首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The distribution, morphology and nuclear subdivisions of the putative catecholaminergic and serotonergic systems within the brain of the highveld gerbil were identified following immunohistochemistry for tyrosine hydroxylase and serotonin. The aim of the present study was to investigate possible differences in the complement of nuclear subdivisions of these systems when comparing those of the highveld gerbil with those of the laboratory rat. The highveld gerbil was chosen as it is relatively closely related to the laboratory rat, but the Gerbillinae and Murinae lineages diverged over 20 million years ago. Moreover, even though brain sizes are similar, the life history and phenotypes between these two species are substantially different. The gerbils used in the present study were caught from the wild, which is again another contrast to the laboratory rat. While these differences may lead to the prediction of significant differences in the nuclear complement of these systems, we found that all nuclei identified in both systems in the laboratory rat in several earlier studies had direct homologs in the brain of the highveld gerbil. Moreover, there were no additional nuclei in the brain of the highveld gerbil that are not found in the laboratory rat. The only discernable difference between the two species was a greater density and number of catecholaminergic neurons in the olfactory bulb of the highveld gerbil. Thus, the evolution of nuclear parcellation in these systems appears to demonstrate a form of phylogenetic constraint related to the order Rodentia.  相似文献   

2.
The distribution, morphology and nuclear organization of the cholinergic, putative catecholaminergic and serotonergic systems within the brain of the Cape porcupine (Hystrix africaeaustralis) were identified following immunohistochemistry for choline acetyltransferase, tyrosine hydroxylase and serotonin. The aim of the present study was to investigate possible differences in the complement of nuclear subdivisions of these systems in the Cape porcupine in comparison with previous studies of these systems in other rodents. The Cape porcupine is the largest rodent in which these systems have been examined and has an adult body mass of 10-24kg and an average brain mass of approximately 37g, around 15 times larger than the laboratory rat. The Cape porcupines were taken from the wild and while these differences, especially that of mass, may lead to the prediction of a significant difference in the nuclear organization or number within these systems, all the nuclei observed in all three systems in the laboratory rat and in other rodents had direct homologues in the brain of the Cape porcupine. Moreover, there were no additional nuclei in the brain of the Cape porcupine that are not found in the laboratory rat or other rodents studied and vice versa. It is noted that the medial septal nucleus of the Cape porcupine appeared qualitatively to have a reduced number of neurons in comparison to the laboratory rat and other rodents. The locus coeruleus of the laboratory rat differs in location to that observed for the Cape porcupine and several other rodent species. The Cape porcupine is distantly related to the laboratory rat, but still a member of the order Rodentia; thus, changes in the organization of these systems appears to demonstrate a form of constraint related to the phylogenetic level of the order.  相似文献   

3.
The distribution, morphology and nuclear subdivisions of the putative catecholaminergic and serotonergic systems within the brain of the highveld gerbil were identified following immunohistochemistry for tyrosine hydroxylase and serotonin. The aim of the present study was to investigate possible differences in the complement of nuclear subdivisions of these systems when comparing those of the highveld gerbil with those of the laboratory rat. The highveld gerbil was chosen as it is relatively closely related to the laboratory rat, but the Gerbillinae and Murinae lineages diverged over 20 million years ago. Moreover, even though brain sizes are similar, the life history and phenotypes between these two species are substantially different. The gerbils used in the present study were caught from the wild, which is again another contrast to the laboratory rat. While these differences may lead to the prediction of significant differences in the nuclear complement of these systems, we found that all nuclei identified in both systems in the laboratory rat in several earlier studies had direct homologs in the brain of the highveld gerbil. Moreover, there were no additional nuclei in the brain of the highveld gerbil that are not found in the laboratory rat. The only discernable difference between the two species was a greater density and number of catecholaminergic neurons in the olfactory bulb of the highveld gerbil. Thus, the evolution of nuclear parcellation in these systems appears to demonstrate a form of phylogenetic constraint related to the order Rodentia.  相似文献   

4.
The distribution, morphology and nuclear subdivisions of the putative catecholaminergic and serotonergic systems within the brain of the greater canerat (sometimes spelt cane rat) were identified following immunohistochemistry for tyrosine hydroxylase and serotonin. The aim of the present study was to investigate possible differences in the complement of nuclear subdivisions of these systems when comparing those of the greater canerat with reports of these systems in other rodents. The greater canerat was chosen for investigation as it is a large rodent (around 2.7kg body mass) and has an average brain mass of 13.75g, more than five times larger than that of the laboratory rat. The greater canerats used in the present study were caught from the wild, which is again another contrast to the laboratory rat. While these differences, especially that of size, may lead to the prediction of significant differences in the nuclear complement of these systems, we found that all nuclei identified in both systems in the laboratory rat and other rodents in several earlier studies had direct homologs in the brain of the greater canerat. Moreover, there were no additional nuclei in the brain of the greater canerat that are not found in the laboratory rat or other rodents. It is noted that the locus coeruleus of the laboratory rat differs in appearance to that reported for several other rodent species. The greater canerat is phylogenetically distant from the laboratory rat, but still a member of the order Rodentia. Thus, changes in the nuclear organization of these systems appears to demonstrate a form of constraint related to the phylogenetic level of the order.  相似文献   

5.
This study investigated the nuclear organization of four immunohistochemically identifiable neural systems (cholinergic, catecholaminergic, serotonergic and orexinergic) within the brain of the African pygmy mouse (Mus minutoides). The African pygmy mice studied had a brain mass of around 275 mg, making these the smallest rodent brains to date in which these neural systems have been investigated. In contrast to the assumption that in this small brain there would be fewer subdivisions of these neural systems, we found that all nuclei generally observed for these systems in other rodent brains were also present in the brain of the African pygmy mouse. As with other rodents previously studied in the subfamily Murinae, we observed the presence of cortical cholinergic neurons and a compactly organized locus coeruleus. These two features of these systems have not been observed in the non-Murinae rodents studied to date. Thus, the African pygmy mouse displays what might be considered a typical Murinae brain organization, and despite its small size, the brain does not appear to be any less complexly organized than other rodent brains, even those that are over 100 times larger such as the Cape porcupine brain. The results are consistent with the notion that changes in brain size do not affect the evolution of nuclear organization of complex neural systems. Thus, species belonging to the same order generally have the same number and complement of the subdivisions, or nuclei, of specific neural systems despite differences in brain size, phenotype or time since evolutionary divergence.  相似文献   

6.
Mole-rats are strictly subterranean rodents that are rarely exposed to environmental light. They are well adapted to their environment and have reduced eyes and a severely regressed visual system. It has been shown, however, that mole-rats do exhibit endogenous circadian rhythms that can be entrained, suggesting an intact and functional circadian system. To determine whether light is the entraining agent in these animals, Fos expression in response to light pulses at different circadian times was investigated to obtain phase response curves. Light is integrated effectively in the suprachiasmatic nucleus of the Cape mole-rat (Georychus capensis), and Fos expression is gated according to the phase of the circadian clock. The Fos response in the Cape mole-rat was comparable to that of aboveground rodents. In contrast, the highveld mole-rat (Cryptomys hottentotus pretoriae) was less sensitive to light and did not show a selective Fos response according to the phase of the circadian cycle. Social species appear to be less sensitive to light than their solitary counterparts, which compares well with results from locomotor activity studies.  相似文献   

7.
The distribution of orexinergic cell bodies and terminal networks within the brains of two species of African mole rat (Cape-dune mole rat--Bathyergus suillus and highveld mole rat--Cryptomys hottentotus) were identified using immunohistochemistry for orexin-A. The aim of the study was to investigate possible differences in the nuclear complement and terminal distribution of this system by comparing those of the mole rats to published studies of other rodents and mammals. The wild-caught mole rats used in this study live a subterranean lifestyle and are well known for their regressed visual system, which may lead to the prediction of differences in the distribution of the cell bodies and the terminal networks; however, we found that both species of mole rat displayed orexinergic nuclei limited to the hypothalamus in regions similar to those previously reported for other rodent and mammalian species. No immunoreactive neurons could be identified, in either species of mole rat within the anterior hypothalamic paraventricular nucleus, as has been reported for Murid rodents. The terminal networks, while remaining similar between the species, are more strongly expressed in the Cape-dune mole rat than in the highveld mole rat.  相似文献   

8.
The current study describes the nuclear parcellation and neuronal morphology of the cholinergic, catecholaminergic and serotonergic systems within the brain of a representative species of microbat. While these systems have been investigated in detail in the laboratory rat, and examined in several other mammalian species, no chiropterans, to the author's knowledge, have been examined. Using immunohistochemical stains for choline-acetyltransferase, tyrosine hydroxylase and serotonin, we were able to observe and document these systems in relation to the cytoarchitecture. The majority of cholinergic nuclei typically found in mammals were evident in the microbat, however we could not find evidence for choline-acetyltransferase immunopositive neurons in the Edinger–Westphal nucleus, parabigeminal nucleus, and the medullary tegmental field, as seen in several other mammalian species. A typically mammalian appearance of the catecholaminergic nuclei was observed, however, the anterior hypothalamic groups (A15 dorsal and ventral), the dorsal and dorsal caudal subdivisions of the ventral tegmental area (A10d and A10dc), and the ventral (pars reticulata) substantia nigra (A9v) were not present. The serotonergic nuclei were similar to that reported in all eutherian mammalian species studied to date. The overall complement of nuclei of these systems in the microbat, while different to the species examined in other orders of mammals, resembles most closely the complement seen in earlier studies of insectivore species, and is clearly distinguished from that seen in rodents, carnivores and primates. This data is discussed in terms of the phylogenetic relationships of the chiropterans.  相似文献   

9.
The current study describes the nuclear parcellation and neuronal morphology of the cholinergic, catecholaminergic and serotonergic systems within the brain of a representative species of microbat. While these systems have been investigated in detail in the laboratory rat, and examined in several other mammalian species, no chiropterans, to the author's knowledge, have been examined. Using immunohistochemical stains for choline-acetyltransferase, tyrosine hydroxylase and serotonin, we were able to observe and document these systems in relation to the cytoarchitecture. The majority of cholinergic nuclei typically found in mammals were evident in the microbat, however we could not find evidence for choline-acetyltransferase immunopositive neurons in the Edinger–Westphal nucleus, parabigeminal nucleus, and the medullary tegmental field, as seen in several other mammalian species. A typically mammalian appearance of the catecholaminergic nuclei was observed, however, the anterior hypothalamic groups (A15 dorsal and ventral), the dorsal and dorsal caudal subdivisions of the ventral tegmental area (A10d and A10dc), and the ventral (pars reticulata) substantia nigra (A9v) were not present. The serotonergic nuclei were similar to that reported in all eutherian mammalian species studied to date. The overall complement of nuclei of these systems in the microbat, while different to the species examined in other orders of mammals, resembles most closely the complement seen in earlier studies of insectivore species, and is clearly distinguished from that seen in rodents, carnivores and primates. This data is discussed in terms of the phylogenetic relationships of the chiropterans.  相似文献   

10.
Naked mole-rats are fossorial rodents native to eastern Africa that spend their lives in extensive subterranean burrows where visual cues are poor. Not surprisingly, they have a degenerated eye and optic nerve, suggesting they have poor visual abilities. However, little is known about their central visual system. To investigate the organization of their central visual system, we injected a neuronal tracer into the eyes of naked mole-rats and mice to compare the neural structures mediating vision. We found that the superior colliculus and lateral geniculate nucleus were severely atrophied in the naked mole-rat. The olivary pretectal nucleus was reduced but still retained its characteristic morphology, possibly indicating a role in light detection. In addition, the suprachiasmatic nucleus is well innervated and resembles the same structure in other rodents. The naked mole-rat appears to have selectively lost structures that mediate form vision while retaining structures needed for minimal entrainment of circadian rhythms. Similar results have been reported for other mole-rat species. Taken together, these data suggest that light detection may still play an important role in the lives of these "blind" animals: most likely for circadian entrainment or setting seasonal rhythms.  相似文献   

11.
Naked mole-rats are highly social rodents that live in large colonies characterized by a rigid social and reproductive hierarchy. Only one female, the queen, breeds. Most colony members are non-reproductive subordinates that work cooperatively to rear the young and maintain an underground burrow system. Little is known about the neurobiological basis of the complex sociality exhibited by this species. The neuropeptide oxytocin (Oxt) modulates social bonding and other social behaviors in many vertebrates. Here we examined the distribution of Oxt immunoreactivity in the brains of male and female naked mole-rats. As in other species, the majority of Oxt-immunoreactive (Oxt-ir) cells were found in the paraventricular and supraoptic nuclei, with additional labeled cells scattered throughout the preoptic and anterior hypothalamic areas. Oxt-ir fibers were found traveling toward and through the median eminence, as well as in the tenia tecta, septum, and nucleus of the diagonal band of Broca. A moderate network of fibers covered the bed nucleus of the stria terminalis and preoptic area, and a particularly dense fiber innervation of the nucleus accumbens and substantia innominata was observed. In the brainstem, Oxt-ir fibers were found in the periaqueductal gray, locus coeruleus, parabrachial nucleus, nucleus of the solitary tract, and nucleus ambiguus. The high levels of Oxt immunoreactivity in the nucleus accumbens and preoptic area are intriguing, given the link in other rodents between Oxt signaling in these regions and maternal behavior. Although only the queen gives birth or nurses pups in a naked mole-rat colony, most individuals actively participate in pup care.  相似文献   

12.
The organization of the nuclear subdivisions of the cholinergic, putative catecholaminergic and serotonergic systems of the brain of the elephant shrew (Elephantulus myurus) were determined following immunohistochemistry for choline acetyltransferase, tyrosine hydroxylase and serotonin, respectively. This was done in order to determine if differences in the nuclear organization of these systems in comparison to other mammals were evident and how any noted differences may relate to specialized behaviours of the elephant shrew. The elephant shrew belongs to the order Macroscelidea, and forms part of the Afrotherian mammalian cohort. In general, the organization of the nuclei of these systems resembled that described in other mammalian species. The cholinergic system showed many features in common with that seen in the rock hyrax, rodents and primates; however, specific differences include: (1) cholinergic neurons were observed in the superior and inferior colliculi, as well as the cochlear nuclei; (2) cholinergic neurons were not observed in the anterior nuclei of the dorsal thalamus as seen in the rock hyrax; and (3) cholinergic parvocellular nerve cells forming subdivisions of the laterodorsal and pedunculopontine tegmental nuclei were not observed at the midbrain/pons interface as seen in the rock hyrax. The organization of the putative catecholaminergic system was very similar to that seen in the rock hyrax and rodents except for the lack of the rodent specific C3 nucleus, the dorsal division of the anterior hypothalamic group (A15d) and the compact division of the locus coeruleus (A6c). The nuclear organization of the serotonergic system was identical to that seen in all eutherian mammals studied to date. The additional cholinergic neurons found in the cochlear nucleus and colliculi may relate to a specific acoustic signalling system observed in elephant shrews expressed when the animals are under stress or detect a predator. These neurons may then function to increase attention to this type of acoustic signal termed foot drumming.  相似文献   

13.
Small rodents with a large surface-area-to-volume ratio and a high thermal conductance are likely to experience conditions where they have to expend large amounts of energy in order to maintain a constant body temperature at low ambient temperatures. The survival of small rodents is thus dependent on their ability to reduce heat loss and increase heat production at low ambient temperatures. Two such animals are the social subterranean rodents Cryptomys damarensis (the Damaraland mole-rat) and Cryptomys hottentotus natalensis (the Natal mole-rat). This study examined the energy savings associated with huddling as a behavioural thermoregulatory mechanism to conserve energy in both these species. Individual oxygen consumption (VO(2)) was measured in groups ranging in size from one to 15 huddling animals for both species at ambient temperatures of 14, 18, 22, 26 and 30 degrees C. Savings in energy (VO(2)) were then compared between the two species. Significant differences in VO(2) (p<0.05) were found within each species, indicating that both Damaraland mole-rats and Natal mole-rats saved more energy in larger as opposed to smaller groups. VO(2) was also different between the two species, with Damaraland mole-rats showing a higher decrease in VO(2) with increasing group size compared to Natal mole-rats. These findings suggest that huddling confers significant energy savings in both species and that the amount of energy saved is related to each species' ecology. More generally, these findings suggest that group living desert-adapted species are likely to be more prone to heat loss at low ambient temperatures than temperate-adapted species, especially at low group sizes. This is presumably offset against the advantages obtained by having a low metabolic rate and avoiding hyperthermia when temperatures are hot.  相似文献   

14.
Mole-rat species within the family Bathyergidae exhibit a wide range of reproductive strategies and social systems. Various forms of reproductive suppression are displayed within this family: in the solitary species, breeding is suspended for part of the year and in the social species, reproduction is suppressed in subordinate animals. This study investigated the gonadotrophin-releasing hormone 1 (GnHR-1) systems of breeding and non-breeding solitary Cape mole-rats and social Natal mole-rats for possible inter- and/or intra-species differences. In both species, GnRH-1 cell bodies are predominantly in the medial septum region of the diagonal band or the preoptic area, with relatively few in the mediobasal hypothalamus; a dense concentration of GnRH-1-immunoreactive (ir) processes is present in the region of the organum vasculosum of the lamina terminalis. In Cape mole-rats, GnRH-1-ir processes are particularly dense within the lateral margins of the median eminence, which is enfolded by a large pars tuberalis of the pituitary gland. Natal mole-rats display GnRH-1-ir processes across the breadth of the median eminence, which is abutted by a relatively small pars tuberalis. There are more GnRH-1-ir cell bodies in Natal mole-rats than in Cape mole-rats (∼720 vs. ∼420). No significant differences were found in the number, distribution or size of GnRH-1-ir cell bodies according to season in Cape mole-rats or according to reproductive status or sex in Natal mole-rats. In female and male Natal mole-rats, GnRH-1-immunoreactivity in the median eminence is less dense in the reproductive animals; no such difference was found in Cape mole-rats between the breeding and non-breeding seasons. These immunohistochemical results are discussed in the light of earlier studies which identified no functional neuroendocrine impediments underlying regulated reproduction in either Cape or Natal mole-rats. The cumulative findings suggest that the principal factors determining seasonal or socially induced suppression of reproduction in these species are behavioral rather than neuroendocrine.  相似文献   

15.
In this paper we investigated the effect of sex and season on baseline and post-GnRH challenge luteinising hormone (LH) levels in a solitary, seasonally breeding mole-rat. Circulating basal concentrations of luteinising hormone (LH) were found to differ significantly with season in both sexes. However, no significant difference was found in circulating basal LH concentration between the sexes either within or out of the breeding season. The magnitude of the LH response to an exogenous pharmacological overdose of GnRH both in and out of the breeding season in males and females respectively was not significant. This finding suggests that there is no down regulation of GnRH receptors on the pituitary during the non-breeding season. Cape dune mole-rats thus have the potential for opportunistic breeding outside of the typical breeding period. We argue that this represents an adaptation to limited and brief opportunities for mating in this xenophobic and aggressive species.  相似文献   

16.
The nuclear organization of the cholinergic, catecholaminergic, serotonergic and orexinergic systems in the brains of three species of strepsirrhine primates is presented. We aimed to investigate the nuclear complement of these neural systems in comparison to those of simian primates, megachiropterans and other mammalian species. The brains were coronally sectioned and immunohistochemically stained with antibodies against choline acetyltransferase, tyrosine hydroxylase, serotonin and orexin-A. The nuclei identified were identical among the strepsirrhine species investigated and identical to previous reports in simian primates. Moreover, a general similarity to other mammals was found, but specific differences in the nuclear complement highlighted potential phylogenetic interrelationships. The central feature of interest was the structure of the locus coeruleus complex in the primates, where a central compactly packed core (A6c) of tyrosine hydroxylase immunopositive neurons was surrounded by a shell of less densely packed (A6d) tyrosine hydroxylase immunopositive neurons. This combination of compact and diffuse divisions of the locus coeruleus complex is only found in primates and megachiropterans of all the mammalian species studied to date. This neural character, along with variances in a range of other neural characters, supports the phylogenetic grouping of primates with megachiropterans as a sister group.  相似文献   

17.
Blind mole-rats ( Spalax ehrenbergi ) are fossorial solitary rodents that present striking morphological, physiological and behavioural adaptations to the subterranean environment in which they live. Previous studies have shown that mole-rats are specialised in tooth-digging. The rapid eruption-rate of their incisors has evolved to compensate for their excessive wear by excavation. Males use their incisors more than females for digging and fighting, and their rate of incisor eruption is significantly more rapid than in females. Since mole-rats use their incisors for digging throughout the year, we suggest that continuous mechanical pressure on their oral tissues concentrated at the apical sites of the upper incisors leads to cell and tissue fatigue. We provide evidence for 5 stages of palatal perforation by the upper incisors at their apical sites, with maximum perforation characterising aged males. Interspecies comparisons with 7 other fossorial and semi-fossorial rodent species, and with beavers, which expose their incisors to enormous mechanical pressure, revealed that this palatal perforation is unique to the male mole-rat. We suggest that while the fast eruption rate of incisors in the mole-rat compensates for the rapid wear resulting from digging, evolutionary adaptation to continuous tooth-digging is still ongoing, since the physical pressure of digging at the apical sites of the upper incisors leads to tissue destruction, breakage of the palatal bone and possibly to death, as a result of maxillary inflammation.  相似文献   

18.
Xiao J  Levitt JB  Buffenstein R 《Neuroscience》2006,141(3):1415-1435
The naked mole-rat (Rodentia, Bathyergidae: Heterocephalus glaber) is a strictly subterranean eusocial mammal. These rodents show a suite of morphological and physiological adaptations, including brain specializations, to this underground milieu that they have inhabited since the early Miocene. Recently, naked mole-rats have received considerable attention as the longest living rodent known, and some of these brain specializations may be potentially important to their exceptional longevity. To serve as a basis for future brain studies, we have constructed a stereotaxic atlas of the brain of this species, labeling all major brain structures.  相似文献   

19.
The Lesotho mole-rat is a social subterranean rodent that occurs at altitude in the Drakensberg mountain range. As a consequence of living permanently underground these animals rarely if ever are exposed to light. The visual system of African mole-rats is particularly regressed whereas the circadian system is proportionately conserved. This study investigated the locomotor activity patterns of 12 Lesotho mole-rats maintained under a range of different lighting regimes. The majority (91.7%) of mole-rats entrained their activity patterns to a LD photoperiod of 12L/12D. The mole-rats displayed a monophasic nocturnal activity preference. Under constant dark (DD) most of the mole-rats (83.3%) showed a free running circadian activity pattern with a tau of 23.8 h to 24.4 h (mean+/-S.E.M.: 24.07 h+/-0.07 h; n=10). The phase of the activity rhythms each mole-rat exerted during the previous LD-cycle did not change when the animals started free-running after being placed in constant conditions. The duration of re-entrainment to a second bout of LD 12:12 amounted to 9.4+/-2.03 days (mean+/-S.E.M., n=10). Eleven mole-rats (91.7%) adjusted their locomotor activity rhythms to an inversed light regime DL 12:12 and displayed significant nocturnal activity preference. The animals required 9.73+/-2.01 days (mean+/-S.E.M., n=11) to adjust to the DL-photoperiod. The Lesotho mole-rat thus possesses a functional circadian clock that responds to a photic zeitgeber.  相似文献   

20.
The presence of adiaspores of the fungal genus Emmonsia was examined in the lungs of 85 mole rats representing 3 subterranean genera: blind mole rats (Spalax galili and S. golani) from Israel, Ansell's mole-rats (Cryptomys anselli) from Zambia, and silvery mole-rats (Heliophobius argenteocinereus) from Malawi and Zambia. Emmonsiosis was found in 28% of the blind mole rats, 100% of the Ansell's mole-rats, but in none of the silvery mole-rats. Infection in African mole-rats was caused by Emmonsia parva, and infection in Israeli blind mole rats was caused by E. parva and E. crescens. The study indicates that the perennial burrow system of the Ansell's mole-rat forms an appropriate microhabitat for the saprophytic growth of E. parva in Lusaka region, Zambia. We suggest that factors contributing to the striking difference in prevalence of emmonsiosis between the two African mole-rat genera (Cryptomys, Heliophobius) may be their differing burrow types, burrow longevity, and social lives.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号