首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Parathyroid hormone (PTH) is secreted by the chief cells of the parathyroid gland in response to changes in ionized calcium (Ca(2+)) concentrations. In this study, we measured PTH secretion, and PTH mRNA and calcium-sensing receptor (CaR) mRNA expression by equine parathyroid chief cells in vitro. We also evaluated the effects of interleukin (IL)-1beta, IL-6, and tumor necrosis factor (TNF)-alpha on PTH secretion, and PTH and CaR mRNA expression. The relationship between PTH and Ca(2+) was inversely related. PTH secretion decreased from 100% (day 0) to 13% (day 30). PTH mRNA expression declined from 100% (day 0) to 25% (day 30). CaR mRNA decreased from 100% (day 0) to 16% (day 30). Chief cells exposed to high (2.0 mM) Ca(2+) concentrations had a lower PTH mRNA expression compared with low Ca(2+) concentrations. Ca(2+) concentrations had no effect on CaR mRNA expression. The inhibitory effect of high Ca(2+) concentrations on PTH secretion also declined over time. After day 10, there was no significant difference in PTH secretion between low and high Ca(2+ )concentrations. IL-1beta decreased both PTH secretion (75%) and PTH mRNA expression (73%), and resulted in a significant overexpression of CaR mRNA (up to 142%). The effects of IL-1beta were blocked by an IL-1 receptor antagonist. IL-1beta decreased the Ca(2+) set-point from 1.4 mM to 1.2 mM. IL-6 decreased PTH secretion (74%), but had no effect on PTH and CaR mRNA expression. TNF-alpha had no effect on PTH secretion, and PTH and CaR mRNA expression. In summary, the decreased responsiveness of parathyroid cells to Ca(2+) from 0 to 30 days can be explained, in part, by the reduced CaR expression. IL-1beta and IL-6 but not TNF-alpha affected parathyroid function in vitro and may be important in influencing PTH secretion in the septic horse.  相似文献   

2.
3.
The lectin Concanavalin-A (Con-A) binds to cell surface carbohydrate-containing moieties and modulates the function of a variety of glycoprotein receptors. Since extracellular calcium (Ca2+) may regulate parathyroid function by a receptor-like process, we examined the effects of Con-A on various aspects of Ca(2+)-regulated parathyroid function. We recently showed that Con-A significantly reduces the inhibitory effects of high Ca2+ on dopamine as well as isoproterenol- and forskolin-stimulated cAMP accumulation. In our present studies Con-A similarly reduced the inhibitory effect of 2.0 mM Ca2+ on PTH release from 60 +/- 6% to 40 +/- 6% and increased the set-point for Ca(2+)-regulated PTH release from 1.25 to 1.8 mM. This effect was dose dependent. Con-A also inhibited the Ca(2+)-stimulated accumulation of inositol phosphates by 50-60% in association with a marked reduction in the high Mg(2+)-evoked spike in cytosolic Ca2+ as well as a significant decrease in the sustained rise in cytosolic Ca2+ at 2-3 mM extracellular Ca2+. These data provide further evidence for a key role for cell surface carbohydrate-containing moieties in the mechanism through which parathyroid cells "sense" Ca2+ and, in turn, regulate PTH release, phosphoinositide turnover, and the release of intracellular Ca2+ stores. It is possible that the putative Ca2+ receptor is a glycoprotein or is closely associated with glycoproteins or other moieties containing alpha-methyl-D-glucoside or alpha-methyl-D-mannoside residues.  相似文献   

4.
Rogers KV  Conklin RL  Lowe SH  Petty BA 《Endocrine》1995,3(11):769-774
Extracellular ionized calcium (Ca(2+)) is the primary physiological regulator of parathyroid hormone (PTH) secretion and the G protein-coupled receptor (CaR) that mediates this response has been cloned from bovine and human parathyroid glands. The Ca(2+) set-point for the regulation of PTH secretion is right-shifted in primary hyperparathyroidism (1°HPT), but whether there is a similar shift in 2°HPT is unclear. Additionally, the molecular defects associated with such changes in the set-point remain uncharacterized. These experiments were designed to determine (1) if changes in set-point occur in rats with 2°HPT induced by chronic renal insufficiency (CRI) or dietary Ca deficiency, and (2) whether any changes in set-point are mirrored by changes in steady-state mRNA levels for the parathyroid CaR. CaR mRNA levels were quantified in pairs of glands from individual rats using a solution hybridization assay. Blood urea nitrogen and PTH levels were ~ 4-fold higher in rats with CRI induced by 5/6 nephrectomy 7 weeks earlier. Rats with CRI were also significantly hypocalcemic and hyperphosphatemic. The setpoint was unchanged in CRI rats and CaR mRNA levels were also unaffected. Normal rats fed a 0.02% Ca diet for 6 weeks were markedly hypocalcemic, and had 10- and 15-fold increases in plasma PTH and 1,25-dihydroxyvitamin D(3) levels, respectively. Technical problems prevented assessment of the set-point in these animals, but parathyroid gland CaR mRNA levels were identical in both dietary groups. Thus, neither alterations in mRNA levels for the CaR nor changes in the set-point play demonstrable roles in the pathogenesis of 2°HPT in these models.  相似文献   

5.
D M Shoback  J M McGhee 《Endocrinology》1988,122(6):2833-2839
The stimulation of polyphosphoinositide (PPI) turnover is associated with cellular activation and hormone secretion in numerous systems. GTP-binding proteins appear to couple receptors to phospholipase-C-mediated PPI breakdown. We assessed the effects of fluoride, an activator of GTP-binding proteins, on inositol phosphate accumulation, intracellular free Ca2+ [(Ca2+)i], cAMP content, and PTH release in dispersed bovine parathyroid cells. Sodium fluoride (5-30 mM) produced marked dose-dependent increases in inositol phosphates. With anion exchange HPLC, we confirmed that 30 mM fluoride stimulated a rapid increase in 1,4,5-inositol trisphosphate, a potent Ca2+-mobilizing compound. Using the Ca2+-sensitive probe fura-2, we determined that 30 mM fluoride increased [Ca2+]i from 339 +/- 9 to 650 +/- 39 nM (n = 8) within 30-60 sec at 1 mM extracellular Ca2+. After the depletion of extracellular Ca2+ by the addition of 1 mM EGTA, 30 mM fluoride increased [Ca2+]i 45 +/- 9% (n = 4), indicating that fluoride can mobilize intracellular Ca2+ stores. Fluoride (1-30 mM) also inhibited PTH release in dose-dependent fashion. Fluoride (30 mM) produced 72.8 +/- 4.2% suppression of maximal low Ca2+-stimulated PTH release comparable to the 83.7 +/- 3.7% inhibition by 2.0 mM extracellular Ca2+. Since changes in both [Ca2+]i and cAMP regulate PTH release, we measured the effect of fluoride on intracellular cAMP. Fluoride did not detectably change basal cAMP content, but it reduced forskolin-stimulated increases in cAMP. We conclude that fluoride may activate at least two GTP-dependent processes in parathyroid cells, resulting in PPI breakdown and cAMP accumulation. While both may contribute to the fluoride-induced suppression of PTH release, our findings suggest that the stimulation of PPI turnover leads to inhibition of PTH secretion.  相似文献   

6.
The involvement of arachidonic acid (AA) and its metabolites in the control of PTH secretion by porcine parathyroid cells was investigated. Increasing the extracellular calcium concentration from 0.5 to 2 mM increased free [3H]AA release and decreased PTH secretion from labeled parathyroid cells as a function of time (1-30 min). Free [3H]AA in the medium was significantly increased (+153 +/- 6%) after 5 min, while PTH secretion was significantly decreased (-75 +/- 7%) only after 15 min, suggesting a link between the two. [3H]AA release was associated with a decrease in [3H]AA incorporated into phosphatidylinositol, phosphatidic acid, and phosphatidylcholine, suggesting that these phospholipids are the major source of AA. Exogenous phospholipase-A2 (PL-A2; 1-500 mU/ml) and AA (5-40 microM) inhibited PTH secretion in a dose-dependent manner. PTH secretion inhibited by 2 mM Ca2+ was restored by two PL-A2 inhibitors, indomethacin (30 microM) and mepacrine (50 microM). The cyclooxygenase pathway inhibitor ibuprofen (20 microM) did not restore PTH secretion of affect high Ca(2+)-, AA-, or PL-A2-inhibited PTH secretion. Two inhibitors of the lipoxygenase pathway (LO), phenidone (1 microM) and baicalein (0.1 microM), a relatively selective 12-LO inhibitor, blunted high Ca(2+)-induced inhibition of PTH secretion (+101 +/- 10% and +105 +/- 6%, respectively), but nordihydroguaiaretic acid, which inhibits the 5-LO pathway, did not restore PTH secretion inhibited by high Ca2+, AA, or PL-A2. These results suggested that AA and agents that cause its liberation inhibit PTH secretion. AA may act via the 12-LO, but not via the 5-LO or cyclooxygenase, pathway. Thus, 12-LO products may be second messengers in parathyroid cells.  相似文献   

7.
Circulating calcium (Ca(2+)) is a primary regulator of bone homeostasis through its action on PTH secretion. Extracellular Ca(2+) modulates PTH secretion through a cell surface G protein-coupled receptor, the calcium-sensing receptor (CaR). The expression of the CaR suggests a critical role in cellular regulation by calcium in various organs, including parathyroid gland, bone, and kidney. Despite an obvious pharmacological utility for CaR antagonists in the treatment of disease, only a limited number of such classes of compounds exist. We have identified a novel class of small molecules with specific activity at the CaR. This class of compounds is represented by compound 1. It possesses potent antagonist activity at the human CaR with IC(50) values of 64 nm and 230 nm in inhibiting intracellular Ca(2+) flux and inositol phosphate generation in vitro, respectively. When administered to male rats in vivo, compound 1 robustly increased serum PTH levels. The stimulation of PTH secretion was rapid and transient when administered either iv or orally. The pharmacokinetic profile of compound 1 after oral administration revealed that maximal plasma levels of compound were reached within 1 h and the half-life of the compound to be approximately 2 h in rats. These data describe a representative compound of a novel chemical class than previously described allosteric modulators that offer a new avenue for the development of improved treatments of osteoporosis.  相似文献   

8.
Using H-500 rat Leydig cancer cells as a model of humoral hypercalcemia of malignancy (HHM), we previously showed that high Ca(2+) induces PTH-related peptide (PTHrP) secretion via the calcium-sensing receptor (CaR) and mitogen- and stress-activated kinases, e.g. MAPK kinase 1 (MEK1), p38 MAPK, and stress-activated protein kinase 1/c-Jun N-terminal kinase. Because cellular proliferation is a hallmark of malignancy, we studied the role of the CaR in regulating the proliferation of H-500 cells. Elevated Ca(2+) has a mitogenic effect on these cells that is mediated by the CaR, because the calcimimetic NPS R-467 also induced proliferation. Inhibition of phosphatidylinositol 3-kinase (PI3K) and p38 MAPK but not MEK1 abolished the mitogenic effect. Activation of PI3K by elevated Ca(2+) was documented by phosphorylation of its downstream kinase, protein kinase B. Because protein kinase B activation promotes cell survival, we speculated that elevated Ca(2+) might protect H-500 cells against apoptosis. Using terminal uridine deoxynucleotidyl nick end labeling staining, we demonstrated that high Ca(2+) (7.5 mM) and NPS R-467 indeed protect cells against apoptosis induced by serum withdrawal compared with low Ca(2+) (0.5 mM). Because the CaR induces PTHrP secretion, it is possible that the mitogenic and antiapoptotic effects of elevated Ca(2+) could be indirect and mediated via PTHrP. However, blocking the type 1 PTH receptor with PTH (7-34) peptide did not alter either high Ca(2+)-induced proliferation or protection against apoptosis. Taken together, our data show that activation of PI3K and p38 MAPK but not of MEK1/ERK by the CaR promotes proliferation of H-500 cells as well as affords protection against apoptosis. These effects are likely direct without the involvement of PTHrP in an autocrine mode.  相似文献   

9.
The ubiquitin-proteasome pathway is regarded as playing a crucial role in protein breakdown in inflammation and sepsis as well as in the regulation of inflammatory cell responses. In this pathway, ubiquitylation of target proteins is believed to act as a recognition signal for degradation by the 26S proteasome. As yet neither the ubiquitylation rate of cytosolic proteins, as a result of the total ubiquitin-protein ligase (tUbPL) activity, nor the specific ubiquitylation of calmodulin (ubiquitin-calmodulin ligase, uCaM-synthetase) has been determined in human mononuclear cells. Therefore, we studied cytosolic protein ubiquitylation in normal and in endotoxin (LPS)-stimulated human peripheral blood mononuclear cells (PBMNCs).PBMNCs from healthy volunteers were incubated with 0 or 100 ng/ml LPS for 18 h. Cytosolic extracts were obtained by hypotonic lysis and ultracentrifugation. TUbPL was measured as [(125)I]-[CT]-ubiquitin incorporation into the sum of cytosolic proteins. UCaM-synthetase activity was quantified with the fluphenazine (FP)-Sepharose affinity adsorption test. Endotoxin stimulation appears to inhibit tUbPL 3.7 +/- 2.7-fold to 48 +/- 43 fkat/mg (n = 6). UCaM-synthetase in cultures (n = 5) without endotoxin was determined to be 91 +/- 32 fkat/mg +Ca(2+) and 29 +/- 23 fkat/mg -Ca(2+). With endotoxin uCaM-synthetase was 138 +/- 73 fkat/mg +Ca(2+) and 14 +/- 22 fkat/mg -Ca(2+). Ca(2+)-specificity (ratio +/- Ca(2+)) of uCaM-synthetase increases from 3.1 without LPS to 10 after LPS stimulation, which was caused by a 2-fold decrease in minus Ca(2+) activity and a 1.5-fold increase in plus Ca(2+) activity. The data indicate specific regulatory effects of endotoxin on the cytosolic ubiquitylation systems in human PBMNCs.  相似文献   

10.
The influence of secondary hyperparathyroidism (2 HPT) on the set point of the parathyroid hormone (PTH)-Ca(2+) curve is controversial. In vitro experiments have shown an increase in the set point. However, clinical studies with hemodialysis patients have provided a variety of results (increases, decreases and no changes in the set point have been reported). The present study was designed to investigate the influence of the progression of 2 HPT on the set point of the PTH-Ca(2+) curve. The PTH-Ca(2+) curve and the expression of parathyroid calcium receptor (CaR mRNA) and vitamin D receptor (VDR mRNA) have been studied in normal rabbits (group I, n=9) and in nephrectomized rabbits (group II, n=18) at two stages after inducing 2 HPT: 2-3 weeks (group IIA) and 5-6 weeks (group IIB). In group I, the set point of the PTH-Ca(2+) curve was 1.63+/-0.03 mM. A progressive hypocalcemia was detected during the evolution of 2 HPT (groups IIA and IIB). Rabbits from group IIA had a significant (P<0.001) decrease in the set point to values of 1.45+/-0.02 mM. However, the set point increased significantly in group IIB (P<0.001) to 1.56+/-0.03 mM. CaR mRNA was similarly decreased in groups IIA (39+/-12%) and IIB (48+/-7%). No changes were detected in VDR mRNA. In conclusion, a reduction in the set point of the PTH-Ca(2+) curve in response to decreased extracellular Ca(2+) was detected in the early phases of 2 HPT. However, with the progression of 2 HPT the set point tended to increase even though extracellular Ca(2+) was markedly decreased. The increase in the set point in the course of 2 HPT seems to be a complex process that cannot be fully explained by changes in parathyroid CaR mRNA or VDR mRNA.  相似文献   

11.
A reduced expression of calcium-sensing receptor (CaR) messenger ribonucleic acid and protein accompanied by abnormalities in parathyroid cell proliferation and PTH secretion are present in primary hyperparathyroidism. We studied the expression of CaR protein by immunohistochemistry in 36 sporadic parathyroid adenomas and investigated the relationship between CaR expression and several preoperative clinical parameters, including the set-point of Ca(2+)-regulated PTH secretion (measured in vivo). The adenomas were classified in 4 categories according to the intensity of immunohistochemical staining: 5 (14%) showed a CaR staining intensity similar to that of normal parathyroid ( ), 10 (27%) showed moderate staining (++), 16 (45%) showed weak staining (+), and 5 (14%) were negative (-). The intensity of CaR staining was not related to preoperative serum Ca(2+), PTH levels or adenoma volume. Twenty-nine patients underwent preoperatively the calcium infusion test to evaluate the PTH-Ca(2+) set-point. Individual values of PTH-Ca(2+) set-point ranged from 1.38-1.93 mmol/L and were significantly correlated with basal Ca(2+) levels (r = 0.96; P: = 0. 0001) and adenoma volume (r = 0.5; P: = 0.01). The mean PTH-Ca(2+) set-point values were significantly different in the 4 groups of patients classified according to immunohistochemical staining intensity of their adenoma (P: = 0.025; F = 3.78); the mean PTH-Ca(2+) set-point was significantly higher in the groups classified as negative than in those classified as weak or moderate. No correlation was observed between the PTH-Ca(2+) set-point and basal PTH levels or between the percent maximal PTH inhibition and adenoma volume and basal PTH or Ca(2+) levels. In summary, our data suggest that there is a relationship between apparent CaR protein expression and PTH-Ca(2+) set-point abnormality, suggesting that a reduced receptor content might have an important role in the pathogenesis of primary hyperparathyroidism.  相似文献   

12.
In this study, the human calcium-sensing receptor (CaR) stably expressed in HEK293 cells was investigated with regard to the phosphorylation-induced desensitization of its signaling pathway. The receptor is known to activate the phospholipase C/inositol-1,4,5-trisphosphate (IP 3 ) signaling cascade, thus stimulating protein kinase C (PKC). In contrast, the adenylylcyclase/cAMP signaling pathway that activates protein kinase A (PKA) is believed to be coupled to the receptor via an inhibitory G-protein. We elucidated the roles of PKC and PKA by measuring Ca 2+o -stimulated accumulation of total inositol phosphates and by individually and simultaneously inhibiting the two kinases pharmacologically in HEK293 cells, which stably expressed the human CaR. Pharmacological inhibition of PKC resulted in a 5-fold enhancement of IP 3 signaling, whereas blocking PKA had almost no effect. IP 3 signaling activity increased even more (10-fold) however, when the two kinases were inhibited simultaneously. Apart from validating the role of PKC as a potent down-regulator of signaling of the human CaR in this cell system, this study suggests that both kinases synergize in inhibiting Ca 2+o -stimulated IP 3 signaling in CaR-transfected HEK293 cells.  相似文献   

13.
OBJECTIVE: To investigate the influence of acute and chronic hypercalcemia on the parathyroid hormone (PTH) response to hypocalcemia. DESIGN: The PTH response to hypocalcemia has been evaluated in three groups of rabbits: Group I, normal rabbits, Group II, normal rabbits subjected to an acute hypercalcemic clamp (induced by CaCl(2) infusion) and Group III, rabbits with chronic hypercalcemia (due to surgical reduction of renal mass). RESULTS: In Group I (baseline Ca(2+)=1.69+/-0.02 mM), hypocalcemia resulted in stimulation of PTH secretion which reached a maximum (PTHmax) of 91.7+/-6.4 pg/ml. In rabbits from Group II, which also had normal baseline Ca(2+) (1.70+/-0.02 mM), plasma Ca(2+) was maintained at an elevated level for 2 h, at around 2.05 mM. The PTH response to hypocalcemia in Group II was attenuated and the PTHmax in these rabbits was 45.6+/-7.4 pg/ml. In rabbits from Group III, baseline Ca(2+) was elevated (2.06+/-0.06 mM) for 1 month. The PTH response to hypocalcemia in Group III was esentially the same as in Group I and PTHmax reached levels of 94.8+/-9.9 pg/ml. CONCLUSIONS: A difference in PTH response to hypocalcemia has been found in rabbits after exposure to either acute or chronic hypercalcemia. After acute hypercalcemia, an attenuated PTH response to hypocalcemia has been identified. Chronic hypercalcemia, however, did not influence the PTH response to hypocalcemia.  相似文献   

14.
The parathyroid cell is unusual among exocytotic systems in that low extracellular Ca2+ concentrations stimulate, while high Ca2+ concentrations inhibit, parathyroid hormone (PTH) release, suggesting that this cell might have unique secretory mechanisms. In the present studies, we used the Ca2+-sensitive fluorescent dye QUIN -2 to examine the relationship between cytosolic Ca2+ concentration and PTH release in dispersed bovine parathyroid cells. The secretagogue dopamine, which enhances PTH release 2- to 3-fold in association with 20- to 30-fold increases in cellular cAMP, had no effect on the cytosolic Ca2+ level (261 +/- 28 vs. 236 +/- 22 nM for control cells at 1 mM extracellular Ca2+; P greater than 0.05). Dibutyryl-cAMP, which produces a comparable stimulation of PTH release, likewise did not modify the level of cytosolic Ca2+. Removal of extracellular Ca2+ produced a further decrease of the cytosolic Ca2+ to 82 +/- 10 nM. However, PTH secretion persisted at a near maximal rate despite this decrease of extracellular and cytosolic Ca2+ and was 95 +/- 2.5% of the rate of hormonal release at 0.5 mM extracellular Ca2+. In contrast, addition of the divalent cation ionophore ionomycin to parathyroid cells at 1.0 mM extracellular Ca2+ inhibited PTH secretion in association with an increase in cytosolic Ca2+ from 230 +/- 13 nM to 570 +/- 50 nM. Moreover, the magnitude of the ionomycin-induced reduction in PTH secretion (64 +/- 4% relative to the secretory rate at 0.5 mM Ca2+) was equivalent to the inhibition of PTH release caused by 1.5 mM extracellular Ca2+ (64 +/- 6%), which increased the cytosolic Ca2+ to similar levels (450 +/- 48 nM). Thus, the parathyroid cell differs from secretory cells thought to operate by stimulus-secretion coupling in the following ways: changes in PTH release can occur without detectable alterations in the cytosolic Ca2+ concentration, maximal rates of PTH secretion occur at cytosolic Ca2+ concentrations that fail to support exocytosis in other cell types, and increases in the cytosolic Ca2+ concentration due to ionomycin inhibit rather than stimulate PTH release. Therefore, the control of PTH secretion by Ca2+ and other secretagogues may involve previously undefined mechanisms whereby hormonal release is relatively independent of the cytosolic Ca2+ at low levels of this parameter and is inversely related to cytosolic Ca2+ at higher levels of intracellular Ca2+.  相似文献   

15.
Antibodies to cell surface receptors can cause endocrine dysfunction by mimicking or blocking the actions of their respective hormones. We sought patients with autoantibodies to the extracellular calcium (Ca(2+)(o))-sensing receptor (CaR), which sets the normal level of blood calcium, that mimic the genetic disorder, familial hypocalciuric hypercalcemia, caused by heterozygous inactivating mutations of the CaR. Four individuals from two kindreds were identified with PTH-dependent hypercalcemia, who had other autoimmune manifestations: one with sprue and antigliadin and antiendomyseal antibodies and three with antithyroid antibodies. Three of the patients also had relative or absolute hypocalciuria. The patients' sera contained antibodies that reacted with the cell surface of bovine parathyroid cells in a manner similar to an authentic polyclonal anti-CaR antibody, stained bands on Western analysis of sizes similar to those labeled by the anti-CaR antiserum, and reacted with several synthetic peptides derived from sequences within the CaR's extracellular amino terminus. The patients' sera also stimulated PTH release from dispersed human parathyroid cells compared with the effect of sera from normocalcemic control subjects. This stimulation could be blocked by preabsorbing serum with membranes from CaR-transfected, but not nontransfected, human embryonic kidney (HEK293) cells. Finally, in two of the patients, antibodies affinity-purified using a synthetic peptide from within the CaR's extracellular domain inhibited high Ca(2+)(o)-stimulated, CaR-mediated accumulation of inositol phosphates and activation of mitogen-activated protein kinase in CaR-transfected HEK293 cells. DNA sequencing revealed no mutations within the index patients' CaR genes in the two families. Therefore, a biochemical phenotype of PTH-dependent hypercalcemia resembling that caused by heterozygous inactivating mutations of the CaR in familial hypocalciuric hypercalcemia can be observed in patients with antibodies to the CaR's extracellular domain that stimulate PTH release, probably by inhibiting activation of the CaR by Ca(2+)(o). Autoimmune hypocalciuric hypercalcemic is an acquired disorder of Ca(2+)(o) sensing that should be differentiated from that caused by inactivating mutations of the CaR.  相似文献   

16.
High extracellular Ca2+ stimulates the accumulation of inositol trisphosphate and diacylglycerol in parathyroid cells and suppresses PTH release. Since diacylglycerol is an endogenous activator of protein kinase-C, these observations would suggest that activation of protein kinase-C is associated with inhibition of PTH release. However, phorbol esters, which stimulate protein kinase-C activity, have been reported to enhance PTH release. To clarify the role of protein kinase-C in the regulation of PTH secretion, we studied the responses of parathyroid cells to phorbol myristate acetate (PMA), bryostatin-1, and 1,2-dioctanoylglycerol (diC8). PMA and bryostatin-1 translocated protein kinase-C activity from the soluble to particulate fractions of cell homogenates. Phosphotransferase activity in the particulate fractions increased from 21 +/- 4% to 93 +/- 6% of the total activity after 10 min of exposure to PMA (10(-6) M) and from 21 +/- 2% to 69 +/- 2% after 5 min of exposure to bryostatin-1 (10(-7) M). These three structurally different agonists of protein kinase-C also altered the typical secretory response to Ca2+ in parathyroid cells. At 2.0 mM extracellular Ca2+, PMA (10(-6) M) bryostatin-1 (10(-7) M), and 1,2-dioctanoylglycerol (3 x 10(-4) M) blunted the suppressive effects of high Ca2+ on secretion, thus stimulating PTH release 252 +/- 45%, 122 +/- 20%, and 485 +/- 95% over control levels, respectively. However, at low extracellular Ca2+, these agents inhibited maximal PTH release. Since changes in the intracellular free Ca2+ concentration ([Ca2+]i) may be important in the control of PTH release, we investigated whether protein kinase-C agonists changed the relationship between extracellular Ca2+ and PTH release by affecting [Ca2+]i. In PMA-treated cells, the intracellular Ca2+ response to raising extracellular Ca2+ from 0.5 to 1.5 and 2.0 mM was reduced to 50 +/- 1% and 63 +/- 3% of that in control cells, respectively (P less than 0.005; n = 7-11). Specifically, PMA preincubation reduced the initial intracellular Ca2+ transient with raising extracellular Ca2+ from 0.5 to 2.0 mM and with adding 4.0 mM Sr2+. The sustained phase response to high Ca2+, but not to Sr2+, was also attenuated after incubation with PMA. We conclude that protein kinase-C agonists suppress PTH release at low extracellular Ca2+ and enhance PTH release at high extracellular Ca2+. The effects on secretion at high extracellular Ca2+ may be related to the ability of protein kinase-C agonists to change the sensitivity of [Ca2+]i to high extracellular Ca2+ in these cells.  相似文献   

17.
OBJECTIVE: Both in vivo and in vitro evidence indicates that primary hyperparathyroidism is characterized by a reduced sensitivity to extracellular calcium ([Ca2+]o). The existence of alterations in the expression and signalling of calcium sensing receptor (CaSR) in parathyroid neoplasia is still uncertain. In order to clarify the role of CaSR in the reduced [Ca2+]o sensing of parathyroid neoplasia we investigated PTH secretion and intracellular effectors triggered by CaSR activation as well as the levels of expression of CaSR and CaSR coupled G proteins (Gq/G11) in parathyroid adenomas and primary hyperplasia. MATERIALS AND METHODS: The study included 27 parathyroid adenomas, 4 cases of primary hyperplasia and pools of normal parathyroid biopsies. Tissues were either snap frozen in liquid nitrogen or placed in sterile medium for cell dispersion. The effects of increasing [Ca2+]o on in vitro PTH release, intracellular cAMP levels and intracellular calcium ([Ca2+]i) in cells loaded with the Ca2 + indicator fura-2 were evaluated. CaSR mRNA levels were assessed by semiquantitative RT-PCR analysis, using GAPDH as internal standard, while CaSR protein was detected by western blot analysis using a specific polyclonal antibody. Purified antisera selective for G11alpha and Gqalpha were used to detect this class of proteins. RESULTS: In basal conditions (at 0.5 mM [Ca2+]o) in vitro PTH released ranged from 29.4 to 1186 pg/well/60 minutes. Increasing [Ca2+]o from 0.5 to 1, 2.5 and 5 mM caused a variable effect. One group (n = 7) showed a significant but partial reduction of PTH release (of 17 to 60% of basal levels) that occurred at physiological [Ca2+]o concentrations (1 mM) while the remainder showed either inhibition detectable only at 2.5 mM (n = 15) or total (n = 9) resistance to [Ca2+]o. In the responsive cells, [Ca2+]o (1-5 mM) caused a pertussis toxin-insensitive [Ca2+]i rise (ranging from 10% to 260%), due to Ca2+ release from intracellular stores, and an inhibition of forskolin-stimulated cAMP levels. By RT-PCR almost all tumours tested showed a substantial reduction in CaSR mRNA levels when compared to the normal tissue (CaSR/GAPDH ratio: 3.1 +/- 0.5 vs. 15.5 +/- 3.1; P < 0.001), which was confirmed by immunoblotting analysis demonstrating low levels of CaSR protein in tumour tissues. Moreover, low amounts of G11alpha and Gqalpha, the G proteins involved in CaSR coupling, were observed in the majority of pathological tissues. CONCLUSIONS: The study shows that the activation of the calcium sensing receptors expressed in adenomatous parathyroid glands modulates intracellular effectors in a similar way to those operating in the normal parathyroid. Although a reduction of calcium sensing receptor expression is probably involved in the poor inhibition of PTH release induced by [Ca2+]o, this is not the only factor altering [Ca2+]o sensing in parathyroid adenomas, since tumours characterized by different in vitro sensitivity to [Ca2+]o showed similar CaSR levels. The low content of G proteins of the Gq subfamily might represent an additional alteration leading to a defective [Ca2+]o sensing.  相似文献   

18.
The availability of Ca2+ in the extracellular fluid plays an important role in regulating cartilage and bone formation. We hypothesized that chondrocytes detect changes in the extracellular [Ca2+] ([Ca2+]o) and modify their function. The effects of changing [Ca2+]o on the expression of matrix proteins were quantified by staining of cartilage nodules with alcian green and assessing RNA levels of cartilage-specific genes in chondrogenic RCJ3.1C5.18 (C5.18) cells. Alcian green staining in these cells decreased with increasing [Ca2+]o in a dose-dependent and reversible manner (ID50, approximately 2 mM Ca2+). RNA levels for aggrecan and type II collagen decreased with increasing [Ca2+]o (ID50, approximately 2.0 and 4.1 mM Ca2+, respectively). RNA levels for type X collagen and alkaline phosphatase were also reduced by high [Ca2+]o with ID50 values of approximately 2.9 and 1.6 mM Ca2+, respectively. These responses were rapid, in that increasing [Ca2+]o from 1.0 to more than 6 mM suppressed aggrecan RNA levels by about 50%, and lowering [Ca2+]o from 2.9 to 1.0 mM increased aggrecan RNA levels by about 300% within 4 h. As Ca2+ receptors (CaRs) mediate extracellular Ca2+ sensing in parathyroid and kidney, we assessed the expression of CaRs in these cells. C5.18 cells stained positively for CaR protein with an anti-CaR antiserum and for CaR RNA by in situ hybridization. An approximately 150-kDa protein was detected by immunoblotting with anti-CaR antiserum. CaR antisense oligonucleotides suppressed the expression of CaR protein and enhanced RNA levels of aggrecan in C5.18 cells. These data support the idea that CaRs are expressed in this cell system and may be involved in regulating chondrogenic gene expression.  相似文献   

19.
Abnormalities in calcium (Ca(2+)) homeostasis are reported in horses with several pathological conditions; however, there is little information on Ca(2+) regulation in horses. The objectives of the present study were to determine the Ca(2+) set-point in healthy horses, to determine whether the Ca(2+)/parathyroid hormone (PTH) response curves were characterized by hysteresis, and to determine if the order of experimentally induced hypocalcemia or hypercalcemia had an effect on PTH secretion. The Ca(2+) set-point and hysteresis were determined in 12 healthy horses by infusing Na(2)EDTA and calcium gluconate. The Ca(2+) set-point was 1.37 +/- 0.05 mmol/L, which is higher than values reported for humans and dogs (1.0-1.2 mmol/L). Hysteresis was present during hypocalcemia and hypercalcemia. Horses in which hypocalcemia was followed by hypercalcemia secreted more PTH (7440 +/- 740 pmol min/L) than horses in which hypercalcemia was followed by hypocalcemia (5990 +/- 570 pmol min/L). This study has demonstrated that the Ca(2+) set-point in the horse is higher than in other domestic animals and man. We have shown that the Ca(2+)/PTH relationship in horses is sigmoidal and displays hysteresis during both hypocalcemia and hypercalcemia, and that extracellular Ca(2+) concentrations may affect the response of the parathyroid gland to hypocalcemia.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号