首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Miao D  Bai X  Panda DK  Karaplis AC  Goltzman D  McKee MD 《BONE》2004,34(4):638-647
X-linked hypophosphatemic rickets (HYP) in humans is caused by mutations in the PHEX gene. This gene mutation is also found in Hyp mice, the murine homologue of the human disease. At present, it is unknown why loss of Phex function leads to cartilage abnormalities in Hyp mice. In the present study, we compared in wild-type and Hyp mice Phex protein localization in cartilage of developing long bone as well as localization of skeletal matrix proteins and matrix metalloproteinase-9 (MMP-9). Also compared were chondrocyte apoptosis in the growth plate, mineralization and cartilage remnant retention in the metaphysis, and chondroclast/osteoclast characteristics in the primary spongiosa. Phex protein was detected in proliferating and hypertrophic chondrocytes in growth plate cartilage of wild-type mice, but not in Hyp mice. Hyp mice exhibited a widened and irregular hypertrophic zone in growth plate cartilage showing hypomineralization, increased cartilage remnants from the growth plate in both metaphyseal trabecular and cortical bone, and fewer and smaller chondroclasts/osteoclasts in the primary spongiosa. Increased link protein and C-propeptide of type II procollagen of Hyp mice reflected the increase in chondrocytes and matrix in the cartilaginous growth plate and in bone. In addition, growth plate osteocalcin and bone sialoprotein levels were decreased, while osteonectin was increased, in hypertrophic chondrocytes and cartilage matrix in Hyp mice. MMP-9 in hypertrophic chondrocytes was also reduced in Hyp mice and fewer apoptotic hypertrophic chondrocytes were detected. These findings suggest that Phex may control mineralization and removal of hypertrophic chondrocytes and cartilage matrix in growth plate by regulating the synthesis and deposition of certain bone matrix proteins and proteases such as MMP-9.  相似文献   

2.
Longitudinal growth of postnatal bone requires precise control of growth plate cartilage chondrocytes and subsequent osteogenesis and bone formation. Little is known about the role of angiogenesis and bone remodeling in maintenance of cartilaginous growth plate. Parathyroid hormone (PTH) stimulates bone remodeling by activating PTH receptor (PTH1R). Mice with conditional deletion of PTH1R in osteoblasts showed disrupted trabecular bone formation. The mice also exhibited postnatal growth retardation with profound defects in growth plate cartilage, ascribable predominantly to a decrease in number of hypertrophic chondrocytes, resulting in premature fusion of the growth plate and shortened long bones. Further characterization of hypertrophic zone and primary spongiosa revealed that endochondral angiogenesis and vascular invasion of the cartilage were impaired, which was associated with aberrant chondrocyte maturation and cartilage development. These studies reveal that PTH1R signaling in osteoblasts regulates cartilaginous growth plate for postnatal growth of bone. © 2014 American Society for Bone and Mineral Research.  相似文献   

3.
Chondromodulin-I (Chm-I) is a glycoprotein that stimulates the growth of chondrocytes and inhibits angiogenesis in vitro. Mice lacking the Chm1 gene show abnormal bone metabolism and pathological angiogenesis in cardiac valves in the mature stage although they develop normally without aberrations in endochondral bone formation during embryogenesis or in cartilage development during growth. These findings indicate that Chm-I is critical under conditions of stress such as bone repair through endochondral ossification of a fracture callus. We carried out the present study to examine the expression and role of Chm-I in bone repair using a stabilized tibial fracture model, and compared fracture healing in Chm1 knockout (Chm1(-/-)) mice with that in wild-type mice. Chm-I mRNA and protein localized in the external cartilaginous callus in the reparative phase of fracture healing. Radiological examination showed a delayed union in Chm1(-/-) mice although the fracture site was covered with both external and internal calluses. Chm1 null mutation reduced external cartilaginous callus formation as judged by marked decrease of type X collagen alpha 1 (Col10a1) expression and the total amount of cartilage matrix. Interestingly, the majority of chondrocytes in the periosteal callus failed to differentiate into mature chondrocytes in Chm1(-/-) mice, while the hypertrophic maturation of chondrocytes between the cortices was not affected. These results suggest that Chm-I is involved in hypertrophic maturation of periosteal chondrocytes. Although a direct effect of Chm-I on bones is still unclear, bony callus formation was increased while external cartilaginous callus decreased in Chm1(-/-) mice. We conclude that in the absence of Chm1, predominant primary bone healing occurs due to an indirect effect induced by reduction of cartilaginous callus rather than to a direct effect on osteogenic function, resulting in a delayed union.  相似文献   

4.
This report describes the properties of a neutral protease that was synthesized and secreted into medium by intact cartilaginous growth plate in tissue culture. Bovine cartilaginous growth plate was grown for seven days in tissue culture, during which time the chondrocytes remained viable and metabolically active as determined by quantitation of trypan-blue exclusion and incorporation of 3H-cytidine. Protease activity, assayed by viscometry using proteoglycan monomer from cartilage as a substrate, was absent on day 1 but was present at high levels on days 2 through 5. The protease activity did not require activation and was highest at neutral and alkaline pH. Protease activity was abolished by twenty-millimolar EDTA but was unaffected by pepstatin, iodoacetate, and soybean trypsin inhibitor. In contrast to the high levels of activity of neutral protease that were present in tissue cultures of the intact growth plate, no protease activity could be detected when chondrocytes from the cartilaginous growth plate were grown in cell culture, even after sonication of the cells or activation with aminophenyl mercuric acetate or trypsin. Since hypertrophic chondrocytes probably do not survive the disruption of tissue that is involved in establishing cell cultures, these observations suggest that neutral protease is probably released into the medium by the hypertrophic chondrocytes that are present in the cultures of cartilaginous growth-plate tissue. It appears that the organization of the growth plate in tissue culture, as well as the maturation of proliferating chondrocytes into hypertrophic chondrocytes in tissue culture, may be required for synthesis of the neutral protease and its extracellular secretion by hypertrophic chondrocytes.  相似文献   

5.
Chondrocytes in the growth plate progress in an orderly fashion from resting through proliferating to hypertrophic cells. In the region of hypertrophic chondrocytes, the cartilage is invaded by capillary loops and endochondral ossification is initiated. It is currently believed that growth factors may regulate the proliferation and maturation of chondrocytes and the synthesis of extracellular matrix in the growth plate. The ordered sequence of proliferation and differentiation observed in the growth plate provides a unique opportunity to study the role of acidic fibroblast growth factor, basic fibroblast growth factor, and transforming growth factor-β1 in the regulation of these processes. In this study, expression of the mRNA of these growth factors was examined using total RNA extracted from the physis and epiphysis of rat tibias. Transforming growth factor-β1 mRNA was detected by Northern hybridization. Expression of the genes encoding acidic and basic fibroblast growth factors was demonstrated by polymerase chain reaction amplification. In addition, using polyclonal antibodies against these growth factors, we localized them by immunohistochemical analysis. Strong intracellular staining with a predominantly nuclear pattern was observed in chondrocytes from the proliferating and upper hypertrophic zones. In contrast, chondrocytes in the resting zone stained only faintly for the presence of these growth factors. Some chondrocytes in the resting zone adjacent to the proliferating zone stained with these antibodies, and the antibodies also stained cells in the zone of Ranvier, which regulates latitudinal bone growth. Lastly, the location of transforming growth factor-β1 was examined further with use of a polyclonal antipeptide antibody specific for its extracellular epitope. Interestingly, extracellular staining for transforming growth factor-β1 was observed only around chondrocytes in the hypertrophic zone. These results suggest a role for these growth factors in the regulation of proliferation and maturation of chondrocytes and in endochondral ossification.  相似文献   

6.
A survey study of growth cartilage abnormalities in bovine bone dysplasias revealed that a disorder in Holstein cattle called bulldog calf closely resembles human achondrogenesis Type II. Substantial amounts of Type I collagen and other non Type II collagens were detected in the bulldog cartilage which was comprised primarily of extensive vascular canals and cells having the characteristics of hypertrophic and degenerative chondrocytes normally found in the growth plate. It is proposed that chondrocytes throughout the bulldog growth cartilage prematurely differentiate into hypertrophic cells that degenerate and predispose the cartilage to vascular invasion and the formation of cartilage canals. The presence of these canals probably accounts for most of the observed collagen abnormalities.  相似文献   

7.
Reimplantation of growth plate chondrocytes into growth plate defects in sheep   总被引:12,自引:0,他引:12  
Defects in growth plates due to trauma, infection, or genetic causes can result in bone formation across the defect, bridging the epiphysis and metaphysis, resulting in growth arrest and limb deformation. We have investigated the capacity of implanted chondrocyte cultures to prevent this process. Sheep growth plate chondrocytes were isolated, and after culture at high density produced easily manipulated cartilaginous discs. The tissue was implanted into growth plate defects produced in lambs and the response was assessed histologically. Following implantation, cultures continued to proliferate and maintain a cartilage-like matrix. After 8 to 12 weeks, hypertrophic maturation chondrocyte columnation, and associated endochondral calcification were observed. Culture implantation was always associated with local immune inflammatory reaction, which continued throughout the course of investigation. Cellular survival was variable and resulted in the presence of viable implants as well as residual cartilage matrix devoid of chondrocytes; however, implanted chondrocyte discs always prevented bone bridge formation. These findings encourage the expectation that cultured chondrocytes may provide a useful replacement for the inert interpositional materials currently used in the treatment of growth arrest. The potential of this technique for growth plate replacement, however, requires a more predictable rate of implant survival. The likely reasons for implant loss are discussed.  相似文献   

8.
Endochondral ossification is a carefully coordinated developmental process that converts the cartilaginous model of the embryonic skeleton to bone with accompanying long bone growth. To identify genes that regulate this process we performed a complementary DNA (cDNA) subtractive hybridization of fetal bovine proliferative chondrocyte cDNA from epiphyseal cartilage cDNA. The subtracted product was used to screen a fetal bovine cartilage cDNA library. Ten percent of the clones identified encoded the bovine orthologue of the human ribosomal protein "QM." Northern and western blot analysis confirmed that QM was highly expressed by cells isolated from epiphyseal cartilage as opposed to proliferative chondrocytes. In contrast, no detectable difference in the expression of mRNA for the ribosomal protein S11 was detected. Immunohistochemical analysis of fetal bovine limb sections revealed that QM was not expressed by the majority of the epiphyseal chondrocytes but only by chondrocytes in close proximity to capillaries that had invaded the epiphyseal cartilage. Strongest QM expression was seen in osteoblasts in the diaphyseal region of the bone adjoining the growth plate, within the periosteum covering the growth plate and within secondary centers of ossification. Hypertrophic chondrocytes within the growth plate adjoining the periosteum also were positive for QM as were chondrocytes in the perichondrium adjoining the periosteum. In vitro investigation of the expression of QM revealed higher QM expression in nonmineralizing osteoblast and pericyte cultures as compared with mineralizing cultures. The in vivo and in vitro expression pattern of QM suggests that this protein may have a role in cell differentiation before mineralization.  相似文献   

9.
Using oligonucleotide primers specific for the human MDR 1 gene, we were able to identify a specific amplicon using RT-PCR from total bovine growth plate chondrocyte RNA. The identification of MDR mRNA in growth plate chondrocytes led us to examine the precise distribution of MDR P-glycoprotein in bone and cartilage. We applied two monoclonal antibodies (C219 and C494) to human fetal, neonatal, and childhood growth plates and bone. In growth plates, P-glycoprotein was detected at high levels in a perilacunar distribution in the calcifying zone and at lower levels in hypertrophic, but not proliferative or reserve zone, chondrocytes. P-glycoprotein was also observed in perichondrial chondrocytes, in perivascular chondrocytes and matrix in the fetal cartilage anlage, and in osteoblasts and the surface osteoid matrix of newly formed bone trabeculae in the primary spongiosa. The recently described chloride channel of P-glycoprotein suggests a potential role of P-glycoprotein in growth plate chondrocyte hypertrophy. D. C. Mangham is supported by the Wechsler fellowship  相似文献   

10.
Accumulated evidence suggests that in the growth cartilage during endochondral ossification, proteoglycans in the extracellular matrix of the lower hypertrophic zone are degraded by proteases and removed before mineralization. Neutral protease activity in the human growth cartilage was demonstrated recently, with the highest levels in the hypertrophic and calcified zones. In this study, in an in vivo model, proteoglycans in the epiphyseal cartilage are cleaved at specific sites in the protein core by enzymes acting similar to neutral metallo-proteases. Prelabeled growth cartilage (35S) chondrocytes, grown in vitro, were transplanted as an allograft to fill a defect in the proximal tibial plate of immature New Zealand white rabbits and then extracted at different time intervals. Degradation of these proteoglycans was determined by gel chromatography on Sepharose 2B columns under associative and dissociative condition. This was compared to in vivo degradation patterns of flash-labeled native growth cartilage proteoglycan. Both the in vivo labeled material and the in vitro labeled transplants appear to be degraded into smaller fragments over time. This study provides further proof that the degradation of proteoglycans does occur in vivo and that this process is an important element in the preparation of bone for mineralization. Control of degradation may alter growth processes.  相似文献   

11.
In fracture healing, a large amount of cartilage is formed, then rapidly replaced by osseous tissue. This process requires the transition of extracellular matrix component from type II to type I collagen. We investigated the expression of matrix metalloproteinase-13 (MMP-13), which has a high potential to cleave type II as well as type I collagen, during fracture repair in mouse ribs. In situ hybridization demonstrated that MMP-13 mRNA was present throughout the healing process. It was detected in the cells of the periosteum at day 1. As fracture callus grew, strong MMP-13 mRNA signals were detected in cells of the cartilaginous callus. In the reparative and remodeling phases, both hypertrophic chondrocytes and immature osteoblastic cells in the fracture callus expressed MMP-13 mRNA strongly. These cells were located adjacent to tartrate-resistant acid phosphatase (TRAP)-positive osteoclasts at the sites of cartilage/bone transition. In osteoclasts, MMP-13 expression was not detected. The level of MMP-13 mRNA peaked at day 14 postfracture by northern blotting. Immunohistochemical staining showed that MMP-13 was detected primarily in hypertrophic chondrocytes. These results indicate that MMP-13 is induced during fracture healing. The site- and cell-specific expression of MMP-13 and its enzymatic property suggest that MMP-13 initiates the degradation of cartilage matrix, resulting in resorption and remodeling of the callus. In conclusion, MMP-13 plays an important role in the healing process of fractured bone in mice.  相似文献   

12.
Parathyroid hormone-related peptide (PTHrP) and insulin-like growth factor I (IGF-I) are both involved in the regulation of bone and cartilage metabolisms and their interaction has been reported in osteoblasts. To investigate the interaction of PTHrP and IGF-I during fracture healing, the expression of mRNA for PTHrP and IGF-I, and receptors for PTH/PTHrP and IGF were examined during rat femoral fracture healing using an in situ hybridization method and an immunohistochemistry method, respectively. During intramembranous ossification, PTHrP mRNA, IGF-I mRNA and IGF receptors were detected in preosteoblasts, differentiated osteoblasts and osteocytes in the newly formed trabecular bone. PTH/PTHrP receptors were markedly detected in osteoblasts and osteocytes, but only barely so in preosteoblasts. During cartilaginous callus formation, PTHrP mRNA was expressed by mesenchymal cells and proliferating chondrocytes. PTH/PTHrP receptors were detected in proliferating chondrocytes and early hypertrophic chondrocytes. IGF-I mRNA and IGF receptor were co-expressed by mesenchymal cells, proliferating chondrocytes, and early hypertrophic chondrocytes. At the endochondral ossification front, osteoblasts were positive for PTHrP and IGF-I mRNA as well as their receptors. These results suggest that IGF-I is involved in cell proliferation or differentiation in mesenchymal cells, periosteal cells, osteoblasts and chondrocytes in an autocrine and/or paracrine fashion. Furthermore, PTHrP may be involved in primary callus formation presumably co-operating with IGF-I in osteoblasts and osteocytes, and by regulating chondrocyte differentiation in endochondral ossification.  相似文献   

13.
We have developed a method to promote longitudinal bone growth at the level of a specific growth-plate (GP) in young rabbits. Insulin-like growth factor-I (IGF-I) was continuously infused by means of an osmotic pump into the bone marrow cavity of the proximal epiphysis of the tibia. Radiological measurement showed a 2-mm overgrowth of the tibia after 4 weeks of treatment, while histological analysis demonstrated a 15% increase in the thickness of the selected GP. The local infusion of IGF-I increased the numbers of both proliferative and hypertrophic chondrocytes and promoted hyperplasia of bony trabeculae within the epiphysis. The distribution of material infused locally into the epiphysis was simulated by the infusion of Indian ink using the same methodology (osmotic pump) as that for IGF-I. Most of the dye remained within the bone marrow cavity of the epiphysis, but a portion infiltrated into the GP, reaching the deep layer of the physeal chondrocytes and primary spongiosa of the metaphysis. These results suggest that the method reported here is a valid one for delivering cytokines or growth factors to the selected GP and for controlling the growth and differentiation of physeal chondrocytes.  相似文献   

14.
Levels of HtrA1 protein in cartilage have been reported to elevate in joints of human osteoarthritis patients. To understand roles of HtrA1 in normal osteogenesis as well as in pathogenesis of arthritis, we examine HtrA1 expression pattern during bone and cartilage development and in articular cartilage affected by experimental arthritis. HtrA1 is not expressed in mesenchymal or cartilage condensations before initiation of ossification. When ossification begins in the condensations, the expression of HtrA1 starts in chondrocytes undergoing hypertrophic differentiation near the ossification center. Hypertrophic chondrocytes found in adult articular cartilage and epiphyseal growth plates also express HtrA1. When arthritis is induced by injection of anti-collagen antibodies and lipopolysaccharide, resting chondrocytes proceed to terminal hypertrophic differentiation and start expressing HtrA1. These data suggest that hypertrophic change induces HtrA1 expression in chondrocytes both in normal and pathological conditions. HtrA1 has been reported to inhibit TGF-beta signaling. We show that HtrA1 digests major components of cartilage, such as aggrecan, decorin, fibromodulin, and soluble type II collagen. HtrA1 may, therefore, promote degeneration of cartilage by inducing terminal hypertrophic chondrocyte differentiation and by digesting cartilage matrix though its TGF-beta inhibitory activity and protease activity, respectively. In bone, active cuboidal osteoblasts barely express HtrA1, but osteoblasts which flatten and adhere to the bone matrix and osteocytes embedded in bone are strongly positive for HtrA1 production. The bone matrix shows a high level of HtrA1 protein deposition akin to that of TGF-beta, suggesting a close functional interaction between TGF-beta and HtrA1.  相似文献   

15.
S-100 protein in human cartilage lesions   总被引:2,自引:0,他引:2  
S-100 protein is an acidic calcium-binding protein that was originally isolated from the mammalian central nervous system in 1965. Initially, S-100 protein was thought to be specific to neuroectodermal tissues, but its presence in chondrocytes was recently reported. This study is an analysis of the distribution of S-100 protein in lesions of human cartilage and its possible significance. Several cartilaginous tumors, both benign and malignant, as well as normal epiphyseal growth plates, were examined for S-100 protein by the immunoperoxidase technique. Each cartilaginous lesion that was examined showed immunoreactivity for S-100 protein. The staining product was noted only intracellularly. The highest intensity of staining was seen in the hypertrophic chondrocytes of the zone of provisional calcification in the growth plate and in the large chondrocytes located adjacent to areas of matrix mineralization in cartilaginous tumors. In normal epiphyseal growth plates, the intensity of staining increased in chondrocyte cytoplasm as one moved from the proliferating columnar chondrocytes through the zone of hypertrophic chondrocytes to the hypertrophic, degenerating chondrocytes in the zone of provisional calcification. In cartilaginous tumors, the cells of enchondroma and of the cartilaginous cap of osteochondroma were more immunoreactive than those of chondromyxoid fibroma. In benign chondroblastoma, the chondroblasts were less reactive than the chondrocytes in areas of chondroid matrix production. The latter areas of chondroblastomas showed stronger immunoreactivity in the matrix-enclosed cells adjacent to areas of mineral deposition. Among conventional chondrosarcomas, grade-I tumors showed greater immunoreactivity of the chondrocyte cytoplasm than did those of a higher grade, in which chondroid matrix production was less abundant.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
We evaluated 9.4-T magnetic resonance (MR) microimaging in assessing normal and defective bone development in mouse embryos. For this purpose, we performed 9.4-T MR microimaging on developing bones in normal embryos, and also in Runx2/Cbfa1-/- embryos with severely defective bone development. MR images were compared with the histological and histochemical features of these fetal bones. MR microimaging delineate successfully the normal long bone development in embryos. The T1- and T2-weighted MR microimaging demonstrated chondrocyte maturation in different regions of growing cartilage, such as epiphysis, physis, hypertrophic cartilage, and zone of provisional calcification. These developmental changes were detectable in as early as E14.5 embryos. The MR microimaging clearly demonstrated defective bone development in Runx2/Cbfa1-/- embryos. The femur from E18.5 homozygous Runx2/Cbfa1-/- embryos lacked MR signal intensity patterns including the hypertrophic cartilage, which are characteristic of the bone from the age-matched Runx2/Cbfa1+/+ embryos. Interestingly, however, the tibia from the same mutants was associated with MR signal patterns indicative of hypertrophic cartilage but not of the primary spongiosa and ossifying perichondrium, suggesting that bone development is differently regulated in these two long bones. On the other hand, the bones from heterozygous Runx2/Cbfa1+/- embryos exhibited an MR phenotype intermediate between the Runx2/Cbfa1+/+ and Runx2/Cbfa1-/- embryos; the primary spongiosa and ossifying perichondrium formation occurred normally even in the absence of preceding organized maturation of chondrocytes, a phenotype that was not detected by histological examinations. We concluded that MR microimaging is useful in assessing the bone development.  相似文献   

17.
Calpain is a Ca2(+)-dependent cysteine proteinase that has neutral pH optima. There are two classes of calpains that differ in their optimal calcium ion concentration for enzymatic activity. Calpain I requires a low concentration of Ca2+ for activation, and calpain II requires a much higher Ca2+ concentration. This report describes the immunohistochemical and biochemical demonstration of calpain II in calcifying cartilage in rats and also the degradation of the cartilage proteoglycan subunit by calpain II. Immunoperoxidase (peroxidase-antiperoxidase) staining of the frozen sections of the knee joint from 3-day-old and 6-day-old Wistar rats, using polyclonal antibodies against the respective heavy subunits of calpains I and II, showed positive staining only with the anti-calpain II antibody in the hypertrophic chondrocytes and surrounding cartilaginous matrix of the growth cartilage. Diethylaminoethyl-cellulose chromatography of the cartilaginous extract from 3-day-old rats showed a peak of caseinolytic activity attributable to calpain as well as an inhibitory peak of calpastatin, a specific inhibitor protein of calpains. Immunoblotting using the anti-calpain II antibody of the calpain peak demonstrated identity with the heavy subunit of calpain II (80 kDa). Proteoglycan-degrading activity of calpain was assessed using porcine kidney calpain II and the porcine articular cartilage proteoglycan subunit. After incubation in the presence of Ca2+, degradation of proteoglycan was demonstrated by the change of the elution position on Sepharose-2B chromatography. It is possible that calpain functions as one of the proteoglycan-degrading proteolytic enzymes of growth cartilage. Intracellular localization of calpain in hypertrophic chondrocytes also suggests a role in the hypertrophic process of the chondrocyte in growth cartilage.  相似文献   

18.
OBJECTIVES: Osteophytes represent areas of new cartilage and bone formation in human and experimentally induced osteoarthritis (OA). The present study addressed the production of nitric oxide (NO), vascular endothelial growth factor (VEGF) and the occurrence of apoptosis during osteophyte formation. DESIGN: Osteophytes in the knee joint of rabbits that developed OA-like lesions following anterior cruciate ligament transection (ACLT) were analysed by histology and immunohistochemistry for NO production, and the presence of VEGF. TUNEL was used to detect DNA fragmentation. RESULTS: At the joint margins in the interface between cortical bone marrow and periosteal lining growth plate-like formations were detectable as early as 4 weeks after ACLT. By 12 weeks after ACLT osteophytes were visible in 100% of femoral condyles and tibial plateaus. Discrete areas with proliferating chondrocytes, hypertrophic chondrocytes, calcified matrix and vascular invasion were observed. VEGF immunoreactivity was most prominent in hypertrophic chondrocytes 9 weeks after ACLT. Nitrotyrosine immunoreactivity was detected in endothelial cells and in some hypertrophic chondrocytes in the calcified zone 4 weeks after ACLT. After 8 and 12 weeks, positive cells were detected in the hypertrophic and calcified zone. TUNEL-positive cells were seen in blood vessels, and among hypertrophic chondrocytes adjacent to the blood vessels 4 weeks after ACLT. The proliferative zone, pre-hypertrophic zone and hypertrophic zone showed only a few TUNEL positive cells. In contrast, 8 weeks and 12 weeks after ACLT, most hypertrophic chondrocytes, but few proliferative chondrocytes showed DNA fragmentation. CONCLUSIONS: Hypertrophic chondrocytes in osteophytes express VEGF and this can promote vascular invasion of cartilage. The presence of TUNEL-positive cells shows a similar distribution as nitrotyrosine immunoreactivity during all phases of osteophyte development, suggesting that NO production and chondrocyte death are related events in osteophyte formation.  相似文献   

19.
BACKGROUND: Cytokinetic abnormalities in DNA content, such as aneuploidy, haploidy, and tetraploidy, have been found to occur in human cartilaginous tumors. The high number of chondrocytes needed for tissue-engineered cartilaginous implants requires the cells to be passaged repeatedly. The theoretical risk of changes in the normal diploid state of these cells during their growth in vitro and after generation of tissue-engineered cartilage in vivo is not known.Materials and methods Auricular chondrocytes were obtained from 6 patients and cultured in vitro. Chondrocyte number was increased by repeated passaging. The passaged cells were implanted in nude mice for 8 weeks to generate tissue-engineered cartilage. Fresh control chondrocytes along with the passaged cells and cells obtained from the tissue-engineered constructs were collected and compared for DNA content by flow cytometry. RESULTS: Flow cytometry demonstrated 100% diploidy with no evidence of aneuploidy, haploidy, or tetraploidy in all groups of cells. Histology of the tissue-engineered cartilage also showed no evidence of cellular atypia. CONCLUSION: The number of human auricular chondrocytes can be increased by repeated passaging and passaged chondrocytes can be safely used for implantation to generate tissue-engineered constructs without a change in the normal diploid state of the cells. Histology of the cartilage generated showed normal features without atypia.  相似文献   

20.
Summary Subcutaneous transplantation of growth plate chondrocytes isolated enzymatically from the proximal tibia of 6-week-old rabbits into athymic (nu/nu) mice resulted in the formation of cartilaginous nodules. Calcification of the matrix was first seen after 48 hrs, and endochrondral ossification at 12 days. The mineral first occurred about hypertrophic cells. Histochemical alkaline phosphatase activity was concentrated in pericellular collars at the same location. Immunofluorescence examination with rabbit anti-mouse lymphocyte serum disclosed that the bulk of the osteoblasts was derived from the mouse. A small quantity of mouse antigen was present in the cartilage matrix at its junction with bone. It presumably diffused into the cartilaginous interface from the host, but the possibility that some chondrocytes were of murine origin has not been excluded. Five of six grafts of cells grown to confluence in monolayer culture for 10 to 14 days became ossified. The ability to induce mineralization declined in subculture. Chondrocytes killed by heating to 56° did not induce calcified cartilage or bone. Supported by grant AM17258-09 from the National Institutes of Health.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号