首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
HF3 and bothropasin are P-III hemorrhagic snake venom metalloproteinases (SVMPs) of Bothrops jararaca. The DC protein is composed of the disintegrin-like/cysteine-rich domains derived from the autolysis of P-III SVMPs. Here we describe simplified procedures for the isolation of HF3, bothropasin, the DC protein, and BJ-PI, a novel P-I SVMP. The isolated proteins were identified by mass spectrometry. BJ-PI is a potent caseinolytic enzyme devoid of hemorrhagic activity. HF3, bothropasin and BJ-PI show distinct fibrinogenolytic activities.  相似文献   

2.
Snake Venom Metalloproteinases (SVMPs) are synthesized as zymogens and undergo proteolytic processing resulting in a variety of multifunctional proteins. Jararhagin is a P-III SVMP, isolated from the venom of Bothrops jararaca, comprising metalloproteinase, disintegrin-like and cysteine-rich domains. The catalytic domain is responsible for the hemorrhagic activity. The disintegrin-like/cysteine-rich domains block alpha2beta1 integrin binding to collagen and apparently enhance the hemorrhagic activity of SVMPs. The relevance of disintegrin-like domain is described in this paper using a series of mouse anti-jararhagin monoclonal antibodies (MAJar 1-7). MAJar 3 was the only antibody able to completely neutralize jararhagin hemorrhagic activity. Neutralization of catalytic activity was partial by incubation with MAJar 1. MAJars 1 and 3 efficiently neutralized jararhagin binding to collagen with IC50 of 330 and 8.4 nM, respectively. MAJars 1 and 3 recognized the C-terminal portion of the disintegrin domain, which is apparently in conformational proximity with the catalytic domain according to additivity tests. These data suggest that disintegrin-like domain epitopes are in close contact with catalytic site or functionally modulate the expression of hemorrhagic activity in SVMPs.  相似文献   

3.
The antigenic relationship between snake venom metalloproteinases (SVMPs) was analysed using rabbit antisera raised against the native forms of two SVMPs purified from Echis ocellatus venom. Using enzyme-linked immunosorbent assay (ELISA), western blotting and two-dimensional SDS-PAGE, our findings show that antibodies raised against EoVMP1, a non-haemorrhagic class P-I 24kDa SVMP, and EoVMP2, a haemorrhagic class P-III 56kDa SVMP, demonstrate cross-reactivities which relate to the domain hierarchy observed in class P-I to P-III/IV SVMPs. A third 65kDa P-III metalloproteinase (designated EoVMP3) was also isolated from E. ocellatus venom using hydrophobic interaction, size exclusion and anion exchange chromatography. In comparative immunoassays, EoVMP2 and EoVMP3 bound strongly to the commercial monovalent ovine Fab fragment antivenom EchiTAbtrade mark (raised against the same venom), but EoVMP1 showed no cross-reactivity. This could indicate that antivenoms may lack antibodies to potentially important venom components.  相似文献   

4.
Snake venom metalloproteinases (SVMPs) are present in large quantities in venoms of viper snakes and also in some elapids. Jararhagin is a representative of a P-III multidomain hemorrhagic SVMP present in Bothrops jararaca venom. It is comprised of a catalytic, a disintegrin-like and a cysteine-rich domain. Seven anti-jararhagin monoclonal antibodies (MAJar 1-7) were produced, of which six reacted with the disintegrin domain. MAJar 3 recognized an epitope present at the C-terminal part of the disintegrin-like domain, and neutralized jararhagin-induced hemorrhage. In this study, we evaluated the reactivity of these monoclonal antibodies with venoms from 27 species of snakes belonging to different families. MAJar 3 recognized most of the hemorrhagic venoms. By ELISA, MAJar 3 reacted strongly with venoms from Viperidae family and weakly with Colubridae and Elapidae venoms. This recognition pattern was due to bands between 50 and 80 kDa, corresponding to P-III SVMPs. This antibody preferentially neutralized the hemorrhage induced by venoms of Bothrops snakes. This fact suggests that the epitope recognized by MAJar 3 is present in other metalloproteinases throughout snake phylogeny. However, slight structural differences in the epitope may result in insufficient affinity for neutralization of biological activities.  相似文献   

5.
A hemorrhagic proteinase, jerdohagin, was purified from Trimeresurus jerdonii venom by gel filtration and ion-exchange chromatographies. It was a single chain polypeptide with an apparent molecular weight of 96 kDa as estimated by SDS-PAGE under the non-reducing and reducing conditions. Internal peptide sequencing indicated that it consisted of metalloproteinase, disintegrin-like and cysteine-rich domains and belonged to the class III snake venom metalloproteinases (class P-III SVMPs). Like other typical metalloproteinases, hemorrhagic activities of jerdohagin were completely inhibited by EDTA, but not by PMSF. Jerdohagin preferentially degraded alpha-chain of human fibrinogen. Interestingly, jerdohagin did not activate human prothrombin, whereas it cleaved human prothrombin and fragment F1 of activated human prothrombin.  相似文献   

6.
Mature P-III snake metalloproteinases are soluble venom components which belong to the Reprolysin sub family and are structurally related to the mammalian membrane-bound A Disintegrin And Metalloproteinase (ADAMs). Here we present the molecular cloning of bothropasin, a metalloproteinase with hemorrhagic and myonecrotic activities isolated from the venom of Bothrops jararaca. The full-length cDNA encoding the bothropasin precursor was cloned by immunoscreening and its authenticity was confirmed by the amino acid sequence of internal fragments obtained from an autolyzed sample of native bothropasin. The predicted bothropasin precursor is comprised of the elements of a P-III venom metalloproteinase: signal sequence, pro-, metalloproteinase, disintegrin-like and cysteine-rich domains. In the autolysis process of native bothropasin, the disintegrin-like and cysteine-rich domains remained intact while the metalloproteinase domain was cleaved at different sites. The attempts made to obtain the recombinant precursor form of bothropasin using bacterial, yeast and mammalian cell expression systems failed to produce it in an amount sufficient to analyze the activation of the zymogen. Nevertheless, the study of the expression of the individual domains of bothropasin using a bacterial system resulted in the production of recombinant pro-and disintegrin-like+cysteine-rich domains but not the metalloproteinase domain. These results along with the autolysis pattern of the native protein suggest a role for the metalloproteinase domain in the structural stability of bothropasin.  相似文献   

7.
A 50 kDa fibrinogenolytic protease, ohagin, from the venom of Ophiophagus hannah was isolated by a combination of gel filtration, ion-exchange and heparin affinity chromatography. Ohagin specifically degraded the alpha-chain of human fibrinogen and the proteolytic activity was completely abolished by EDTA, but not by PMSF, suggesting it is a metalloproteinase. It dose-dependently inhibited platelet aggregation induced by ADP, TMVA and stejnulxin. The full sequence of ohagin was deduced by cDNA cloning and confirmed by protein sequencing and peptide mass fingerprinting. The full-length cDNA sequence of ohagin encodes an open reading frame of 611 amino acids that includes signal peptide, proprotein and mature protein comprising metalloproteinase, disintegrin-like and cysteine-rich domains, suggesting it belongs to P-III class metalloproteinase. In addition, P-III class metalloproteinases from the venom glands of Naja atra, Bungarus multicinctus and Bungarus fasciatus were also cloned in this study. Sequence analysis and phylogenetic analysis indicated that metalloproteinases from elapid snake venoms form a new subgroup of P-III SVMPs.  相似文献   

8.
A combination of anti-bothropic and anti-crotalic sera has been reported to be more effective in neutralizing the effects of Bothrops jararacussu venom than anti-bothropic serum alone. The role of proteins from B. jararacussu venom in the horse immune response was evaluated via the analysis of cross-reactivity with homologous and heterologous sera. Many of the proteins in B. jararacussu venom were identified via 2D gel electrophoresis. Western blots revealed that anti-jararacussu showed higher reactivity to l-aminoxidase (LAOs) and snake venom metalloproteinase, (SVMPs) and weaker reactivity towards Snake venom serine proteases (SVSPs), PLA2, C-type lectin and cysteine-rich proteins. Anti-jararaca preferentially recognized LAOs, SVMPs and SVSPs. Both of these sera failed to recognize low-molecular weight proteins. Anti-crotalic serum clearly recognized LAOs, C-type lectin, SVSP, cysteine-rich proteins, SVMP and Asp49-PLA2. The cross-reactivity with anti-PLA2 revealed the immunoreactivity of these antibodies to proteins with molecular masses in a range that is poorly recognized by other studied anti-sera. Our results suggest that the contribution of anti-crotalic serum to the neutralization of B. jararacussu by may be due to its cross-reactivity with proteins such as C-type lectins, SVSPs, Asp49-PLA2. These results also reinforce the importance of neutralizing the highly toxic proteins inclusive those with low immunogenicity in commercial antivenom production to obtain a highly protective serum against snake venoms.  相似文献   

9.
A S Kamiguti  R D Theakston  N Sherman  J W Fox 《Toxicon》2000,38(11):1613-1620
The Boomslang, Dispholidus typus, is a mid- to rear-fanged arboreal colubrid widely distributed throughout much of the African continent. Envenoming by this species is rare although deaths have been recorded. Typical symptoms associated with envenoming include diffuse intravascular coagulation (DIC) caused by fibrinogen consumption and consequent incoagulable blood together with haemorrhage into tissues such as muscle and brain; together, these procoagulant and haemorrhagic effects of the venom result in a very poor prognosis in patients who receive a large dose of venom and who are not treated with antivenom. Renal failure may also result from acute tubular necrosis resulting from pigment nephropathy. Little is known about the toxic components present in the venom; however, proteolytic activity has been reported although the proteinases involved have not been identified. In this study we provide LC/MS/MS (liquid chromatography/mass spectrometry/mass spectrometry) data supporting the presence of class P-III/P-IV snake venom metalloproteinases (SVMPs) in Boomslang venom. Using a polyclonal antibody raised against the P-III haemorrhagic toxin (Jararhagin) obtained from the venom of the Brazilian pit viper, Bothrops jararaca, we identified by western blot a 65 kDa protein from Boomslang venom which cross-reacted with the jararhagin antibody. A corresponding band from SDS-PAGE was subjected to tryptic digestion followed by LC/MS/MS sequence analysis of the digestion mixture. A variety of peptide sequences were identified in the digest, one of which was clearly homologous with a highly conserved region of the disintegrin-like domains of P-III/P-IV SVMPs. These data provide the first structural evidence for the presence of SVMPs in Boomslang venom; it is possible that SVMPs may also be present in the venoms of other colubrids, which cause similar symptoms in envenomed humans. In other snake venoms, most notably those of the Viperinae and Crotalinae subfamilies, many of the coagulopathic and haemorrhagic syndromes associated with systemic and local envenoming are attributed to SVMPs. The identification of a P-III/P-IV SVMP sequence in D. typus venom suggests that many of the pathological signs resulting from envenoming by this species may also be due to the presence of SVMPs in the venom. It is hoped that these results may accelerate research into colubrid venoms and may provide new insights into novel and more efficacious treatments for colubrid envenoming.  相似文献   

10.
Hemorrhagic toxins are widely distributed in viperid and crotalid snake venoms. Envenomation of Trimeresurus stejnegeri, a member of Crotalidae family, caused potent systemic and local hemorrhage. Up to now, there is no report on hemorrhage toxins from this venom. In this work, we cloned two cDNAs of P-III metalloproteinase precursors, designated as stejnihagin-A and stejnihagin-B, respectively, from T. stejnegeri venom gland. Both cDNAs encode an opening reading frame of 600 amino acid residues, containing a signal sequence, a proprotein domain, a metalloproteinase domain, a disintegrin-like domain and a cystetine-rich domain. Sequence analysis suggested that these two sequences shared highest similarity to the hemorrhagic toxin HR1b from T. flavoviridis. Aligning the deduced mature protein sequences of stejnihagin-A and stejnihagin-B with other snake venom metalloproteinases (SVMPs), we observed that stejnihagin-A and stejnihagin-B, together with HR1b shared the common cysteinyl residue at the position 100 in the metalloproteinase domain. In combination with the phylogenetic analysis, we presumed that stejnihagin-A, stejnihagin-B and HR1b might constitute a novel subclass of P-III SVMPs, named P-IIIc.  相似文献   

11.
Ammodytase, a high molecular mass metalloproteinase with fibrinogenolytic and fibrinolytic activities, was purified from long-nosed viper (Vipera ammodytes ammodytes) venom by gel filtration, affinity and ion-exchange chromatographies. The enzyme is a single-chain glycoprotein with apparent molecular mass of 70 kDa and isoelectric point of 6.6. Ammodytase shows very weak hemorrhagic activity, and only at doses higher than 20 μg. Consistent with this, it partially degrades some components of the extracellular matrix in vitro. It cleaves the Aα-chain of fibrinogen preferentially at peptide bonds Glu441-Leu442 and Glu539-Phe540. Its preference for bulky and hydrophobic amino acids at the P1′ position in substrates is demonstrated by its hydrolysis of only the Gln4-His5 and Tyr16-Leu17 bonds in the B-chain of insulin. Ammodytase is able to dissolve fibrin clots. It neither activates nor degrades plasminogen and prothrombin, and has no effect on collagen- or ADP-induced platelet aggregation in vitro. LC/MS and MS/MS analyses of its tryptic fragments demonstrated that ammodytase is a P-III class snake venom metalloproteinase composed of metalloproteinase, disintegrin-like and cysteine-rich domains. Its similarity to hemorrhagins from V. a. ammodytes venom, accompanied by very low toxicity, makes ammodytase a promising candidate as an antigen to prepare antisera against these most dangerous components of the viper's venom. Moreover, its ability to degrade fibrin clots suggests its clinical use as an antithrombotic agent.  相似文献   

12.
SVMPs are multi-domain proteolytic enzymes in which disintegrin-like and cysteine-rich domains bind to cell receptors, plasma or ECM proteins. We have recently reported that jararhagin, a P-III class SVMP, binds to collagen with high affinity through an epitope located within the Da-disintegrin sub-domain. In this study, we evaluated the binding of jararhagin to α2β1 integrin (collagen receptor) using monoclonal antibodies and recombinant jararhagin fragments. In solid phase assays, binding of jararhagin to α2β1 integrin was detectable from concentrations of 20 nM. Using recombinant fragments of jararhagin, only fragment JC76 (residues 344-421), showed a significant binding to recombinant α2β1 integrin. The anti-jararhagin monoclonal antibody MAJar 3 efficiently neutralised binding of jararhagin to collagen, but not to recombinant α2β1 integrin nor to cell-surface-exposed α2β1 integrin (α2-K562 transfected cells and platelets). The same antibody neutralised collagen-induced platelet aggregation. Our data suggest that jararhagin binding to collagen and α2β1 integrin occurs by two independent motifs, which are located on disintegrin-like and cysteine-rich domains, respectively. Moreover, toxin binding to collagen appears to be sufficient to inhibit collagen-induced platelet aggregation.  相似文献   

13.
Snake venom metalloproteinases (SVMPs) have been extensively studied and their effects associated with the local bleeding observed in human accidents by viper snakes. Representatives of P-I and P-III classes of SVMPs similarly hydrolyze extracellular matrix proteins or coagulation factors while only P-III SVMPs induce significant hemorrhage in experimental models. In this work, the effects of P-I and P-III SVMPs on plasma proteins and cultures of muscle and endothelial cells were compared in order to enlighten the mechanisms involved in venom-induced hemorrhage. To reach this comparison, BnP1 was isolated from B. neuwiedi venom and used as a weakly hemorrhagic P-I SVMPs and jararhagin was used as a model of potently hemorrhagic P-III SVMP. BnP1 was isolated by size exclusion and anion-exchange chromatographies, showing apparent molecular mass of approximately 24kDa and sequence similarity with other members of SVMPs, which allowed its classification as a group P-I SVMP. The comparison of local effects induced by SVMPs showed that BnP1 was devoid of significant myotoxic and hemorrhagic activities and jararhagin presented only hemorrhagic activity. BnP1 and jararhagin were able to hydrolyze fibrinogen and fibrin, although the latter displayed higher activity in both systems. Using HUVEC primary cultures, we observed that BnP1 induced cell detachment and a decrease in the number of viable endothelial cells in levels comparable to those observed by treatment with jararhagin. Moreover, both BnP1 and jararhagin induced apoptosis in HUVECs while only a small increase in LDH supernatant levels was observed after treatment with jararhagin, suggesting that the major mechanism involved in endothelial cell death is apoptosis. Jararhagin and BnP1 induced little effects on C2C12 muscle cell cultures, characterized by a partial detachment 24h after treatment and a mild necrotic effect as evidenced by a small increase in the supernatants LDH levels. Taken together, our data show that P-I and P-III SVMPs presented comparable effects except for the hemorrhagic activity, suggesting that hydrolysis of coagulation factors or damage to endothelial cells are not sufficient for induction of local bleeding.  相似文献   

14.
Snake venom metalloproteinases (SVMP) are involved in local inflammatory reactions observed after snakebites. Based on domain composition, they are classified as PI (pro-domain + proteolytic domain), PII (PI + disintegrin-like domains), or PIII (PII + cysteine-rich domains). Here, we studied the role of different SVMPs domains in inducing the expression of adhesion molecules at the microcirculation of the cremaster muscle of mice. We used Jararhagin (Jar)—a PIII SVMP with intense hemorrhagic activity, and Jar-C—a Jar devoid of the catalytic domain, with no hemorrhagic activity, both isolated from B. jararaca venom and BnP-1—a weakly hemorrhagic P1 SVMP from B. neuwiedi venom. Toxins (0.5 µg) or PBS (100 µL) were injected into the scrotum of mice, and 2, 4, or 24 h later, the protein and gene expression of CD54 and CD31 in the endothelium, and integrins (CD11a and CD11b), expressed in leukocytes were evaluated. Toxins induced significant increases in CD54, CD11a, and CD11b at the initial time and a time-related increase in CD31 expression. In conclusion, our results suggest that, despite differences in hemorrhagic activities and domain composition of the SVMPs used in this study, they behave similarly to the induction of expression of adhesion molecules that promote leukocyte recruitment.  相似文献   

15.
Zinc-dependent metalloproteinases are responsible for the hemorrhagic activity characteristic of viperid snake venoms. Snake venom metalloproteinases (SVMPs) are classified in various groups (P-I–IV), according to their domain composition. P-III SVMPs, comprising metalloproteinase, disintegrin-like and cysteine-rich domains, exert more potent hemorrhagic activity than P-I SVMPs, which present only the metalloproteinase domain. SVMPs degrade various components of the basement membrane and are also able to hydrolyze endothelial cell membrane proteins, such as integrins and cadherins, involved in cell–matrix and cell–cell adhesion. In addition, disintegrin-like and cysteine-rich domains interact with endothelial cell integrins, interfering with their adhesion to extracellular matrix. Hemorrhage induced by SVMPs is an extremely rapid event in vivo, with capillary endothelial cells showing drastic structural alterations within few minutes. In contrast, observations in cell culture conditions do not evidence such rapid endothelial cell damage. Instead, the main effect is detachment and rounding of these cells; it is only after several hours of incubation that cells show evidence of apoptotic damage. This apparent discrepancy between in vivo and in vitro observations can be explained if biophysical forces operating on microvessels in vivo are taken into consideration. It is proposed that SVMP-induced hemorrhage occurs in vivo by a ‘two-step’ mechanism. Initially, SVMPs degrade basement membrane and adhesion proteins, thus weakening the capillary wall and perturbing the interactions between endothelial cells and the basement membrane. Then, transmural pressure acting on the weakened capillary wall causes distention. As a consequence, endothelial cells become very thin, until the integrity of the capillary wall is lost at some points, where extravasation occurs. In addition, endothelial cells become more susceptible to blood flow-dependent shear stress, which further contributes to capillary wall disruption.  相似文献   

16.
Ying Jia  John C. Pérez 《Toxicon》2010,55(2-3):462-469
Snake venom metalloproteinases (SVMPs) are a superfamily of zinc-dependent proteases and participate in a number of important biological, physiological and pathophysiological processes. In this work, we simultaneously amplified nine cDNAs encoding different classes of metalloproteinases from glands of four different snake species (Agkistrodon contortrix laticinctus, Crotalus atrox, Crotalus viridis viridis and Agkistrodon piscivorus leucostoma) by RT-PCR with a pair of primers. Among the encoded metalloproteinases, two enzymes (AclVMP-I and AplVMP-I), three enzymes (CaVMP-II, CvvVMP-II and AplVMP-II) and four enzymes (AclVMP-III, CaVMP-III, CvvVMP-III and AplVMP-III) with the characteristic motif (HEXXHXXGXXH) of metalloproteinase belong to type P-I, P-II and P-III enzymes, respectively. Disintegrin domains of CaVMP-II and CvvVMP-II from two Crotatus snakes contain RGD-motif whereas AplVMP-II from Agkistrodon snake has KGD-motif. Instead of R/KGD-motif within disintegrin domain of SVMP-II enzyme, CaVMP-III, CvvVMP-III and AplVMP-III enzymes contain SECD-motif, while AclVMP-III has DDCD-motif in their corresponding position of disintegrin-like domains. There are 12 Cys amino acids in cysterin-rich domains of each P-III enzyme. Moreover, a disintegrin precursor (AplDis) with RGD-motif also simultaneously amplified from the glands of A.p. leucostoma while amplifying AplVMP-II and AplVMP-III, which indicated that different types of SVMPs and related genes are present in a single species of snake and share a consensus sequence at the 3′ and 5′ untranslated regions. RT-PCR result also showed that P-III is highly expressed in Crotalus snakes than in Agkistrodon snakes. Aligning the deduced amino acid sequence of these enzymes with other SVMPs from GenBank database indicated that this is the first report on the isolation of cDNAs encoding P-II and P-III enzymes from C.v. viridis and A.p. leucostoma snakes. The availability of these SVMP sequences directly facilitated further studies of structure characterization and diversified function analysis.  相似文献   

17.
Moderate and severe envenomations by the snake Bothrops asper provoke systemic alterations, such as systemic bleeding, coagulopathy, hypovolemia, hemodynamic instability and shock, and acute renal failure. Systemic hemorrhage is a typical finding of these envenomations, and is primarily caused by the action of P-III snake venom metalloproteinases (SVMPs). This venom also contains a thrombin-like serine proteinase and a prothrombin-activating P-III SVMP, both of which cause defibrin(ogen)ation. Thrombocytopenia, predominantly induced by a C-type lectin-like protein, and platelet hypoaggregation, caused by the two defibrin(ogen)ating enzymes, also contribute to hemostatic disturbances, which potentiate the systemic bleeding induced by hemorrhagic SVMPs. Cardiovascular disturbances leading to shock are due to the combined effects of hemorrhagic toxins, other venom components that increase vascular permeability, the action of hypotensive agents in the venom and of endogenous mediators, and the potential cardiotoxic effect of some toxins. Renal alterations are likely to be caused by direct cytotoxicity of venom components in the kidney, and by renal ischemia resultant from hypovolemia and hypoperfusion. Lethality induced by B. asper venom is the consequence of several combined effects among which the action of P-III SVMPs is especially relevant.  相似文献   

18.
Porthidium lansbergii hutmanni is a small pit viper found on Margarita Island, Venezuela. Local tissue damage is one of the most obvious characteristics of P. l. hutmanni envenomation, which can lead to diverse pathological effects, such as hemorrhage, edema, blistering, necrosis, lymphatic vessel damage and degradation of extracellular matrix. Metalloproteinases are one of the major components in venoms responsible for these effects. To date, very little is known or has been reported on P. l. hutmanni venom. Crude P. l. hutmanni venom had a LD50 of 2.5 mg/kg and was considered very hemorrhagic (minimal hemorrhagic dose [MHD]: 0.98 μg) when compared to other hemorrhagic (Bothrops) venoms in Venezuela. Crude P. l. hutmanni venom also inhibited ADP-induced platelet aggregation. A metalloproteinase, Porthidin-1, from this venom was isolated by three chromatography steps (Sephadex G100, Superose 12 HR10/30 and Bioscale Q2). Porthidin-1 falls in the SVMP P-I class having a molecular weight of 23 kDa, verified by both SDS-PAGE and mass spectrometry. High-resolution mass spectrometry and a database search identified a peptide from Porthidin-1 (YNGDLDK) belonging to the SVMP family of proteins. Porthidin-1 contained hemorrhagic, fibrino(geno)lytic, caseinolytic and gelatinolytic activities, and these activities were capable of being neutralized by metalloproteinase inhibitors but not serine proteinase inhibitors. The peptide YNGDLDK shared similarities with five venom proteins with a BLAST e-value of <1. This work details the biochemical and pathophysiological effects that can result from envenomations, and highlights the importance and significance for characterizing unknown or poorly documented venoms from different geographical regions.  相似文献   

19.
Bothropasin is a 48kDa hemorrhagic PIII snake venom metalloprotease (SVMP) isolated from Bothrops jararaca, containing disintegrin/cysteine-rich adhesive domains. Here we present the crystal structure of bothropasin complexed with the inhibitor POL647. The catalytic domain consists of a scaffold of two subdomains organized similarly to those described for other SVMPs, including the zinc and calcium-binding sites. The free cysteine residue Cys189 is located within a hydrophobic core and it is not available for disulfide bonding or other interactions. There is no identifiable secondary structure for the disintegrin domain, but instead it is composed mostly of loops stabilized by seven disulfide bonds and by two calcium ions. The ECD region is in a loop and is structurally related to the RGD region of RGD disintegrins, which are derived from PII SVMPs. The ECD motif is stabilized by the Cys277-Cys310 disulfide bond (between the disintegrin and cysteine-rich domains) and by one calcium ion. The side chain of Glu276 of the ECD motif is exposed to solvent and free to make interactions. In bothropasin, the HVR (hyper-variable region) described for other PIII SVMPs in the cysteine-rich domain, presents a well-conserved sequence with respect to several other PIII members from different species. We propose that this subset be referred to as PIII-HCR (highly conserved region) SVMPs. The differences in the disintegrin-like, cysteine-rich or disintegrin-like cysteine-rich domains may be involved in selecting target binding, which in turn could generate substrate diversity or specificity for the catalytic domain.  相似文献   

20.
Wahby AF  Abdel-Aty AM  El-Kady EM 《Toxicon》2012,59(2):329-337
Three viper P-III hemorrhagic SVMPs: EpyHTI (60 kDa), EcoHTI (60 kDa) and CcHTI (58 kDa) of the most dangerous vipers Echis pyramidum, Echis coloratus and Cerastes cerastes, respectively were purified and characterized in a set of biochemical assays. The SVMPs were purified by applying a protocol of three successive chromatographic steps. The enzymatic activity of the purified SVMPs was stimulated by the divalent cations Ca2+, Mg2+ and inhibited by metalloproteinase inhibitors and (Zn2+, Mn2+, Ni2+, Co2+, Cu2+ and Hg2), whereas inhibitors of serine and cysteine proteinases had no effect. The digestion of the BM proteins by purified SVMPs was much different, indicating different cleavage specificity for each of the purified SVMPs. Based on their intense hemorrhagic activity and molecular masses, the purified enzymes were hypothesized to belong to the P-III class of SVMPs. The three SVMPs possess close biochemical properties, but are different with respect to cleavage site, (fibronectin and fibrinogen). Furthermore, the described purification procedure allows simple preparation of appreciable quantities of the three SVMPs for further studies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号