首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A current focus of tissue engineering is the use of adult human mesenchymal stem cells (hMSCs) as an alternative to autologous chondrocytes for cartilage repair. Several natural and synthetic polymers (including cellulose) have been explored as a biomaterial scaffold for cartilage tissue engineering. While bacterial cellulose (BC) has been used in tissue engineering, its lack of degradability in vivo and high crystallinity restricts widespread applications in the field. Recently we reported the formation of a novel bacterial cellulose that is lysozyme‐susceptible and ‐degradable in vivo from metabolically engineered Gluconacetobacter xylinus. Here we report the use of this modified bacterial cellulose (MBC) for cartilage tissue engineering using hMSCs. MBC's glucosaminoglycan‐like chemistry, combined with in vivo degradability, suggested opportunities to exploit this novel polymer in cartilage tissue engineering. We have observed that, like BC, MBC scaffolds support cell attachment and proliferation. Chondrogenesis of hMSCs in the MBC scaffolds was demonstrated by real‐time RT–PCR analysis for cartilage‐specific extracellular matrix (ECM) markers (collagen type II, aggrecan and SOX9) as well as histological and immunohistochemical evaluations of cartilage‐specific ECM markers. Further, the attachment, proliferation, and differentiation of hMSCs in MBC showed unique characteristics. For example, after 4 weeks of cultivation, the spatial cell arrangement and collagen type‐II and ACAN distribution resembled those in native articular cartilage tissue, suggesting promise for these novel in vivo degradable scaffolds for chondrogenesis. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

2.
Adult chondrocytes are surrounded by a protein‐ and glycosaminoglycan‐rich extracellular matrix and are subjected to dynamic mechanical compression during daily activities. The extracellular matrix and mechanical stimuli play an important role in chondrocyte biosynthesis and homeostasis. In this study, we aimed to develop scaffold and compressive loading conditions that mimic the native cartilage micro‐environment and enable enhanced chondrogenesis for tissue engineering applications. Towards this aim, we fabricated porous scaffolds based on silk fibroin (SF) and SF with gelatin/chondroitin sulfate/hyaluronate (SF‐GCH), seeded the scaffolds with either human bone marrow mesenchymal stromal cells (BM‐MSCs) or chondrocytes, and evaluated their performance with and without dynamic compression. Human chondrocytes derived from osteoarthritic joints and BM‐MSCs were seeded in scaffolds, precultured for 1 week, and subjected to compression with 10% dynamic strain at 1 Hz, 1 hr/day for 2 weeks. When dynamic compression was applied, chondrocytes significantly increased expression of aggrecan (ACAN) and collagen X (COL10A1) up to fivefold higher than free‐swelling controls. In addition, dynamic compression dramatically improved the chondrogenesis and chondrocyte biosynthesis cultured in both SF and SF‐GCH scaffolds evidenced by glycosaminoglycan (GAG) content, GAG/DNA ratio, and immunostaining of collagen type II and aggrecan. However, both chondrocytes and BM‐MSCs cultured in SF‐GCH scaffolds under dynamic compression showed higher GAG content and compressive modulus than those in SF scaffolds. In conclusion, the micro‐environment provided by SF‐GCH scaffolds and dynamic compression enhances chondrocyte biosynthesis and matrix accumulation, indicating their potential for cartilage tissue engineering applications.  相似文献   

3.
This study evaluates the crosslinkage effect of chondroitin sulphate C (CSC) and type II collagen (COL II) on chondrogenesis of mesenchymal stem cells (MSCs) in vitro and in vivo. In the in vitro studies, our results show that the weight ratio CSC:COL II that reaches 1.2:100 (CSC1.2/100–COL II scaffold) can provide an optimal microenvironment for MSC chondrogenesis. When MSCs are cultured in this CSC1.2/100–COL II scaffold, the chondrogenic gene expression of cultured cells is upregulated, while the osteogenic gene expression of these is downregulated. In addition, MSCs cultivated in the CSC1.2/100–COL II scaffold are found to express the highest glycosaminoglycans:DNA ratio as compared to those in scaffolds of other CSC:COL II ratios. Histological and immunohistological evidence also supports the result. In the in vivo study, our results show that MSCs cultivated in the CSC1.2/100–COL II scaffold demonstrate a better repair ability on cartilage lesions than does the COL II scaffold. After 1 month in vivo, the injected MSCs in the CSC1.2/100–COL II scaffold show lacuna structures and stimulate the formation of type II collagen at the defective sites. Six months after transplantation, the generated cells in the CSC1.2/100–COL II group show higher gene expressions of type II collagen and aggrecan but lower gene expression of type I collagen at the defective sites than those in the COL II group. The results strongly suggest that CSC1.2/100–COL II scaffold can serve as a potential candidate for cartilage repair and improve the chondrogenesis of MSCs in general. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

4.
背景:软骨修复的关键是种子细胞在三维支架中的定向分化,但细胞放入三维支架中很难有透明软骨表现。目的:考察3种种子骨髓间充质干细胞,软骨细胞和脂肪源性成熟基质细胞在支架中的成软骨特性。方法:抽取羊骨髓,胰酶消化后获得原代骨髓间充质干细胞细胞、软骨细胞和脂肪源性成熟基质细胞,单层培养扩增。取P1骨髓间充质干细胞,P3软骨细胞和P3脂肪源性成熟基质细胞种植入不同比例(10%,20%,50%,80%,100%)的胶原/透明质酸支架中,在无血清培养液中三维培养。2周后,用SO染色和免疫组织化学染色分析,观察硫酸软骨素和Ⅱ型胶原合成情况。结果与结论:种子细胞在三维支架中特定条件下有成软骨效应,骨髓间充质干细胞在含20%透明质酸的胶原/透明质酸支架扩增少于3代有成软骨效应,软骨细胞传代数更高仍然有成软骨效应,但脂肪源性成熟基质细胞成软骨效应能力较弱。结果提示,在同样条件下骨髓间充质干细胞、软骨细胞较脂肪源性成熟基质细胞有更好的成软骨性能。  相似文献   

5.
背景:软骨修复的关键是种子细胞在三维支架中的定向分化,但细胞放入三维支架中很难有透明软骨表现.目的:考察3种种子骨髓间充质干细胞,软骨细胞和脂肪源性成熟基质细胞在支架中的成软骨特性.方法:抽取羊骨髓,胰酶消化后获得原代骨髓间充质干细胞细胞、软骨细胞和脂肪源性成熟基质细胞,单层培养扩增.取P1骨髓间充质干细胞,P3软骨细胞和P3脂肪源性成熟基质细胞种植入不同比例(10%,20%,50%,80%,100%)的胶原,透明质酸支架中,在无血清培养液中三维培养.2周后,用SO染色和免疫组织化学染色分析,观察硫酸软骨素和Ⅱ型胶原合成情况.结果与结论:种子细胞在三维支架中特定条件下有成软骨效应,骨髓间充质干细胞在含20%透明质酸的胶原/透明质酸支架扩增少于3代有成软骨效应,软骨细胞传代数更高仍然有成软骨效应,但脂肪源性成熟基质细胞成软骨效应能力较弱.结果提示,在同样条件下骨髓问充质干细胞、软骨细胞较脂肪源性成熟基质细胞有更好的成软骨性能.  相似文献   

6.
Cell‐based tissue engineering is a promising approach for treating cartilage lesions, but available strategies still provide a distinct composition of the extracellular matrix and an inferior mechanical property compared to native cartilage. To achieve fully functional tissue replacement more rationally designed biomaterials may be needed, introducing bioactive molecules which modulate cell behavior and guide tissue regeneration. This study aimed at exploring the impact of cell‐instructive, adhesion‐binding (GCWGGRGDSP called RGD) and collagen‐binding (CKLER/CWYRGRL) peptides, incorporated in a tunable, matrixmetalloprotease (MMP)‐responsive multi‐arm poly(ethylene glycol) (starPEG)/heparin hydrogel on cartilage regeneration parameters in vitro and in vivo. MMP‐responsive‐starPEG‐conjugates with cysteine termini and heparin‐maleimide, optionally pre‐functionalized with RGD, CKLER, CWYRGRL or control peptides, were cross‐linked by Michael type addition to embed and grow mesenchymal stromal cells (MSC) or chondrocytes. While starPEG/heparin‐hydrogel strongly supported chondrogenesis of MSC according to COL2A1, BGN and ACAN induction, MMP‐degradability enhanced cell viability and proliferation. RGD‐modification of the gels promoted cell spreading with intense cell network formation without negative effects on chondrogenesis. However, CKLER and CWYRGRL were unable to enhance the collagen content of constructs. RGD‐modification allowed more even collagen type II distribution by chondrocytes throughout the MMP‐responsive constructs, especially in vivo. Collectively, peptide‐instruction via heparin‐enriched MMP‐degradable starPEG allowed adjustment of self‐renewal, cell morphology and cartilage matrix distribution in order to guide MSC and chondrocyte‐based cartilage regeneration towards an improved outcome. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

7.
We have previously reported a natural, human cartilage ECM (extracellular matrix)‐derived three‐dimensional (3D) porous acellular scaffold for in vivo cartilage tissue engineering in nude mice. However, the in vivo repair effects of this scaffold are still unknown. The aim of this study was to further explore the feasibility of application of cell‐loaded scaffolds, using autologous adipose‐derived stem cells (ADSCs), for cartilage defect repair in rabbits. A defect 4 mm in diameter was created on the patellar groove of the femur in both knees, and was repaired with the chondrogenically induced ADSC–scaffold constructs (group A) or the scaffold alone (group B); defects without treatment were used as controls (group C). The results showed that in group A all defects were fully filled with repair tissue and at 6 months post‐surgery most of the repair site was filled with hyaline cartilage. In contrast, in group B all defects were partially filled with repair tissue, but only half of the repair tissue was hyaline cartilage. Defects were only filled with fibrotic tissue in group C. Indeed, histological grading score analysis revealed that an average score in group A was higher than in groups B and C. GAG and type II collagen content and biomechanical property detection showed that the group A levels approached those of normal cartilage. In conclusion, ADSC‐loaded cartilage ECM scaffolds induced cartilage repair tissue comparable to native cartilage in terms of mechanical properties and biochemical components. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

8.
Articular cartilage has limited regenerative capabilities. Chondrocytes from different layers of cartilage have specific properties, and regenerative approaches using zonal chondrocytes may yield better replication of the architecture of native cartilage than when using a single cell population. To obtain high seeding efficiency while still mimicking zonal architecture, cell pellets of expanded deep zone and superficial zone equine chondrocytes were seeded and cultured in two layers on poly(ethylene glycol)‐terephthalate–poly(butylene terephthalate) (PEGT–PBT) scaffolds. Scaffolds seeded with cell pellets consisting of a 1:1 mixture of both cell sources served as controls. Parallel to this, pellets of superficial or deep zone chondrocytes, and combinations of the two cell populations, were cultured without the scaffold. Pellet cultures of zonal chondrocytes in scaffolds resulted in a high seeding efficiency and abundant cartilaginous tissue formation, containing collagen type II and glycosaminoglycans (GAGs) in all groups, irrespective of the donor (n = 3), zonal population or stratified scaffold‐seeding approach used. However, whereas total GAG production was similar, the constructs retained significantly more GAG compared to pellet cultures, in which a high percentage of the produced GAGs were secreted into the culture medium. Immunohistochemistry for zonal markers did not show any differences between the conditions. We conclude that spatially defined pellet culture in 3D scaffolds is associated with high seeding efficiency and supports cartilaginous tissue formation, but did not result in the maintenance or restoration of the original zonal phenotype. The use of pellet‐assembled constructs leads to a better retainment of newly produced GAGs than the use of pellet cultures alone. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

9.
Scaffolds laden with stem cells are a promising approach for articular cartilage repair. Investigations have shown that implantation of artificial matrices, growth factors or chondrocytes can stimulate cartilage formation, but no existing strategies apply mechanical stimulation on stratified scaffolds to mimic the cartilage environment. The purpose of this study was to adapt a spraying method for stratified cartilage engineering and to stimulate the biosubstitute. Human mesenchymal stem cells from bone marrow were seeded in an alginate (Alg)/hyaluronic acid (HA) or Alg/hydroxyapatite (Hap) gel to direct cartilage and hypertrophic cartilage/subchondral bone differentiation, respectively, in different layers within a single scaffold. Homogeneous or composite stratified scaffolds were cultured for 28 days and cell viability and differentiation were assessed. The heterogeneous scaffold was stimulated daily. The mechanical behaviour of the stratified scaffolds were investigated by plane–strain compression tests. Results showed that the spraying process did not affect cell viability. Moreover, cell differentiation driven by the microenvironment was increased with loading: in the layer with Alg/HA, a specific extracellular matrix of cartilage, composed of glycosaminoglycans and type II collagen was observed, and in the Alg/Hap layer more collagen X was detected. Hap seemed to drive cells to a hypertrophic chondrocytic phenotype and increased mechanical resistance of the scaffold. In conclusion, mechanical stimulations will allow for the production of a stratified biosubstitute, laden with human mesenchymal stem cells from bone marrow, which is capable in vivo to mimic all depths of chondral defects, thanks to an efficient combination of stem cells, biomaterial compositions and mechanical loading.  相似文献   

10.
Commonly used polymer‐based scaffolds often lack visco‐elastic properties to serve as a replacement for cartilage tissue. This study explores the effect of reinforcement of silk matrix with chitosan microparticles to create a visco‐elastic matrix that could support the redifferentiation of expanded chondrocytes. Goat chondrocytes produced collagen type II and glycosaminoglycan (GAG)‐enriched matrix on all the scaffolds (silk:chitosan 1:1, 1:2 and 2:1). The control group of silk‐only constructs suffered from leaching out of GAG molecules into the medium. Chitosan‐reinforced scaffolds retained a statistically significant (p < 0.02) higher amount of GAG, which in turn significantly increased (p < 0.005) the aggregate modulus (as compared to silk‐only controls) of the construct akin to that of native tissue. Furthermore, the microcomposite constructs demonstrated highly pronounced hysteresis at 4% strain up to 400 cycles, mimicking the visco‐elastic properties of native cartilage tissue. These results demonstrated a step towards optimizing the design of biomaterial scaffolds used for cartilage tissue engineering. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

11.
Regenerative medicine is targeted to improve, restore or replace damaged tissues or organs using a combination of cells, materials and growth factors. Both tissue engineering and developmental biology currently deal with the process of tissue self‐assembly and extracellular matrix (ECM) deposition. In this investigation, additive manufacturing (AM) with a multihead deposition system (MHDS) was used to fabricate three‐dimensional (3D) cell‐printed scaffolds using layer‐by‐layer (LBL) deposition of polycaprolactone (PCL) and chondrocyte cell‐encapsulated alginate hydrogel. Appropriate cell dispensing conditions and optimum alginate concentrations for maintaining cell viability were determined. In vitro cell‐based biochemical assays were performed to determine glycosaminoglycans (GAGs), DNA and total collagen contents from different PCL–alginate gel constructs. PCL–alginate gels containing transforming growth factor‐β (TGFβ) showed higher ECM formation. The 3D cell‐printed scaffolds of PCL–alginate gel were implanted in the dorsal subcutaneous spaces of female nude mice. Histochemical [Alcian blue and haematoxylin and eosin (H&E) staining] and immunohistochemical (type II collagen) analyses of the retrieved implants after 4 weeks revealed enhanced cartilage tissue and type II collagen fibril formation in the PCL–alginate gel (+TGFβ) hybrid scaffold. In conclusion, we present an innovative cell‐printed scaffold for cartilage regeneration fabricated by an advanced bioprinting technology. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

12.
There is no therapy currently available for fully repairing articular cartilage lesions. Our laboratory has recently developed a visible light‐activatable methacrylated gelatin (mGL) hydrogel, with the potential for cartilage regeneration. In this study, we further optimized mGL scaffolds by supplementing methacrylated hyaluronic acid (mHA), which has been shown to stimulate chondrogenesis via activation of critical cellular signalling pathways. We hypothesized that the introduction of an optimal ratio of mHA would enhance the biological properties of mGL scaffolds and augment chondrogenesis of human bone marrow‐derived mesenchymal stem cells (hBMSCs). To test this hypothesis, hybrid scaffolds consisting of mGL and mHA at different weight ratios were fabricated with hBMSCs encapsulated at 20 × 106 cells/ml and maintained in a chondrogenesis‐promoting medium. The chondrogenenic differentiation of hBMSCs, within different scaffolds, was estimated after 8 weeks of culture. Our results showed that mGL/mHA at a 9:1 (%, w/v) ratio resulted in the lowest hBMSC hypertrophy and highest glycosaminoglycan production, with a slightly increased volume of the entire construct. The applicability of this optimally designed mGL/mHA hybrid scaffold for cartilage repair was then examined in vivo. A full‐thickness cylindrical osteochondral defect was surgically created in the rabbit femoral condyle, and a three‐dimensional cell–biomaterial construct was fabricated by in situ photocrosslinking to fully fill the lesion site. The results showed that implantation of the mGL/mHA (9:1) construct resulted in both cartilage and subchondral bone regeneration after 12 weeks, supporting its use as a promising scaffold for repair and resurfacing of articular cartilage defects, in the clinical setting.  相似文献   

13.
One key point in the development of new bioimplant matrices for the reconstruction and replacement of cartilage defects is to provide an adequate microenvironment to ensure chondrocyte migration and de novo synthesis of cartilage‐specific extracellular matrix (ECM). A recently developed decellularization and sterilization process maintains the three‐dimensional (3D) collagen structure of native septal cartilage while increasing matrix porosity, which is considered to be crucial for cartilage tissue engineering. Human primary nasal septal chondrocytes were amplified in monolayer culture and 3D‐cultured on processed porcine nasal septal cartilage scaffolds. The influence of chondrogenic growth factors on neosynthesis of ECM proteins was examined at the protein and gene expression levels. Seeding experiments demonstrated that processed xenogenic cartilage matrices provide excellent environmental properties for human nasal septal chondrocytes with respect to cell adhesion, migration into the matrix and neosynthesis of cartilage‐specific ECM proteins, such as collagen type II and aggrecan. Matrix biomechanical stability indicated that the constructs retrieve full stability and function during 3D culture for up to 42 days, proportional to collagen type II and GAG production. Thus, processed xenogenic cartilage offers a suitable environment for human nasal chondrocytes and has promising potential for cartilage tissue engineering in the head and neck region. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

14.
Numerous growth factor delivery systems have been developed for tissue engineering. However, little is known about how the dose of a specific protein will influence tissue regeneration, or how different patients will respond to altered levels of growth factor presentation. The objective of the present study was to assess stem cell chondrogenesis within extracellular‐matrix (ECM)‐derived scaffolds loaded with escalating levels of transforming growth factor (TGF)‐β3. It was also sought to determine if stem cells display a donor‐dependent response to different doses of TGF‐β3, from low (5 ng) to high (200 ng), released from such scaffolds. It was found that ECM‐derived scaffolds possess the capacity to bind and release increasing amounts of TGF‐β3, with between 60% and 75% of this growth factor released into the media over the first 12 days of culture. After seeding these scaffolds with human infrapatellar fat pad‐derived stem cells (FPSCs), it was found that cartilage‐specific ECM accumulation was greatest for the higher levels of growth factor loading. Importantly, soak‐loading cartilage ECM‐derived scaffolds with high levels of TGF‐β3 always resulted in at least comparable levels of chondrogenesis to controls where this growth factor was continuously added to the culture media. Similar results were observed for FPSCs from all donors, although the absolute level of secreted matrix did vary from donor to donor. Therefore, while no single growth factor release profile will be optimal for all patients, the results of this study suggest that the combination of a highly porous cartilage ECM‐derived scaffold coupled with appropriate levels of TGF‐β3 can consistently drive chondrogenesis of adult stem cells. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

15.
Cartilage tissue engineering remains problematic because no systems are able to induce signals that contribute to native cartilage structure formation. Therefore, we tested the potentiality of gelatin‐polyethylene glycol scaffolds containing three different concentrations of chitosan (CH; 0%, 8%, and 16%) on chondrogenic differentiation of human platelet lysate‐expanded human bone marrow mesenchymal stromal cells (hBM‐MSCs). Typical chondrogenic (SOX9, collagen type 2, and aggrecan), hypertrophic (collagen type 10), and fibrotic (collagen type 1) markers were evaluated at gene and protein level at Days 1, 28, and 48. We demonstrated that 16% CH scaffold had the highest percentage of relaxation with the fastest relaxation rate. In particular, 16% CH scaffold, combined with chondrogenic factor TGFβ3, was more efficient in inducing hBM‐MSCs chondrogenic differentiation compared with 0% or 8% scaffolds. Collagen type 2, SOX9, and aggrecan showed the same expression in all scaffolds, whereas collagen types 10 and 1 markers were efficiently down‐modulated only in 16% CH. We demonstrated that using human platelet lysate chronically during hBM‐MSCs chondrogenic differentiation, the chondrogenic, hypertrophic, and fibrotic markers were significantly decreased. Our data demonstrate that only a high concentration of CH, combined with TGFβ3, creates an environment capable of guiding in vitro hBM‐MSCs towards a phenotypically stable chondrogenesis.  相似文献   

16.
Articular cartilage is easily damaged, yet difficult to repair. Cartilage tissue engineering seems a promising therapeutic solution to restore articular cartilage structure and function, with mesenchymal stem cells (MSCs) receiving increasing attention for their promise to promote cartilage repair. It is known from embryology that members of the fibroblast growth factor (FGF), transforming growth factor‐β (TGFβ) and wingless‐type (Wnt) protein families are involved in controlling different differentiation stages during chondrogenesis. Individually, these pathways have been extensively studied but so far attempts to recapitulate embryonic development in in vitro MSC chondrogenesis have failed to produce stable and functioning articular cartilage; instead, transient hypertrophic cartilage is obtained. We believe a better understanding of the simultaneous integration of these factors will improve how we relate embryonic chondrogenesis to in vitro MSC chondrogenesis. This narrative review attempts to define current knowledge on the crosstalk between the FGF, TGFβ and Wnt signalling pathways during different stages of mesenchymal chondrogenesis. Connecting embryogenesis and in vitro differentiation of human MSCs might provide insights into how to improve and progress cartilage tissue engineering for the future. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

17.
The aim of this study was to evaluate a cell‐seeded nanofibrous scaffold for cartilage repair in vivo. We used a biodegradable poly(ε‐caprolactone) (PCL) nanofibrous scaffold seeded with allogeneic chondrocytes or xenogeneic human mesenchymal stem cells (MSCs), or acellular PCL scaffolds, with no implant as a control to repair iatrogenic, 7 mm full‐thickness cartilage defects in a swine model. Six months after implantation, MSC‐seeded constructs showed the most complete repair in the defects compared to other groups. Macroscopically, the MSC‐seeded constructs regenerated hyaline cartilage‐like tissue and restored a smooth cartilage surface, while the chondrocyte‐seeded constructs produced mostly fibrocartilage‐like tissue with a discontinuous superficial cartilage contour. Incomplete repair containing fibrocartilage or fibrous tissue was found in the acellular constructs and the no‐implant control group. Quantitative histological evaluation showed overall higher scores for the chondrocyte‐ and MSC‐seeded constructs than the acellular construct and the no‐implant groups. Mechanical testing showed the highest equilibrium compressive stress of 1.5 MPa in the regenerated cartilage produced by the MSC‐seeded constructs, compared to 1.2 MPa in the chondrocyte‐seeded constructs, 1.0 MPa in the acellular constructs and 0.2 MPa in the no‐implant group. No evidence of immune reaction to the allogeneically‐ and xenogeneically‐derived regenerated cartilage was observed, possibly related to the immunosuppressive activities of MSCs, suggesting the feasibility of allogeneic or xenogeneic transplantation of MSCs for cell‐based therapy. Taken together, our results showed that biodegradable nanofibrous scaffolds seeded with MSCs effectively repair cartilage defects in vivo, and that the current approach is promising for cartilage repair. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

18.
In the current study, the effect of superimposing platelet‐rich plasma (PRP) on different culture mediums in a three‐dimensional alginate scaffold encapsulated with adipose‐derived mesenchymal stem cells for cartilage tissue repair is reported. The three‐dimensional alginate scaffolds with co‐administration of PRP and/or chondrogenic supplements had a significant effect on the differentiation of adipose mesenchymal stem cells into mature cartilage, as assessed by an evaluation of the expression of cartilage‐related markers of Sox9, collagen II, aggrecan and collagen, and glycosaminoglycan assays. For in vivo studies, following induction of osteochondral lesion in a rabbit model, a high degree of tissue regeneration in the alginate plus cell group (treated with PRP plus chondrogenic medium) compared with other groups of cell‐free alginate and untreated groups (control) were observed. After 8 weeks, in the alginate plus cell group, functional chondrocytes were observed, which produced immature matrix, and by 16 weeks, the matrix and hyaline‐like cartilage became completely homogeneous and integrated with the natural surrounding cartilage in the defect site. Similar effect was also observed in the subchondral bone. The cell‐free scaffolds formed fibrocartilage tissue, and the untreated group did not form a continuous cartilage over the defect by 16 weeks.  相似文献   

19.
目的:探讨复合支架的组织工程学特性及其修复关节软骨缺损的性能评价。方法:以"关节软骨、生物材料、工程软骨、复合材料、复合支架"为中文关键词,以"tissue enginneering,articularcartilage,scaffold material"为英文关键词,采用计算机检索中国期刊全文数据库、PubMed数据库(1993-01/2010-11)相关文章。纳入复合支架材料-细胞复合物修复关节软骨损伤相关的文章,排除重复研究或Meta分析类文章。结果:共入选18篇文章进入结果分析。复合支架是当前软骨组织工程中应用较多的支架,它是将具有互补特征的生物相容性可降解支架,按一定比例和方式组合,设计出结构与性能优化的复合支架。较单一支架材料具有显著优越性,具有更好的生物相容性和一定强度的韧性,较好的孔隙和机械强度。复合支架的制备不仅包括同一类生物材料的复合,还包括不同类别生物材料之间的交叉复合。可分为纯天然支架材料、纯人工支架材料以及天然与人工支架材料的复合等3类。结论:复合支架使生物材料具有互补特性,一定程度上满足了理想生物支架材料应具有的综合特点,但目前很多研究仍处于实验阶段,还有一些问题有待于解决,如不同材料的复合比例、复合工艺等。  相似文献   

20.
The repair of articular cartilage lesions remains a clinical problem. Two novel approaches to cartilage formation, gene transfer and tissue engineering, have been limited by short-term transgene expression in transplanted chondrocytes and inability to deliver regulatory signals to engineered tissues according to specific temporal and spatial patterns. We tested the hypothesis that the transfer of a cDNA encoding the human insulin-like growth factor I (IGF-I) can provide sustained gene expression in cell-polymer constructs in vitro and in vivo and enhance the structural and functional properties of tissue-engineered cartilage. Bovine articular chondrocytes genetically modified to overexpress human IGF-I were seeded into polymer scaffolds, cultured in bioreactors in serum-free medium, and implanted subcutaneously in nude mice; constructs based on nontransfected or lacZ-transfected chondrocytes served as controls. Transgene expression was maintained throughout the duration of the study, more than 4 weeks in vitro followed by an additional 10 days either in vitro or in vivo. Chondrogenesis progressed toward the formation of cartilaginous tissue that was characterized by the presence of glycosaminoglycans, aggrecan, and type II collagen, and the absence of type I collagen. IGF-I constructs contained increased amounts of glycosaminoglycans and collagen and confined-compression equilibrium moduli as compared with controls; all groups had subnormal cellularity. The amounts of glycosaminoglycans and collagen per unit DNA in IGF-I constructs were markedly higher than in constructs cultured in serum-supplemented medium or native cartilage. This enhancement of chondrogenesis by spatially defined overexpression of human IGF-I suggests that cartilage tissue engineering based on genetically modified chondrocytes may be advantageous as compared with either gene transfer or tissue engineering alone.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号