首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
CD58 is the ligand for the CD2 molecule on human T cells and has been shown to provide a co-stimulatory signal for T cell activation. However, its physiological role is still unclear. We studied the effects of co-stimulation by CD58 on the production of T(h)1-type (IL-2- and IFN-gamma) or T(h)2 type (IL-4, IL-5 and IL-10) cytokines in an in vitro culture system of purified human T cells with CD58-transfected P815 cells and with anti-CD3 as the primary stimulus. Co-stimulation of T cells by CD58 potently induced IL-10 and IFN-gamma production (at the protein and at the mRNA level), and transforming growth factor-ss production (at the mRNA level), comparable to what can be found in CD80 co-stimulated T cell cultures. In contrast, we found low to absent IL-2, IL-4, IL-5, IL-13 and tumor necrosis factor-alpha production after CD58 co-stimulation, and this was not due to suppressive effects of endogenously produced IL-10. CD80 co-stimulation strongly induced all these cytokines. Intracellular staining for cytokine expression revealed the existence of a T cell subpopulation induced by CD58 co-stimulation to produce both IFN-gamma and IL-10. We furthermore found that the selective cytokine profile induced by CD58 co-stimulation is further accentuated by rIL-12 and by rIFN-alpha. Using cyclosporin A as an inhibitor of the calcineurin enzyme, we could show that production of all cytokines in this system is calcium dependent. CD58 co-stimulation thus induces a cytokine pattern corresponding to that described for T regulatory (T(r)) 1 cells and to the pattern reported to be induced by the newly identified B7 family member, B7-H1.  相似文献   

2.
Most of the immunosuppressive effects of interleukin-10 (IL-10) are related to functional inhibition of antigen-presenting cells (APC). Herein, we investigate the influence of recombinant (r)IL-10 on human dendritic cells (DC) purified from peripheral blood of healthy volunteers. First, we found that rIL-10 inhibited in a dose-dependent manner the proliferative responses as well as the production of IL-2 and interferon-γ (IFN-γ) in mixed lymphocyte reaction (MLR) between purified T cells and DC. This rIL-10 effect could be attributed to a direct effect on DC, as DC preincubated with rIL-10 were found to be deficient in the induction of alloreactive T cells even when anti-IL-10 neutralizing mAb was added at the time of MLR. Flow cytometric analysis indicated that rIL-10 did not modify the expression of ICAM-1 (CD54) and B7-1 (CD80), but decreased HLA-DR and B7-2 (CD86) expression at the DC surface. We conclude that the inhibitory effect of rIL-10 on primary alloreactive T cell responses involves down-regulation of class II MHC and B7-2 expression at the DC surface.  相似文献   

3.
Despite its calcineurin-inhibiting properties, cyclosporin A (CsA) can not inhibit IL-2 production when T cells are co-stimulated by CD80/CD86 on the antigen-presenting cells. We studied the in vitro effect of CsA on IFN-γ production. Anti-CD3 monoclonal antibody (mAb) was used as the primary stimulus for activation of purified human T cells. A stimulating anti-CD28 mAb, or CD80 or CD86 on stably transfected P815 cells, provided the co-stimulatory signal. IL-2 production was hardly affected by CsA under these stimulating conditions, while IFN-γ (at the protein and mRNA level) was markedly stimulated by CsA. The use of anti-CD3 or phorbol 12-myristate 13-acetate with ionomycin as the primary stimulus, together with co-stimulation through either CD28 or CD2 using transfectants with the appropriate ligands, allowed us to demonstrate that the resistance of IFN-γ production to inhibition by CsA required both CD3 and CD28 triggering. Inhibition of IL-10 production, and to a lesser degree of IL-4 production, by CD4+ cells was responsible for the enhancement of IFN-γ production in the presence of CsA. In conclusion, IFN-γ production by CD28-co-stimulated CD4+ T cells is resistant to inhibition by CsA and can even be facilitated by CsA as a result of removing a negative regulatory signal which is mainly IL-10 mediated. This finding might have implications for immunosuppressive strategies based upon the use of CsA.  相似文献   

4.
Interferon (IFN)-gamma is a cytokine which plays a critical role in the host defence against human tuberculosis infection. There is evidence that interleukin (IL)-12 can exert a potent effect in stimulating the production of IFN-gamma, and it is well known that a costimulatory signal provided by CD40 may enhance IL-12 production by monocytes/macrophages. However, it is unclear whether CD40-CD40L stimulation is able to regulate the production of mycobacterial-induced IFN-gamma through an IL-12-dependent pathway. In this study, we investigated the capacity of the Bacille Calmette-Guérin (BCG) strain of Mycobacterium bovis to induce the production of interferon-gamma through IL-12 and/or CD40 costimulation from human cells. Our data demonstrate that anti-IL-12 antibodies markedly reduced the levels of IFN-gamma produced by the BCG-stimulated human cells, while exogenous recombinant (r)IL-12 up-regulated the production of IFN-gamma. In addition, the stimulatory effect of IL-12 on BCG-induced IFN-gamma secretion was specific, as it was significantly abolished in the presence of anti-IL-12 antibodies. We also observed that the presence of an anti-CD40L monoclonal antibody significantly inhibited the production of IL-12 and IFN-gamma by human cells activated with BCG. In contrast, an isotype control antibody showed no effect on cytokine production. Furthermore, the presence of a trimeric soluble CD40L agonist (CD40T) in cultures increased the production of IL-12 and IFN-gamma. Importantly, the stimulatory capacity of CD40T on BCG-induced IFN-gamma secretion was blocked by a monoclonal antibody against IL-12, indicating that the effect of CD40T on T cells was mediated through IL-12. Together, these studies are the first to demonstrate that BCG-induced IFN-gamma production by human cells appears to be mediated by IL-12 in a CD40-dependent manner and suggest that CD40-CD40L activation may be a critical mediator in regulating the immune response to stimulation with BCG.  相似文献   

5.
Interleukin-10     
Interleukin-10 (IL-10) is a potent anti-inflammatory and immunosuppressive cytokine secreted by several cell types. Most anti-inflammatory effects of IL-10 are caused by its ability to deactivate macrophages and monocytes, whereas its immunosuppressive properties are due to functional inhibition of both antigen-presenting cells and T cells. On the other hand, IL-10 also exerts immunostimulatory effects, especially on B cells, CD8+ cytotoxic T cells and natural killer cells. In vivo administration of recombinant IL-10 (rIL-10) efficiently prevents experimental septic shock induced by endotoxin, staphylococcal superantigen or cecal ligation and puncture, as well as experimental autoimmune diseases mediated by T helper type 1 (T(H)1) cells and other inflammatory disorders. rIL-10 exerts paradoxical effects in cancer models, where it promotes tumour rejection, probably due to its stimulatory properties on cytotoxic cells. On the other hand, rIL-10 increases the severity of experimental infections caused by fungi or bacteria, and enhances systemic autoimmune features in mice with spontaneous lupus syndrome. Although the therapeutic potential of rIL-10 in human diseases seems promising, the multiple facets of rIL-10 in experimental immunopathology indicate that the success of clinical trials with rIL-10 will depend both on the appropriate selection of the patient populations to be treated and on the early detection of possible adverse effects.  相似文献   

6.
The quantitative analysis of cyclosporin A (CsA) effects might be helpful for optimizing immunosuppressive treatment after allogeneic organ transplantation in individual patients, as rejection can occur despite the existence of CsA blood levels within therapeutic ranges. Previous investigations found that costimulation of the CD28 pathway generally mediates CsA-resistant proliferation of T cell receptor (TCR)-activated T lymphocytes. However, here we describe considerable interindividual variation regarding the immunosuppressive effects of CsA (1000 microg/L) on anti-CD3/CD28 T cell costimulation in a human whole blood assay. In the in vitro study, we found a significant reduction of T cell proliferation, activation marker expression (CD25, CD69) on the T cell surface, and interleukin-2 (IL-2) protein expression in whole blood samples of all healthy subjects (n = 11). However, the investigation of cytokine mRNA profiles revealed variable results of in vitro CsA sensitivity. Whole blood samples of 3 of 11 healthy individuals demonstrated a marked suppression of IL-2 mRNA expression (>50%) and a partial inhibition of IL-4, interferon-gamma (IFN-gamma), and tumor necrosis factor-alpha (TNF-alpha) mRNA expression on addition of CsA. In contrast, the remaining 8 healthy individuals had cytokine mRNA expression levels that were unaffected or even increased when CsA was administered in vitro. In patients undergoing CsA monotherapy (ex vivo study, n = 9), we found a significant suppression of IL-2 mRNA levels in 4 of 9 patients ex vivo. Thus, we cannot confirm a universal CsA resistance of T cells on anti-CD3/CD28 costimulation. Instead, our results suggest an individual degree of CsA sensitivity that might be more consistent with clinical experience. Prospective studies are necessary to determine if individual degrees of CsA sensitivity correlate with clinical events and are associated with a low or high risk of transplant rejection.  相似文献   

7.
Recombinant IL-2 (rIL-2) and IL-4 (rIL-4) promote proliferation of human CD4+ T cells activated in the presence of PHA, TPA or OKT-3 monoclonal antibody (MAb), whereas the production of interferon-gamma (IFN) can be induced only by rIL-2. rIL-4 induced strong proliferative responses both in accessory cell independent assays and in the presence of autologous monocytes, but has failed to induce IFN production in any of these systems. The ability of rIL-2 to induce IFN production was strongly enhanced by the addition of monocytes, although a similar proliferative response was recorded in the absence or presence of monocytes. The MAb anti-Tac inhibited the proliferative response and the production of IFN by CD4+ T cells activated in the presence of rIL-2, whereas the proliferative response to rIL-4 was unaffected. CD4+45R+ and CD4+45R- T helper cell subsets proliferated in response to both IL-2 and IL-4. A kinetic analysis demonstrated that the production of IFN throughout a five day activation period was restricted to stimulation of CD4+45R- T cells with rIL-2. This report clearly demonstrates a dissociation of IFN production and T cell proliferation in man. While proliferation can be induced by both IL-2 and IL-4 in both the helper T cell subsets studied, IFN production was induced only in the CD4+45R- subsets and only in response to IL-2.  相似文献   

8.
Resting T cells can be activated by selected pairs of anti-CD2 MoAb. Activation is dependent on the presence of accessory cells, which can be replaced by either anti-CD28, or by the combination of IL-1β and IL-6. The present study was undertaken to investigate accessory signalling by B7-1, the natural ligandof CD28, in this pathway of T cell activation. 3T6 mouse fibrobiasts were transfected with human B7-1 and used as accessory cells in cultures of purified resting human T cells. In the presence of a stimulating pair of anti-CD2 MoAb, T cell proliferation, production of cytokines (IL-2, IL-4, IL-10, GM-CSF, IFN-α and TNF-α), and generation of cytotoxic T lymphocytes were all supported by B7-l(+) 3T6 cells but not by control 3T6 cells. Blocking studies with anti-IL-2 + anti-IL-2R MoAb revealed both IL-2-dependent and IL-2-independent CTL generation after B7-1 -mediated costimulation. Moreover, a partial or complete resistance to inhibition with CsA was observed for IL-2 production and CTL generation respectively in the presence of the costimulatory signal derived from B7-1 - CD28 interaction. Anti-CD2 MoAb with B7-1 costimulation could directly induce proliferation, IL-2 production and generation of CTL activity in highly purified CD8+ T cells without the heip of CD4+ T cells. We conclude that CD28 ligation with the natural ligand B7-1 provides a strong accessory signal for CD4 and CD8 cell activation through CD2.  相似文献   

9.
Spontaneous cytokine production and its effect on induced production   总被引:2,自引:0,他引:2  
Cytokines regulate cellular immune activity and are produced by a variety of cells, especially lymphocytes, monocytes, and macrophages. Multiparameter flow cytometry is often used to examine cell-specific cytokine production after in vitro phorbol 12-myristate 13-acetate and ionomycin induction, with brefeldin A or other agents added to inhibit protein secretion. Spontaneous ex vivo production reportedly rarely occurs. We examined the spontaneous production of interleukin 2 (IL-2), IL-4, IL-6, IL-8, IL-10, tumor necrosis factor alpha (TNF-alpha), and gamma interferon (IFN-gamma) by peripheral-blood B lymphocytes, T cells, CD8(-) T cells, CD8(+) T cells, CD3(-) CD16/56(+) lymphocytes (natural killer [NK] cells), CD3(+) CD16/56(+) lymphocytes (natural T [NT] cells), and/or monocytes of 316 acutely ill hospitalized persons and 62 healthy adults in Malawi, Africa. We also evaluated the relationship between spontaneous and induced cytokine production. In patients, spontaneous TNF-alpha production occurred most frequently, followed in descending order by IFN-gamma, IL-8, IL-4, IL-10, IL-6, and IL-2. Various cells of 60 patients spontaneously produced TNF-alpha; for 12 of these patients, TNF-alpha was the only cytokine produced spontaneously. Spontaneous cytokine production was most frequent in the immunoregulatory cells, NK and NT. For IL-2, IL-4, IL-6, IL-8, and IL-10, spontaneous cytokine production was associated with greater induced production. For TNF-alpha and IFN-gamma, the relationships varied by cell type. For healthy adults, IL-6 was the cytokine most often produced spontaneously. Spontaneous cytokine production was not unusual in these acutely ill and healthy persons living in an area where human immunodeficiency virus, mycobacterial, malaria, and assorted parasitic infections are endemic. In such populations, spontaneous, as well as induced, cell-specific cytokine production should be measured and evaluated in relation to various disease states.  相似文献   

10.
We analysed regulatory mechanisms involved in the production of Th2 cytokines by freshly isolated human T cells. We used an in vitro culture system in which the primary signal was provided by a cross-linking anti-CD3 MoAb presented on the Fc receptors of P815 cells. Both CD80 and CD86, expressed on transfected P815 cells, were able to provide efficient costimulation for the production of IL-4, IL-5 and IL-13. IL-2 was also highly important for induction of all three Th2 cytokines. However, differences between IL-4 on the one hand and IL-5 and IL-13 on the other hand were observed when sensitivity to cyclosporin A (CsA) was studied. CsA (an inhibitor of calcineurin phosphatase activity) strongly inhibited IL-4 production, but it did either not affect or even increased IL-5 and IL-13 production. In accordance with this, CD80 and phorbol myristate acetate (PMA) (without anti-CD3 or calcium ionophore) were sufficient to induce production of IL-5 and IL-13, but not of IL-4. The subgrouping of Th2 cytokines was further confirmed at another level on the basis of differences in cell sources: IL-4 was predominantly produced by CD4+ T cells, while IL-5 and IL-13 were produced by both CD4+ and CD8+ T cells. Thus, differences in cell sources and in the requirement of the calcium/calcineurin-signalling pathway allowed us to identify two subgroups (IL-4 and IL-5/IL-13) among human Th2-type T cell cytokines.  相似文献   

11.
Immunosuppression is an important treatment modality in transplantation and human diseases that are associated with aberrant T cell activation. There are considerable differences regarding the cellular processes targeted by the immunosuppressive drugs that are in clinical use. Drugs like azathioprine (Aza) mainly act by halting proliferation of fast dividing cells, whereas others like cyclosporine A (CsA) specifically target signaling pathways in T cells. Since the outcome of T cell responses critically depends on the quality and strength of costimulatory signals, this study has addressed the interplay between costimulation and the immunosuppressive agents CsA and Aza during the in vitro activation of human T cells. We used an experimental system that allows analyzing T cells activated in the presence of selected costimulatory ligands to study T cells stimulated via CD28, CD2, LFA-1, ICOS or 4-1BB. The mean inhibitory concentrations (IC(50)) for Aza and CsA were determined for the proliferation of T cells receiving different costimulatory signals as well as for T cells activated in the absence of costimulation. CD28 signals but not costimulation via CD2, 4-1BB, ICOS or LFA-1 greatly increased the IC(50) for CsA. By contrast, the inhibitory effects of Aza were not influenced by T cell costimulatory signals. Our results might have implications for combining standard immunosuppressive drugs with CTLA-4Ig fusion proteins, which act by blocking CD28 costimulation.  相似文献   

12.
The novel immunosuppressant Sanglifehrin A (SFA) is an immunophilin-binding metabolite with a yet unidentified mechanism of action. Several reports demonstrated the effects of SFA on proliferation and cytokine production of purified T cells with in part different results. However, less is known about the impact of SFA on the regulation of innate immune responses. We used a whole blood assay to investigate the impact of SFA on monocyte responses and T-lymphocyte activity/proliferation upon lipopolysaccharide (LPS) stimulation and anti-CD3/anti-CD28 costimulation, respectively. SFA was found to inhibit interleukin (IL)-2 protein expression of T lymphocytes. Whereas IL-2 mRNA expression was significantly reduced after 4 h of costimulation, the mRNA expression of IL-4 and IL-6 but not tumour necrosis factor (TNF)-alpha was inhibited by SFA both after 4 and 24 h of costimulation. The production of IL-2 and IL-6 protein in T lymphocytes was even strongly affected by SFA than the mRNA expression of the respective cytokine. Unlike other immunophilin-binding immunosuppressants, SFA also inhibited LPS-induced IL-6 and TNF-alpha mRNA and protein expression. At the single cell level, SFA was demonstrated to block the intracellular production of IL-6 in CD14+ monocytes but not the expression of other proinflammatory cytokines such as IL-8 and TNF-alpha. On the basis of these data, we propose that SFA may have a significant effect on the initiation and direction of immune responses. Considering the pleiotropic role of bioactive IL-6 production at the interface of innate and acquired immunity in a variety of disease conditions, it was found that these novel aspects of the unique immunosuppressive action could strongly impact on future clinical application of SFA.  相似文献   

13.
The inducible costimulator (ICOS), a newly identified member of the CD28 receptor family that is induced after T-cell activation, and its ligand (ICOSL), being expressed on activated monocytes and dendritic cells play a key role in T-cell-mediated immune responses. As ICOS costimulation also seems to regulate T helper 2 effector cells, the aim of this study was to analyse the function of this molecule in allergic immune responses and their specific therapy, mainly venom immunotherapy (VIT). CD4+ T cells from grass pollen-, or bee or wasp venom-allergic donors were stimulated in the presence of autologous mature dendritic cells, which were pulsed with different allergen doses. In this system, costimulation of ICOS strongly enhanced the production of the T helper 2 cytokines interleukin (IL)-4, IL-5 and IL-10 and, to a lesser extent, secretion of the T helper 1 cytokine, interferon-gamma. Expression of ICOS on CD4+ T cells was induced, in a dose-dependent manner, after a few days of stimulation with allergen-pulsed dendritic cells, reaching a peak on day 6. The upregulation of ICOS after stimulation with venom allergens was significantly reduced after VIT. Addition of exogenous IL-10 (which is induced during VIT) to the co-cultures before VIT also led to an inhibition of ICOS expression, while blocking of IL-10 in co-cultures after VIT partially restored the expression of ICOS. These data indicate that the inhibition of T cells after immunotherapy also involves decreased induction of the costimulatory molecule ICOS, which, in turn, seems to be dependent on the presence of IL-10, also associated with the inhibited status of T cells after VIT. This makes the ICOS-ICOSL pathway a potential target for therapeutic intervention in T helper 2-mediated diseases, such as allergic diseases.  相似文献   

14.
15.
This study examined whether therapy with a non-mitogenic, non-activating anti-CD3 mAb (G4.18) alone, or in combination with the T(h)2 cytokines, could inhibit induction or facilitate recovery from experimental allergic encephalomyelitis (EAE) in Lewis rats. G4.18, but not rIL-4, rIL-5 or anti-IL-4 mAb, reduced the severity and accelerated recovery from active EAE. A combination of rIL-4 with G4.18 was more effective than G4.18 alone. The infiltrate of CD4(+) and CD8(+) T cells, B cells, dendritic cells, and macrophages in the brain stem was less with combined G4.18 and IL-4 than G4.18 therapy or no treatment. Residual cells had preferential sparing of T(r)1 cytokines IL-5 and transforming growth factor-beta with loss of T(h)1 markers IL-2, IFN-gamma and IL-12Rbeta2, and the T(h)2 cytokine IL-4 as well as macrophage cytokines IL-10 and tumor necrosis factor-alpha. Lymph nodes draining the site of immunization had less mRNA for T(h)1 cytokines, but T(h)2 and T(r)1 cytokine expression was spared. Treatment with G4.18, rIL-4 or rIL-5 from the time of immunization had no effect on the course of active EAE. MRC OX-81, a mAb that blocks IL-4, delayed onset by 2 days, but had no effect on severity of active EAE. G4.18 also inhibited the ability of activated T cells from rats with active EAE to transfer passive EAE. This study demonstrated that T cell-mediated inflammation was rapidly reversed by a non-activating anti-CD3 mAb that blocked effector T(h)1 cells, and spared cells expressing T(h)2 and T(r)1 cytokines.  相似文献   

16.
Interleukin-16 (IL-16), a natural ligand for the CD4 receptor, has been found to modulate T-lymphocyte function and to inhibit human immunodeficiency virus type 1 (HIV-1) replication. Antigen-presenting cells (APC), including macrophages and dendritic cells, are known to express functional surface CD4 molecules, to be susceptible to HIV-1 infection and to play a critical role in different immune processes. Therefore, we evaluated the ability of recombinant IL-16 (rIL-16) to regulate receptor expression and cytokine release in monocyte-derived macrophages (MDM) and monocyte-derived dendritic cells (MDDC). Recombinant IL-16 was found to up-regulate CD25 and CD80 but to down-regulate CD4 and CD86 surface expression in MDM cultures. However, no change could be observed on the level of CD4, CD80 and CD86 expression in IL-16-stimulated MDDC, although a significant up-regulation of CD25 and CD83 was consistently detected. Furthermore, the level of gene expression of the chemokine receptors CCR5 and CXCR4 was significantly reduced in rIL-16-treated MDM and costimulation with IL-2 did not modify the activity of the recombinant cytokine. The effects on chemokine receptor gene expression were less evident in MDDC and only a transient down-regulation of weak intensity could be detected following stimulation with rIL-16. Analysis of supernatants from rIL-16-stimulatedcultures revealed a different profile of released cytokines/chemokines among the two cell populations studied. These findings establish an important role for IL-16 in modulating the activity of APC and may have relevance regarding the protection of reservoir cells against HIV-1 infection.  相似文献   

17.
A number of observations indicate that exposure to IL-4 is essential for the priming of Th2-type effector T cells and that exposure to IL-12 is essential for the priming of Th1-type effector T cells. However, the initial source of IL-4 in the early immune response has not been clearly identified. Dendritic cells (DC) are the most potent antigen- presenting cells (APC) in priming naive T cells. In this report, we show that DC exposed to IL-10 may play an important role in the priming of IL-4-secreting cells in the early immune response. DC isolated from splenic adherent cell cultures treated with rIL-10 (IL-10-DC) primed naive ovalbumin (OVA)-TCR transgenic T cells to secrete IL-4 upon re- stimulation with OVA and splenic APC. By contrast, DC isolated from rIL- 12, rIL-4 or control treated cultures induced almost exclusively Th1- type effector T cells. IL-4 secretion was detected in the primary cultures of IL-10-DC plus naive CD4+ T cells and the priming of IL-4- secreting T cells by IL-10-DC was dependent on endogenous IL-4 production in the priming culture since anti-IL-4 neutralizing antibody completely abrogated the priming of IL-4-secreting cells. Anti-B7-2 but not anti-B7-1 inhibited the ability of IL-10-DC to prime T cells to secrete IL-4. Furthermore, the ability of IL-10 DC to prime for IL-4- secreting T cells was closely related to the down-regulation of CD40 ligand-mediated IL-12 p70 production by DC in the primary cultures and was markedly reduced by adding exogenous IL-12 to the priming cultures. Thus, our findings indicate that early immunologic events that drive Th2 differentiation involve the effects of IL-10 on DC.   相似文献   

18.
IL-10 subfamily members: IL-19, IL-20, IL-22, IL-24 and IL-26   总被引:7,自引:0,他引:7  
It has been reported that the CD4+ T cell is a very important source of interleukin 10 (IL-10), while CD8+ cells produce low amounts. IL-10 exerts several immune stimulating, as well as inhibitory effects. There are at least five novel human IL-10 family-related molecules: IL-19, IL-20, IL-22, IL-24, and IL-26. Activated T cells produce IL-19, IL-22 and IL-26, while IL-24 is produced by activated monocytes and T-cells. IL-20 induces cheratin proliferation and Stat-3 signal transduction pathway, while IL-22 induces acute-phase production by hepatocytes and neonatal lethality with skin abnormalities reminiscent of psoriasic lesions in humans. In addition, IL-22 mediates inflammation and binds class II cytokine receptor heterodimers IL-22 RA1/CRF2-4. This cytokine is also involved in immuno-regulatory responses. IL-26 (AK155) is a novel cytokine generated by memory cells and is involved in the transformed phenotype of human T cells after infection by herpes virus. All these new IL-10 subfamily member cytokines are strongly involved in immune regulation and inflammatory responses.  相似文献   

19.
Drugs targeting memory lymphocytes may allow for a better control of rejection in transplantation, particularly in immunized patients. In this article the rationale of targeting interleukin 7 receptor a (IL-7Rα), a molecule expressed by both memory and naive T cells, is reviewed in the context of transplantation. Whereas naive T cells are partly responsible for acute rejection and are targeted by current immunosuppressive drugs that block costimulatory signals (cyclosporine A, anti-CD3 antibody, anti-CD52 antibody, anti-thymocyte globulin, etc.), memory T cells are resistant to costimulation blockade. As such, memory cells are an obstacle to experimental tolerance induction and may be involved in chronic rejection. There is thus much scientific interest in developing molecules able to target these cells. The role of the IL-7/IL-7Rα pathway in transplantation rejection has been suggested by the effect of an anti-IL-7 monoclonal antibody which, when associated with costimulation blockade, prolonged heart allograft survival in mice. Here the hypothesis that targeting IL-7Rα would preserve effector T cells that are less dependent on IL-7 for survival while sparing regulatory CD4+ CD25high IL-7Rαlow T cells is discussed. An anti-IL-7Rα antibody could also help achieve allograft tolerance by reducing alloreactive cells.  相似文献   

20.
There is growing interest in the in vitro generation of dendritic cells (DC) from peripheral blood monocytes, but the effect of the method chosen to isolate CD14+ monocytes for subsequent DC generation is poorly documented. The method used to isolate monocytes may have an impact on the subsequent function of DC by affecting their ability to express costimulatory molecules (CD80/86), maturation marker (CD83) and/or to produce important immunomodulatory cytokines. In this study, we show that the positive selection of monocytes by anti-CD14-coated microbeads inhibits the lipopolysaccharide (LPS)-induced production of interleukin (IL)-12, IL-10 and tumour necrosis factor-alpha (TNF-alpha) from human DC. However, when DC were grown from monocytes isolated by plastic adherence, LPS induced the production of much higher levels of these cytokines. DC derived from adherence-isolated monocytes induced the development of potent cytotoxic T lymphocytes of the Tc1 subset specific for influenza matrix protein, as confirmed by interferon-gamma (IFN-gamma) enzyme-linked immunosorbent spot-forming cell assay (ELISPOT), cytotoxicity assay, major histocompatibility complex (MHC)-peptide tetrameric complexes and T helper 1/T helper 2 (Th1/Th2) cytokine production assays.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号