首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
BACKGROUND: The transphosphorylating accepter buffers (2-amino-2-methyl-1-propanol, AMP; N-methyl-D-glucamine, MEG; diethanolamine, DEA and 2-ethylaminoethanol, EAE) have been widely used for the measurement of serum total alkaline phosphatase activity (ALP) in clinical laboratories, and the individual isozyme are activated differently by respective buffers. MATERIALS AND METHODS: We examined the activity of serum ALP using four buffers with levels of both high molecular weight intestinal alkaline phosphatase (HIAP) and normal molecular weight intestinal alkaline phosphatase (NIAP). We classified 80 healthy subjects into two groups of blood group B or O secretors (n=36) and other blood groups (n=44). RESULTS: The mean ALP activities at fasting in blood group B or O secretors from AMP, MEG, DEA and EAE methods were 15.5%, 24.0%, 11.0% and 22.1% higher than those in other blood groups, respectively. The reference ranges of ALP activity at fasting with the AMP method in blood group B or O secretors and other blood groups were 63.5+/-17.4 U/l (mean+/-S.D.) and 55.0+/-14.5 U/l (mean+/-S.D.), respectively. The difference between the reference ranges of ALP activity in blood group B or O secretors and other blood groups was statistically significant (p<0.01). HIAP and NIAP in serum at fasting only appeared in blood group B or O secretors, and the activities of HIAP and NIAP were 4.7+/-3.4 U/l (mean+/-S.D.) and 2.2+/-1.2 U/l (mean+/-S.D.), respectively. The activity of ALP-(HIAP+NIAP) in blood group B or O secretors was 56.6+/-15.1 U/l (mean+/-S.D.), and this reference range was approximately the same as the ALP activity (55.0+/-14.5 U/l) of other blood groups. The same results were observed with MEG, DEA and EAE methods. CONCLUSIONS: These results suggested that the differences in ALP activity in blood group B or O secretors and other blood groups were closely related to the HIAP and NIAP levels.  相似文献   

3.
目的探讨人重组骨形成蛋白-2(rhBMP-2)对人骨髓成骨细胞增殖和分化的影响以及剂量效应关系。方法以改良方法培养的骨髓成骨细胞为作用底物,加入梯度浓度的rhBMP-2溶液,应用MTT法和碱性磷酸酶(ALP)染色法检测其对细胞增殖和ALP活性的影响。结果rhBMP-2浓度低于1μg/ml时对人骨髓成骨细胞的增殖无明显影响,高于此浓度时对细胞的增殖有明显的促进作用,但无显著的剂量效应关系。从0.1~10μg/ml,ALP与rhBMP-2具有剂量依赖性促进关系,rhBMP-2浓度为10μg/ml时,其ALP活性是对照组的4倍,在高于10μg/ml时ALP活性并没有进一步显著提高。结论rhBMP-2对骨髓成骨细胞的增殖和碱性磷酸酶活性具有促进作用,其最佳效应浓度为10μg/ml。  相似文献   

4.
Summary. Background: Collagen acts as a potent surface for platelet adhesion and thrombus formation under conditions of blood flow. Studies using collagen‐derived triple‐helical peptides have identified the GXX’GER motif as an adhesive ligand for platelet integrin α2β1, and (GPO)n as a binding sequence for the signaling collagen receptor, glycoprotein VI (GPVI). Objective: The potency was investigated of triple‐helical peptides, consisting of GXX’GER sequences within (GPO)n or (GPP)n motifs, to support flow‐dependent thrombus formation. Results: At a high‐shear rate, immobilized peptides containing both the high‐affinity α2β1‐binding motif GFOGER and the (GPO)n motif supported platelet aggregation and procoagulant activity, even in the absence of von Willebrand factor (VWF). With peptides containing only one of these motifs, co‐immobilized VWF was needed for thrombus formation. The (GPO)n but not the (GPP)n sequence induced GPVI‐dependent platelet aggregation and procoagulant activity. Peptides with intermediate affinity (GLSGER, GMOGER) or low‐affinity (GASGER, GAOGER) α2β1‐binding motifs formed procoagulant thrombi only if both (GPO)n and VWF were present. At a low‐shear rate, immobilized peptides with high‐ or low‐affinity α2β1‐binding motifs mediated formation of thrombi with procoagulant platelets only in combination with (GPO)n. Conclusions: Triple‐helical peptides with specific receptor‐binding motifs mimic the properties of native collagen I in thrombus formation by binding to both platelet collagen receptors. At a high‐shear rate, either GPIb or high‐affinity (but not low‐affinity) GXX’GER mediates GPVI‐dependent formation of procoagulant thrombi. By extension, high‐affinity binding for α2β1 can control the overall platelet‐adhesive activity of native collagens.  相似文献   

5.
Summary. Background: CD40 ligand (CD40L, CD154) in the circulatory system is mainly contained in platelets, and surface‐expressed CD40L on activated platelets is subsequently cleaved by proteolytic activity to generate soluble CD40L (sCD40L). However, the enzyme responsible for the shedding of CD40L in activated platelets has not been clearly identified yet. We have recently found that molecular interaction of matrix metalloproteinase‐2 (MMP‐2) with integrin αIIbβ3 is required for the enhancement of platelet activation. Objectives: To elucidate the biochemical mechanism of MMP‐2‐associated sCD40L release. Methods: Localization of MMP‐2 and CD40L in platelets was analyzed by flow cytometry and fluorescence microscopy. The release of sCD40L from activated platelets was measured by enzyme‐linked immunosorbent assay. MMP‐2 binding to αIIbβ3 was analyzed by immunoprecipitation and western blotting. Recombinant hemopexin‐like domain and MMP‐2‐specific inhibitor were used to characterize the nature of MMP‐2 binding and catalytic activity. Results: It was revealed that interaction of MMP‐2 with αIIbβ3 is required for effective production of sCD40L in activated human platelets. Platelet activation and release of sCD40L were significantly affected by inhibition of platelet‐derived MMP‐2 activity or by inhibition of binding between the enzyme and the integrin. It was also found in platelet‐rich plasma that MMP‐2 activity is responsible for generating sCD40L. Conclusions: The results presented here strongly suggest that MMP‐2 interacts with αIIbβ3 to regulate the shedding of CD40L exposed on the surfaces of activated human platelets.  相似文献   

6.
Summary. Background and objectives: Septic shock is a major cause of morbidity and mortality in intensive care units, but there is still no effective therapy for the patients. We evaluated the effects of rhodostomin (Rn), an Arg‐Gly‐Asp‐containing snake venom disintegrin, on lipopolysaccharide (LPS)‐activated phagocytes in vitro and LPS‐induced endotoxemia in vivo. Methods and results: Rn inhibited adhesion, migration, cytokine production and mitogen‐activated protein kinase (MAPK) activation of macrophage induced by LPS. Flow cytometric analysis revealed that Rn specifically blocked anti‐αv mAb binding to RAW264.7. Besides inhibiting MAPK activation of THP‐1, Rn bound to LPS‐activated THP‐1 and specifically blocked anti‐αvβ3 mAb binding to THP‐1. Binding assays proved that integrin αvβ3 was the binding site for rhodostomin on phagocytes. Rn reversed the enhancement of fibronectin and vitronectin on LPS‐induced monocyte adhesion and cytokine release. Transfection of integrin αv siRNA also inhibited LPS‐induced activation of monocyte, and Rn exerted no further inhibitory effect. Furthermore, Rn significantly decreased the production of tumor necrosis factor‐α (TNF‐a), interleukin (IL)‐6, ‐1β and ‐10 and attenuated cardiovascular dysfunction, including blood pressure and heart pulse, and thrombocytopenia in LPS‐induced endotoxemic mice. Rn also protected against tissue inflammation as evidenced by histological examination. Conclusions: Rn may interact with αvβ3 integrin of monocytes/macrophages leading to interfere with the activation of phagocytes triggered by LPS. These results suggest that the protective function of Rn in LPS‐induced endotoxemia may be attributed to its anti‐inflammation activities in vivo.  相似文献   

7.
8.
Summary. Background: Integrin αIIbβ3 plays key roles in platelet aggregation and subsequent thrombus formation. Hydrogen peroxide‐inducible clone‐5 (Hic‐5), a member of the paxillin family, serves as a focal adhesion adaptor protein associated with αIIbβ3 at its cytoplasmic strand. Objectives: Hic‐5 function in αIIbβ3 activation and subsequent platelet aggregation remains unknown. To address this question, platelets from Hic‐5?/? mice were analyzed. Methods and Results: Hic‐5?/? mice displayed a significant hemostatic defect and resistance to thromboembolism, which were explained in part by weaker thrombin‐induced aggregation in Hic‐5?/? platelets. Mechanistically, Hic‐5?/? platelets showed limited activation of αIIbβ3 upon thrombin treatment. Morphological alteration in Hic‐5?/? platelets after thrombin stimulation on fibrinogen plates was also limited. As a direct consequence, the quantity of actin co‐immunoprecipitating with the activated αIIbβ3 was smaller in Hic‐5?/? platelets than in wild‐type platelets. Conclusion: We identified Hic‐5 as a novel and specific regulatory factor for thrombin‐induced αIIbβ3 activation and subsequent platelet aggregation in mice.  相似文献   

9.
αVβ3 Integrins are a widely recognized target for in vivo molecular imaging of pathological conditions such as inflammation, cancer and rheumatoid arthritis. We have evaluated the sensitivity of a new, near‐infrared fluorescence (NIRF), RGD cyclic probe (DA364) in noninvasive detection of αVβ3 integrin‐overexpressing tumors. DA364's binding affinity for αVβ3 integrin was first evaluated in vitro. Human αVβ3 integrin‐positive, U‐87 MG glioblastoma cells were then xenografted in nude mice, and DA364 was injected intravenously (i.v.) to evaluate its in vivo distribution, specificity and sensitivity in comparison with a commercially available probe. DA364 bound αVβ3 integrin on U‐87 MG cells with high affinity and specificity, both in vitro and in vivo. This binding specificity was corroborated by the strong inhibition of its tumor uptake induced by nonfluorescent, cyclic‐RGD peptides. Ex vivo analysis showed that DA364 accumulated at the tumor site, whereas very low levels were detected in liver and spleen. In conclusion, DA364 allows sensitive and specific detection of transplantable glioblastoma by NIRF imaging, and is thus a promising candidate for the elaboration of imaging and therapeutic probes for αVβ3 integrin‐overexpressing tumors. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

10.
11.
12.
Integrin αvβ3 receptors are expressed on activated endothelial cells during neovascularization to maintain tumor growth. Many radiolabeled probes utilize the tight and specific association between the arginine–glycine–aspartatic acid (RGD) peptide and integrin αvβ3, but one main obstacle for any clinical application of these probes is the laborious multistep radiosynthesis of 18F. In this study, the dimeric RGD peptide, E‐[c(RGDfK)]2, was conjugated with NODAGA and radiolabeled with 18F in a simple one‐pot process with a radiolabeling yield of 20%, the whole process lasting only 45 min. NODAGA‐E‐[c(RGDfK)]2 labeled with 18F at a specific activity of 1.8 MBq nmol?1 and a radiochemical purity of 100% could be achieved. The logP value of 18F‐labeled NODAGA‐E‐[c(RGDfK)]2 was ?4.26 ± 0.02. In biodistribution studies, 18F‐NODAGA‐E‐[c(RGDfK)]2 cleared rapidly from the blood with 0.03 ± 0.01 percentage injected dose per gram (%ID g?1) in the blood at 2 h p.i., mainly via the kidneys, and showed good in vivo stability. Tumor uptake of 18F‐NODAGA‐E‐[c(RGDfK)]2 (3.44 ± 0.20 %ID g?1, 2 h p.i.) was significantly lower than that of reference compounds 68Ga‐labeled NODAGA‐E‐[c(RGDfK)]2 (6.26 ± 0.76 %ID g?1; p <0.001) and 111In‐labeled NODAGA‐E‐[c(RGDfK)]2 (4.99 ± 0.64 %ID g?1; p < 0.01). Co‐injection of an excess of unlabeled NODAGA‐E‐[c(RGDfK)]2 along with 18F‐NODAGA‐E‐[c(RGDfK)]2 resulted in significantly reduced radioactivity concentrations in the tumor (0.85 ± 0.13 %ID g?1). The αvβ3 integrin‐expressing SK‐RC‐52 tumor could be successfully visualized by microPET with 18F‐labeled NODAGA‐E‐[c(RGDfK)]2. In conclusion, NODAGA‐E‐[c(RGDfK)]2 could be labeled rapidly with 18F using a direct aqueous, one‐pot method and it accumulated specifically in αvβ3 integrin‐expressing SK‐RC‐52 tumors, allowing for visualization by microPET. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

13.
Integrins are cell surface receptors for proteins of the extracellular matrix and plasma‐borne adhesive proteins. Their involvement in diverse pathologies prompted medicinal chemists to develop small‐molecule antagonists, and very often such molecules are peptidomimetics designed on the basis of the short native ligand‐integrin recognition motifs. This review deals with peptidomimetic integrin ligands composed of α‐ and β‐amino acids. The roles exerted by the β‐amino acid components are discussed in terms of biological activity, bioavailability, and selectivity. Special attention is paid to the synthetic accessibility and efficiency of conformationally constrained heterocyclic scaffolds incorporating α/β‐amino acid span.  相似文献   

14.
Summary. Background: The integrin αIIbβ3 is the major mediator of platelet aggregation and has, therefore, become an important target of antithrombotic therapy. Antagonists of αIIbβ3, for example abciximab, tirofiban and eptifibatide, are used in the treatment of acute coronary syndromes. However, in addition to effective blockade of the integrin, binding of can induce conformational changes in the integrin and can also induce integrin clustering. This class effect of RGD‐ligand mimetics might, therefore, underlie paradoxical platelet activation and thrombosis previously reported. Objectives: To examine the components of signaling pathways and functional responses in platelets that may underlie this phenomenon of paradoxical platelet activation. Methods: We assessed the effect of lotrafiban, and other αIIbβ3 antagonists including the clinically used drug tirofiban, on tyrosine phosphorylation of key signaling proteins in platelets by immunoblotting and also platelet functional outputs such as cytosolic calcium responses, phosphatidylserine exposure (pro‐coagulant activity) and dense granule release. Results: In all cases, no effect of αIIbβ3 antagonists were observed on their own, but these integrin antagonists did lead to a marked potentiation of glycoprotein VI (GPVI)‐associated FcR γ‐chain phosphorylation, activation of Src family kinases and Syk kinase. This correlated with increased dense granule secretion, cytosolic calcium response and exposure of phosphatidylserine on the platelet surface. P2Y12 antagonism abolished the potentiated phosphatidylserine exposure and dense granule secretion but not the cytosolic calcium response. Conclusions: These data provide a mechanism for enhancement of platelet activity by αIIbβ3 inhibitors, but also reveal a potentially important signaling pathway operating from the integrin to GPVI signaling.  相似文献   

15.
16.
We showed previously that 1‐ethyl‐3‐(3‐dimethylamino‐propyl)‐carbodiimide hydrochloride (EDC) cross‐linked recombinant human collagen III hydrogels promoted stable regeneration of the human cornea (continued nerve and stromal cell repopulation) for over 4 years. However, as EDC cross linking kinetics were difficult to control, we additionally tested a sterically bulky carbodiimide. Here, we compared the effects of two carbodiimide cross linkers—bulky, aromatic N‐cyclohexyl‐N0‐(2‐morpholinoethyl)‐carbodiimide (CMC), and nonbulky EDC—in a mouse corneal graft model. Murine corneas undergoing full‐thickness implantation with these gels became opaque due to dense retro‐corneal membranes (RCM). Corneal epithelial cytokeratin 12 and alpha smooth muscle actin indicative of functional tissue regeneration and wound contraction were observed in RCM surrounding both hydrogel types. However, quantitatively different levels of infiltrating CD11c+ dendritic cells (DC) were found, suggesting a hydrogel‐specific innate immune response. More DC infiltrated the stroma surrounding EDC‐N‐hydroxysuccinimide (NHS) hydrogels concurrently with higher fibrosis‐associated tenascin c expression. The opposite was true for CMC‐NHS gels that had previously been shown to be more tolerising to DC. In vitro studies showed that DC cultured with transforming growth factor β1 (TGF‐β1) induced fibroblasts to secrete more tenascin c than those cultured with lipopolysaccharide and this effect was blocked by TGF‐β1 neutralisation. Furthermore, tenascin c staining was found in 40‐ to 50μm long membrane nanotubes formed in fibroblast/DC cocultures. We suggest that TGF‐β1 alternatively activated (tolerising) DC regulate fibroblast‐mediated tenascin c secretion, possibly via local production of TGF‐β1 in early wound contraction, and that this is indirectly modulated by different hydrogel chemistries.  相似文献   

17.
Due to the widespread emergence of resistant bacterial strains, an urgent need for the development of new antibacterial agents with novel modes of action has emerged. The discovery of naturally occurring monocyclic β‐lactams in the late 1970s, mainly active against aerobic Gram‐negative bacteria, has introduced a new approach in the design and development of novel antibacterial β‐lactam agents. The main goal was the derivatization of the azetidin‐2‐one core in order to improve their antibacterial potency, broaden their spectrum of activity, and enhance their β‐lactamase stability. In that respect, our review covers the updates in the field of monocyclic β‐lactam antibiotics during the last three decades, taking into account an extensive collection of references. An overview of the relationships between the structural features of these monocyclic β‐lactams, classified according to their N‐substituent, and the associated antibacterial or β‐lactamase inhibitory activities is provided. The different paragraphs disclose a number of well‐established classes of compounds, such as monobactams, monosulfactams, monocarbams, monophosphams, nocardicins, as well as other known representative classes. Moreover, this review draws attention to some less common but, nevertheless, possibly important types of monocyclic β‐lactams and concludes by highlighting the recent developments on siderophore‐conjugated classes of monocyclic β‐lactams.  相似文献   

18.
Summary. Background: Collagen‐induced platelet activation is a key step in the development of arterial thrombosis via its interaction with the receptors glycoprotein (GP)VI and integrin α2β1. Adhesion and degranulation‐promoting adapter protein (ADAP) regulates αIIbβ3 in platelets and αLβ2 in T cells, and is phosphorylated in GPVI‐deficient platelets activated by collagen. Objectives: To determine whether ADAP plays a role in collagen‐induced platelet activation and in the regulation and function of α2β1. Methods: Using ADAP?/? mice and synthetic collagen peptides, we investigated the role of ADAP in platelet aggregation, adhesion, spreading, thromboxane synthesis, and tyrosine phosphorylation. Results and Conclusions: Platelet aggregation and phosphorylation of phospholipase Cγ2 induced by collagen were attenuated in ADAP?/? platelets. However, aggregation and signaling induced by collagen‐related peptide (CRP), a GPVI‐selective agonist, were largely unaffected. Platelet adhesion to CRP was also unaffected by ADAP deficiency. Adhesion to the α2β1‐selective ligand GFOGER and to a peptide (III‐04), which supports adhesion that is dependent on both GPVI and α2β1, was reduced in ADAP?/? platelets. An impedance‐based label‐free detection technique, which measures adhesion and spreading of platelets, indicated that, in the absence of ADAP, spreading on GFOGER was also reduced. This was confirmed with non‐fluorescent differential‐interference contrast microscopy, which revealed reduced filpodia formation in ADAP?/? platelets adherent to GFOGER. This indicates that ADAP plays a role in mediating platelet activation via the collagen‐binding integrin α2β1. In addition, we found that ADAP?/? mice, which are mildly thrombocytopenic, have enlarged spleens as compared with wild‐type animals. This may reflect increased removal of platelets from the circulation.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号