method to effectively reduce radiation exposure in dual-source CCTA. Due to the comparable image quality in sequential and spiral dual-source CCTA, the sequential scan technique should be considered as the primary scan protocol in appropriate patients.  相似文献   

7.
A new generation of high definition computed tomography (HDCT) 64-slice devices complemented by a new iterative image reconstruction algorithm—adaptive statistical iterative reconstruction, offer substantially higher resolution compared to standard definition CT (SDCT) scanners. As high resolution confers higher noise we have compared image quality and radiation dose of coronary computed tomography angiography (CCTA) from HDCT versus SDCT. Consecutive patients (n = 93) underwent HDCT, and were compared to 93 patients who had previously undergone CCTA with SDCT matched for heart rate (HR), HR variability and body mass index (BMI). Tube voltage and current were adapted to the patient’s BMI, using identical protocols in both groups. The image quality of all CCTA scans was evaluated by two independent readers in all coronary segments using a 4-point scale (1, excellent image quality; 2, blurring of the vessel wall; 3, image with artefacts but evaluative; 4, non-evaluative). Effective radiation dose was calculated from DLP multiplied by a conversion factor (0.014 mSv/mGy × cm). The mean image quality score from HDCT versus SDCT was comparable (2.02 ± 0.68 vs. 2.00 ± 0.76). Mean effective radiation dose did not significantly differ between HDCT (1.7 ± 0.6 mSv, range 1.0–3.7 mSv) and SDCT (1.9 ± 0.8 mSv, range 0.8–5.5 mSv; P = n.s.). HDCT scanners allow low-dose 64-slice CCTA scanning with higher resolution than SDCT but maintained image quality and equally low radiation dose. Whether this will translate into higher accuracy of HDCT for CAD detection remains to be evaluated.  相似文献   

8.
We aimed to evaluate image quality, radiation dose and diagnostic accuracy of coronary CT angiography (CCTA) with a prospectively gated transverse-axial scan (PGT) compared with a retrospectively gated helical scan (RGH), using a 64-slice scanner in patients who underwent coronary artery bypass graft (CABG). Of the 131 consecutive patients that underwent CABG using 64-slice multidetector row computed tomography during 2008, patients with heart rate (HR) of <75 beats/minute (bpm), and HR variation <10 bpm were included in the study. PGT was performed on 39 patients with 93 grafts, with RGH performed on 43 patients with 102 grafts. Image quality (1: excellent—4: poor) and estimated radiation dose were compared between the two groups. Of these, a total of 64 segments in 26 patients were subjected to invasive coronary angiography (ICA) for clinical reasons. Diagnostic accuracy of CCTA for evaluation of graft was performed between the two groups with ICA as a reference standard in terms of significant stenosis (≥ 50% of luminal stenosis). The image quality was not statistically different in the two groups. Mean effective radiation dose was 6.5 mSv in PGT-group, which was significantly lower than that in the RGH-group (21.2 mSv; P < 0.001). There was no statistically significant difference in diagnostic accuracy between the two groups (PGT-group versus RGH-group; 93.1% versus 91.4%). PGT can achieve dose reductions of up to 70% compared to RGH while maintaining image quality and high diagnostic accuracy in patients undergoing CABG.  相似文献   

9.
To investigate the image quality and the minimum required radiation dose for automatic tube potential selection (ATPS) in dual-source computed tomography (DSCT) coronary computed tomography angiography (CCTA). Three hundred twenty-five consecutive patients (153 men and 172 women) undergoing CCTA were assigned to either the ATPS group (n = 172) or the control group (n = 153); the control group underwent imaging at a constant current of 120 kV. All patients were scanned in either prospectively ECG-triggered high-pitch helical mode or sequential mode. The subjective image quality score, attenuation, image noise, signal-to-noise ratio (SNR), contrast-to-noise ratio (CNR), volume CT dose index (CTDIvol), and effective dose (ED) were compared between the two groups with the Student t test or Mann–Whitney U test. The subjective image quality score was not significantly different between the two groups. Imaging noise and attenuation were both significantly higher in the ATPS group than in the control group (imaging noise: 25.6 ± 7.6 versus 15.8 ± 4.0 HU, P < 0.001; attenuation: 559.6 ± 142.0 versus 412.5 ± 64.3 HU, P < 0.001). SNR and CNR were significantly lower in the ATPS group than in the control group (SNR: 23.21 ± 7.40 versus 27.71 ± 8.25, P < 0.001; CNR: 27.81 ± 8.44 versus 33.94 ± 9.69, P < 0.001). ED was significantly lower in the ATPS group than in the control group (ED: 1.25 ± 1.24 versus 2.19 ± 1.77 mSv, P < 0.001). For both groups, ED was significantly lower in the high-pitch mode than in the sequential mode. The use of ATPS for CCTA significantly reduced the radiation dose while maintaining image quality.  相似文献   

10.
To compare image quality and radiation dose estimates for coronary computed tomography angiography (CCTA) obtained with a prospectively gated transaxial (PGT) CT technique and a retrospectively gated helical (RGH) CT technique using a 256-slice multidetector CT (MDCT) scanner and establish an upper limit of heart rate to achieve reliable diagnostic image quality using PGT. 200 patients (135 males, 65 females) with suspected coronary artery disease (CAD) underwent CCTA on a 256-slice MDCT scanner. The PGT patients were enrolled prospectively from January to June, 2009. For each PGT patient, we found the paired ones in retrospective-gating patients database and randomly selected one patient in these match cases and built up the RGH group. Image quality for all coronary segments was assessed and compared between the two groups using a 4-point scale (1: non-diagnostic; 4: excellent). Effective radiation doses were also compared. The average heart rate ± standard deviation (HR ± SD) between the two groups was not significantly different (PGT: 64.6 ± 12.9 bpm, range 45–97 bpm; RGH: 66.7 ± 10.9 bpm, range 48–97 bpm, P = 0.22). A receiver-operating characteristic (ROC) analysis determined a cutoff HR of 75 bpm up to which diagnostic image quality could be achieved using the PGT technique (P < 0.001). There were no significant differences in assessable coronary segments between the two groups for HR ≤ 75 bpm (PGT: 99.9% [961 of 962 segments]; RGH: 99.8% [1038 of 1040 segments]; P = 1.0). At HR > 75 bpm, the performance of the PGT technique was affected, resulting in a moderate reduction of percentage assessable coronary segments using this approach (PGT: 95.5% [323 of 338 segments]; RGH: 98.5% [261 of 265 segments]; P = 0.04). The mean estimated effective radiation dose for the PGT group was 3.0 ± 0.7 mSv, representing reduction of 73% compared to that of the RGH group (11.1 ± 1.6 mSv) (P < 0.001). Prospectively-gated axial coronary computed tomography using a 256-slice multidetector CT scanner with a 270 ms tube rotation time enables a significant reduction in effective radiation dose while simultaneously providing image quality comparable to the retrospectively gated helical technique. Our experience demonstrates the applicability of this technique over a wider range of heart rates (up to 75 bpm) than previously reported.  相似文献   

11.
Helical prospective ECG-gating (pECG) may reduce radiation dose while maintaining the advantages of helical image acquisition for coronary computed tomography angiography (CCTA). Aim of this study was to evaluate helical pECG–gating in CCTA in regards to radiation dose and image quality. 86 patients undergoing 64-multislice CCTA were enrolled. pECG-gating was performed in patients with regular heart rates (HR) < 65 bpm; with the gating window set at 70–85% of the cardiac cycle. All patients received oral and some received additional IV beta-blockers to achieve HR < 65 bpm. In patients with higher or irregular HR, or for functional evaluation, retrospective ECG-gating (rECG) was performed. The average X-ray dose was estimated from the dose length product. Each arterial segment (modified AHA/ACC 17-segment-model) was evaluated on a 4-point image quality scale (4 = excellent; 3 = good, mild artefact; 2 = acceptable, some artefact, 1 = uninterpretable). pECG-gating was applied in 57 patients, rECG-gating in 29 patients. There was no difference in age, gender, body mass index, scan length or tube output settings between both groups. HR in the pECG-group was 54.7 bpm (range, 43–64). The effective radiation dose was significantly lower for patients scanned with pECG-gating with mean 6.9 mSv ± 1.9 (range, 2.9–10.7) compared to rECG with 16.9 mSv ± 4.1 (P < 0.001), resulting in a mean dose reduction of 59.2%. For pECG-gating, out of 969 coronary segments, 99.3% were interpretable. Image quality was excellent in 90.2%, good in 7.8%, acceptable in 1.3% and non-interpretable in 0.7% (n = 7 segments). For patients with steady heart rates <65 bpm, helical prospective ECG-gating can significantly lower the radiation dose while maintaining high image quality.  相似文献   

12.
Purpose The purpose of this study was to assess the radiation dose and associated image noise of previously suggested calcium scoring protocols using dual-source CT. Methods One hundred consecutive patients underwent coronary calcium scoring using dual-source CT. Patients were randomly assigned to five different protocols: retrospective ECG-gating and tube current reduction to 4% outside the pulsing window at 120 (protocol A) and 100 kV (B), prospective ECG-triggering at 120 (C) and 100 kV (D), and prospective ECG-triggering at 100 kV with attenuation-based tube current modulation (E). Radiation dose parameters and image noise were determined and compared. Results Protocol A resulted in an effective dose of 1.3 ± 0.2 mSv, protocol B in 0.8 ± 0.2 mSv, protocol C in 1.0 ± 0.2 mSv, protocol D in 0.6 ± 0.1 mSv, and protocol E in 0.7 ± 0.1 mSv. Effective doses were significantly lower (P < 0.001) with 100 kV when compared to 120 kV protocols, and were significantly lower (P < 0.001) for prospective versus retrospective ECG-gating. No significant difference was found between protocol D and E. Significant negative correlations were found between the CTDIvol and heart rate for both retrospective ECG-gating protocols (protocol A: r = −0.98, P < 0.001; protocol B: r = −0.83, P < 0.001). The mean image noise was 29.0 ± 6.7 HU, with no significant differences between the five protocols. The image noise was significantly correlated with the body weight (r = 0.21, P < 0.05) and BMI (r = 0.31, P < 0.01). Conclusions Effective dose of calcium scoring using dual-source CT ranges from 0.6 to 1.3 mSv. Prospective triggering and lower tube voltage significantly reduces the radiation but yield similar image noise.  相似文献   

13.
The aim of this study was to compare image quality characteristics from 64-slice high definition (HDCT) versus 64-slice standard definition CT (SDCT) for coronary stent imaging. In twenty-five stents of 14 patients, undergoing contrast-enhanced CCTA both on 64-slice SDCT (LightSpeedVCT, GE Healthcare) and HDCT (Discovery HD750, GE Healthcare), radiation dose, contrast, noise and stent characteristics were assessed. Two blinded observers graded stent image quality (score 1 = no, 2 = mild, 3 = moderate, and 4 = severe artefacts). All scans were reconstructed with increasing contributions of adaptive statistical iterative reconstruction (ASIR) blending (0, 20, 40, 60, 80 and 100 %). Image quality was significantly superior in HDCT versus SDCT (score 1.7 ± 0.5 vs. 2.7 ± 0.7; p < 0.05). Image noise was significantly higher in HDCT compared to SDCT irrespective of ASIR contributions (p < 0.05). Addition of 40 % ASIR or more reduced image noise significantly in both HDCT and SDCT. In HDCT in-stent luminal attenuation was significantly lower and mean measured in-stent luminal diameter was significantly larger (1.2 ± 0.4 mm vs. 0.8 ± 0.4 mm; p < 0.05) compared to SDCT. Radiation dose from HDCT was comparable to SDCT (1.8 ± 0.7 mSv vs. 1.7 ± 0.7 mSv; p = ns). Use of HDCT for coronary stent imaging reduces partial volume artefacts from stents yielding improved image quality versus SDCT at a comparable radiation dose.  相似文献   

14.
The accuracy of coronary computed tomography angiography (CCTA) in obese persons is compromised by increased image noise. We investigated CCTA image quality acquired on a high-definition 64-slice CT scanner using modern adaptive statistical iterative reconstruction (ASIR). Seventy overweight and obese patients (24 males; mean age 57 years, mean body mass index 33 kg/m2) were studied with clinically-indicated contrast enhanced CCTA. Thirty-five patients underwent a standard definition protocol with filtered backprojection reconstruction (SD-FBP) while 35 patients matched for gender, age, body mass index and coronary artery calcifications underwent a novel high definition protocol with ASIR (HD-ASIR). Segment by segment image quality was assessed using a four-point scale (1 = excellent, 2 = good, 3 = moderate, 4 = non-diagnostic) and revealed better scores for HD-ASIR compared to SD-FBP (1.5 ± 0.43 vs. 1.8 ± 0.48; p < 0.05). The smallest detectable vessel diameter was also improved, 1.0 ± 0.5 mm for HD-ASIR as compared to 1.4 ± 0.4 mm for SD-FBP (p < 0.001). Average vessel attenuation was higher for HD-ASIR (388.3 ± 109.6 versus 350.6 ± 90.3 Hounsfield Units, HU; p < 0.05), while image noise, signal-to-noise ratio and contrast-to noise ratio did not differ significantly between reconstruction protocols (p = NS). The estimated effective radiation doses were similar, 2.3 ± 0.1 and 2.5 ± 0.1 mSv (HD-ASIR vs. SD-ASIR respectively). Compared to a standard definition backprojection protocol (SD-FBP), a newer high definition scan protocol in combination with ASIR (HD-ASIR) incrementally improved image quality and visualization of distal coronary artery segments in overweight and obese individuals, without increasing image noise and radiation dose.  相似文献   

15.
Purpose To evaluate image quality and contrast opacification from coronary images acquired from 320-detector row computed tomography (CT). Patient dose is estimated for prospective and retrospective ECG-gating; initial correlation between 320-slice CT and coronary catheterization is illustrated. Methods Retrospective image evaluation from forty consecutive patients included subjective assessment of image quality and contrast opacification (80 ml iopamidol 370 mg I/ml followed by 40 ml saline). Region of interest opacification measurements at the ostium and at 2.5 mm diameter were used to determine the gradient of contrast opacification (defined as the proximal minus distal HU measurements) in coronary arteries imaged in a single heartbeat. Estimated effective dose was compared for prospective versus retrospective ECG-gating, two body mass index categories (30 kg/m2 cutoff), and single versus two heartbeat acquisition. When available, CT findings were correlated with those from coronary catheterization. Results Over 89% of arterial segments (15 segment model) had excellent image quality. The most common reason for image degradation was cardiac motion. One segment in one patient was considered unevaluable. Contrast opacification was almost universally considered excellent. The mean Hounsfield units (HU) was greater than 350; the coronary contrast opacification gradient was 30–50 HU. Patient doses were greater for retrospective ECG-gating, larger patients, and those imaged with two heartbeats. For the most common (n = 25) protocol (120 kV, 400 mA, prospective ECG-gating, 60–100% phase window, 16 cm craniocaudal coverage, single heartbeat), the mean dose was 6.8 ± 1.4 mSv. All CT findings were confirmed in the four patients who underwent coronary catheterization. Conclusion Initial 320-detector row coronary CT images have consistently excellent quality and iodinated contrast opacification. These patients were scanned with conservative protocols with respect to iodine load, prospective ECG-gating phase window, and craniocaudal coverage. Future work will focus on lowering contrast and radiation dose while maintaining image quality.  相似文献   

16.
We evaluated the feasibility of sub-millisievert (mSv) coronary CT angiography (CCTA) using low tube voltage, prospective ECG gating, and a knowledge-based iterative model reconstruction algorithm. Twenty-four non-obese healthy subjects (M:F 13:11; mean age 50.2 ± 7.8 years) were enrolled. Three sets of CT images were reconstructed using three different reconstruction methods: filtered back projection (FBP), iterative reconstruction (IR), and knowledge-based iterative model reconstruction (IMR). The scanning parameters were as follows: step-and-shoot axial scanning, 80 kVp, and 200 mAs. On the three sets of CT images, the attenuation and image noise values were measured at the aortic root. The signal-to-noise ratio (SNR) and the contrast-to-noise ratio (CNR) were calculated at the proximal right coronary artery and the left main coronary artery. The qualitative image quality of the CCTA with IMR was assessed using a 4-point grading scale (grade 1, poor; grade 4, excellent). The mean radiation dose of the CCTA was 0.89 ± 0.09 mSv. The attenuation values with IMR were not different from those of other reconstruction methods. The image noise with IMR was significantly lower than with IR and FBP. Compared to FBP, the noise reduction rate of IMR was 69 %. The SNR and CNR of CCTA with IMR were significantly higher than with FBP or IR. On the qualitative analysis with IMR, all included segments were diagnostic (grades 2, 3, and 4), and the mean image quality score was 3.6 ± 0.6. In conclusion, CCTA with low tube voltage, prospective ECG gating, and an IMR algorithm might be a feasible method that allows for sub-millisievert radiation doses and good image quality when used with non-obese subjects.  相似文献   

17.
目的 观察多层螺旋CT (MSCT)联合多模型迭代重建算法(ASIR-V)对高体质量指数(BMI)患者(26~30 kg/m2)行冠状动脉成像(CCTA)的价值。方法 将60例高BMI患者分为研究组(n=30)和对照组(n=30)行CCTA。研究组管电压100 kVp,根据BMI及体质量确定对比剂用量及流率;对照组管电压120 kVp,对比剂剂量70 ml,流率5 ml/s。分别采用权重20%、40%、60%及80% ASIR-V重建2组图像,比较组间及组内图像客观和主观质量评价差异及2组辐射有效剂量(ED)。结果 研究组ED[(2.65±0.64)mSv]及对比剂剂量[(61.84±9.17)ml]分别较对照组[(4.53±0.84)mSv、(70.0±0.00)ml]降低41.50%和11.66%(P均<0.05)。相同权重ASIR-V重建图像中研究组各血管节段CT值均高于对照组(t=5.11~6.86,P均<0.05),而信噪比(SNR)、对比噪声比(CNR)及主观评价与对照组差异均无统计学意义(P均>0.05)。随ASIR-V权重增加,2组各血管节段CT值均无明显增加(P均>0.05),SNR及CNR逐渐增加(P均<0.05);组内不同权重ASIR-V图像主观评分差异均有统计学意义(P均<0.01)。结论 MSCT联合ASIR-V以100 kVp管电压对高BMI患者行CCTA可在显著降低患者ED及对比剂剂量的同时获得满意图像质量。  相似文献   

18.
To assess the image quality of coronary CT angiography (CCTA) of 640-slice CT reconstructed by Adaptive Iterative Dose Reduction (AIDR) three-dimensional (3D) in comparison with the conventional filtered back-projection (FBP). CCTA images of 51 patients were scanned at the lowest tube voltage possible on condition that the built-in automatic exposure control system could suggest the optimal tube current. They were, then, reconstructed with FBP and AIDR 3D (standard). Objective measurements including CT density, noise, signal-to-noise ratio (SNR), and contrast-to-noise ratio (CNR) were performed. Subjective assessment was done by two radiologists, using a 5-point scale (0:nondiagnostic-4:excellent) based on the 15-coronary segment model which was grouped into three parts as the proximal, mid, and distal segmental classes. Radiation dose was also measured. AIDR images showed lower noise than FBP images (45.0 ± 9.4 vs. 73.4 ± 14.6 HU, p < 0.001) without any significant difference in CT density (665.5 ± 131.7 vs. 668 ± 136.3 HU, p = 0.8). Both SNR (15.0 ± 2.1 vs. 9.2 ± 1.7) and CNR (16.8 ± 2.3 vs. 10.4 ± 1.8) were significantly higher for AIDR than FBP (p < 0.001). Total subjective image quality score was also significantly improved in AIDR compared with FBP (3.1 ± 0.6 vs. 1.6 ± 0.4, p < 0.001), with better interpretability of the mid and distal segmental classes (100 vs. 95 % for the mid, p < 0.001; 100 vs. 90 % for the distal, p < 0.001). Mean effective radiation dose was 2.0 ± 1.0 mSv. The AIDR 3D reconstruction algorithm reduced image noise by 39 % compared with the FBP without affecting CT density, thus improving SNR and CNR for CCTA. Its advantages in interpretability were also confirmed by subjective evaluation by experts.  相似文献   

19.
The purpose of this study was to investigate the effects of a prospective ECG-gated, low kilovoltage and low mAs protocol on image quality and radiation dose when acquiring CT angiography of the thoracic aorta (CTTA). Sixty patients with a body mass index (BMI) of less than 30 and a heart rate of less than 100 beats per minute (bpm) were included in the study. Thirty consecutive patients were examined with retrospective ECG-gating and standard parameters (group A) (120 kVp, 340 reference effective mAs).The next thirty (group B) were examined with prospective ECG-gating, 100 kVp and 170 mAs. Quantitative analysis included measurements of image resolution of the thoracic aorta at three levels, mean attenuation in the aorta and signal to noise ratio (SNR). Qualitative analysis assessed image artifact and graded image quality on five point scales. Effective radiation doses were estimated. The radiation dose of group A was 26.2 ± 6.0 mSv (mean ± standard deviation). For group B it was 2.9 ± 0.5 mSv (P < 0.001). Mean aortic attenuation was significantly higher in group B than group A (487 ± 100 Hu and 372 ± 74 Hu) (P < 0.01).SNR was significantly higher in group A (21.7 ± 5.7 compared to 14.5 ± 5.3) (P < 0.01). Image resolution was significantly higher in group B at all measured anatomical levels (P < 0.01). There was no significant difference in the final subjective scores between group A and group B (Mann–Whitney U = 438, P = 0.79). High quality low dose CTTA is clinically achievable, in patients with a BMI less than 30 and a heart rate less than 100 bpm, using a prospective ECG-gated, low kilovoltage, low mAs technique.  相似文献   

20.
The aim of this study was to compare the radiation dose and image quality of different adenosine-stress dynamic myocardial perfusion CT protocols using a 128-slice dual-source computed tomography (DSCT) scanner. We included 330 consecutive patients with suspected coronary artery disease. Protocols employed the following dynamic scan parameters: protocol I, a 30-s scan with a fixed tube current (FTC, n = 172); protocol II, a 30-s scan using an automatic tube current modulation (ATCM) technique (n = 108); protocol III, a 14-s scan using an ATCM (n = 50). To determine the scan interval for protocol III, we analyzed time-attenuation curves of 26 patients with myocardial perfusion who had been scanned using protocol I or II. The maximum attenuation difference between normal and abnormal myocardium occurred at 18.0 s to 30.3 s after initiation of contrast injection. Myocardial perfusion images of FTC and ATCM were of diagnostic image quality based on visual analysis. The mean radiation dose associated with protocols I, II, and III was 12.1 ± 1.6 mSv, 7.7 ± 2.5 mSv, and 3.8 ± 1.3 mSv, respectively (p < 0.01). Use of a dose-modulation technique and a 14-s scan duration for adenosine-stress CT enables significant dose reduction while maintaining diagnostic image quality.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号