首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In spite of being a new field, three‐dimensional (3D) bioprinting has undergone rapid growth in the recent years. Bioprinting methods offer a unique opportunity for stem cell distribution, positioning, and differentiation at the microscale to make the differentiated architecture of any tissue while maintaining precision and control over the cellular microenvironment. Bioprinting introduces a wide array of approaches to modify stem cell fate. This review discusses these methodologies of 3D bioprinting stem cells. Fabricating a fully operational tissue or organ construct with a long life will be the most significant challenge of 3D bioprinting. Once this is achieved, a whole human organ can be fabricated for the defect place at the site of surgery.  相似文献   

2.
Several attempts have been made to engineer a viable three‐dimensional (3D) bone tissue equivalent using conventional tissue engineering strategies, but with limited clinical success. Using 3D bioprinting technology, scientists have developed functional prototypes of clinically relevant and mechanically robust bone with a functional bone marrow. Although the field is in its infancy, it has shown immense potential in the field of bone tissue engineering by re‐establishing the 3D dynamic micro‐environment of the native bone. Inspite of their in vitro success, maintaining the viability and differentiation potential of such cell‐laden constructs overtime, and their subsequent preclinical testing in terms of stability, mechanical loading, immune responses, and osseointegrative potential still needs to be explored. Progress is slow due to several challenges such as but not limited to the choice of ink used for cell encapsulation, optimal cell source, bioprinting method suitable for replicating the heterogeneous tissues and organs, and so on. Here, we summarize the recent advancements in bioprinting of bone, their limitations, challenges, and strategies for future improvisations. The generated knowledge will provide deep insights on our current understanding of the cellular interactions with the hydrogel matrices and help to unravel new methodologies for facilitating precisely regulated stem cell behaviour.  相似文献   

3.
Rheumatoid arthritis (RA) is a chronic inflammatory disease that leads to progressive joint destruction. To further understand the process of rheumatoid cartilage damage, an in vitro model consisting of an interactive tri‐culture of synovial fibroblasts (SFs), LPS‐stimulated macrophages and a primary chondrocyte‐based tissue‐engineered construct was established. The tissue‐engineered construct has a composition similar to that of human cartilage, which is rich in collagen type II and proteoglycans. Data generated from this model revealed that healthy chondrocytes were activated in the presence of SFs and macrophages. The activated chondrocytes subsequently displayed aberrant behaviours as seen in a disease state such as increased apoptosis, decreased gene expression for matrix components such as type II collagen and aggrecan, increased gene expression for tissue‐degrading enzymes (MMP‐1, ‐3, ‐13 and ADAMTS‐4, ‐5), and upregulation of inflammatory mediator gene expression (TNF‐α, IL‐1β, IL‐6 and IKBKB). Additionally, the inclusion of SFs and macrophages in the model enabled both cell types to more closely replicate an in vivo role in mediating cartilage destruction. This is evidenced by extensive matrix loss, detected in the model through immunostaining and biochemical analysis. Subsequent drug treatment with celecoxib has shown that the model was able to respond to the therapeutic effects of this drug by reversing cartilage damage. This study showed that the model was able to recapitulate certain pathological features of an RA cartilage. If properly validated, this model potentially can be used for screening new therapeutic drugs and strategies, thereby contributing to the improvement of anti‐rheumatic treatment. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

4.
We have previously reported a natural, human cartilage ECM (extracellular matrix)‐derived three‐dimensional (3D) porous acellular scaffold for in vivo cartilage tissue engineering in nude mice. However, the in vivo repair effects of this scaffold are still unknown. The aim of this study was to further explore the feasibility of application of cell‐loaded scaffolds, using autologous adipose‐derived stem cells (ADSCs), for cartilage defect repair in rabbits. A defect 4 mm in diameter was created on the patellar groove of the femur in both knees, and was repaired with the chondrogenically induced ADSC–scaffold constructs (group A) or the scaffold alone (group B); defects without treatment were used as controls (group C). The results showed that in group A all defects were fully filled with repair tissue and at 6 months post‐surgery most of the repair site was filled with hyaline cartilage. In contrast, in group B all defects were partially filled with repair tissue, but only half of the repair tissue was hyaline cartilage. Defects were only filled with fibrotic tissue in group C. Indeed, histological grading score analysis revealed that an average score in group A was higher than in groups B and C. GAG and type II collagen content and biomechanical property detection showed that the group A levels approached those of normal cartilage. In conclusion, ADSC‐loaded cartilage ECM scaffolds induced cartilage repair tissue comparable to native cartilage in terms of mechanical properties and biochemical components. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

5.
In order to examine the differentiation potential of the tenocytes expanded in our defined culture medium (reported previously) and the effect of sequential combination of the two culture conditions on human tenocytes, a two‐dimensional and three‐dimensional experimental approach was used. Human tenocytes were sequentially exposed to 1% fetal bovine serum (FBS) + 50 ng/ml platelet‐derived growth factor‐BB (PDGFBB) + 50 ng/ml basic fibroblast growth factor (bFGF) for the first 14 days (expansion phase) followed by a further 14‐day culture in the presence of 10 ng/ml transforming growth factor β‐3 plus 50 ng/ml insulin‐like growth factor 1, but in the absence of serum (differentiation phase). The results showed that by sequential treatment of human tenocytes maintaining a long‐term two‐dimensional tenocyte culture in vitro for up to 28 days was possible. These findings were further verified using a three‐dimensional scaffold (Bombyx silk) whereby the tendon‐like constructs formed resembled macroscopically and microscopically the constructs formed in 10% FBS supplemented culture media and the human hamstring tendon. These findings were further substantiated using haematoxylin and eosin staining, scanning electron microscopy and by immunohistochemical detection of type I collagen. In addition, the mechanical properties of the three‐dimensional constructs were determined to be significantly superior to that of the natural human hamstring tendon. This is the first report to demonstrate a possible approach in expanding and differentiating human tenocytes for tendon tissue engineering. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

6.
Articular cartilage has limited regenerative capabilities. Chondrocytes from different layers of cartilage have specific properties, and regenerative approaches using zonal chondrocytes may yield better replication of the architecture of native cartilage than when using a single cell population. To obtain high seeding efficiency while still mimicking zonal architecture, cell pellets of expanded deep zone and superficial zone equine chondrocytes were seeded and cultured in two layers on poly(ethylene glycol)‐terephthalate–poly(butylene terephthalate) (PEGT–PBT) scaffolds. Scaffolds seeded with cell pellets consisting of a 1:1 mixture of both cell sources served as controls. Parallel to this, pellets of superficial or deep zone chondrocytes, and combinations of the two cell populations, were cultured without the scaffold. Pellet cultures of zonal chondrocytes in scaffolds resulted in a high seeding efficiency and abundant cartilaginous tissue formation, containing collagen type II and glycosaminoglycans (GAGs) in all groups, irrespective of the donor (n = 3), zonal population or stratified scaffold‐seeding approach used. However, whereas total GAG production was similar, the constructs retained significantly more GAG compared to pellet cultures, in which a high percentage of the produced GAGs were secreted into the culture medium. Immunohistochemistry for zonal markers did not show any differences between the conditions. We conclude that spatially defined pellet culture in 3D scaffolds is associated with high seeding efficiency and supports cartilaginous tissue formation, but did not result in the maintenance or restoration of the original zonal phenotype. The use of pellet‐assembled constructs leads to a better retainment of newly produced GAGs than the use of pellet cultures alone. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

7.
Tissue‐engineering strategies may be employed in the development of in vitro breast tissue models for use in testing regimens of drug therapies and vaccines. The physical and chemical interactions that occur among cells and extracellular matrix components can also be elucidated with these models to gain an understanding of the progression of transformed epithelial cells into tumours and the ultimate metastases of tumour cells. The modified inkjet printer may be a useful tool for creating three‐dimensional (3D) in vitro models, because it offers an inexpensive and high‐throughput solution to microfabrication, and because the printer can be easily manipulated to produce varying tissue attributes. We hypothesized, however, that when ink is replaced with a biologically based fluid (i.e. a ‘bio‐ink’), specifically a serum‐free cell culture medium, printer nozzle failure can result from salt scale build‐up as fluid evaporates on the printhead surface. In this study, ethylene diamine tetra‐acetic acid (EDTA) was used as a culture medium additive to prevent salt scaling and cell aggregation during the bioprinting process. The results showed that EDTA, at a concentration typically found in commercially available trypsin solutions (0.53 mM ), prevented nozzle failure when a serum‐free culture medium was printed from a nozzle at 1000 drops/s. Furthermore, increasing concentrations of EDTA appeared to mildly decrease aggregation of 4T07 cells. Cell viability studies were performed to demonstrate that addition of EDTA did not result in significant cell death. In conclusion, it is recommended that EDTA be incorporated into bio‐ink solutions containing salts that could lead to nozzle failure. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

8.
One of the leading causes of death worldwide is heart failure. Despite advances in the treatment and prevention of heart failure, the number of affected patients continues to increase. We have recently developed 3D‐bioprinted biomaterial‐free cardiac tissue that has the potential to improve cardiac function. This study aims to evaluate the in vivo regenerative potential of these 3D‐bioprinted cardiac patches. The cardiac patches were generated using 3D‐bioprinting technology in conjunction with cellular spheroids created from a coculture of human‐induced pluripotent stem cell‐derived cardiomyocytes, fibroblasts, and endothelial cells. Once printed and cultured, the cardiac patches were implanted into a rat myocardial infarction model (n = 6). A control group (n = 6) without the implantation of cardiac tissue patches was used for comparison. The potential for regeneration was measured 4 weeks after the surgery with histology and echocardiography. 4 weeks after surgery, the survival rates were 100% and 83% in the experimental and the control group, respectively. In the cardiac patch group, the average vessel counts within the infarcted area were higher than those within the control group. The scar area in the cardiac patch group was significantly smaller than that in the control group. (Figure S1 ) Echocardiography showed a trend of improvement of cardiac function for the experimental group, and this trend correlated with increased patch production of extracellular vesicles. 3D‐bioprinted cardiac patches have the potential to improve the regeneration of cardiac tissue and promote angiogenesis in the infarcted tissues and reduce the scar tissue formation.  相似文献   

9.
Gellan gum is a polysaccharide that has been recently proposed by our group for cartilage tissue‐engineering applications. It is commonly used in the food and pharmaceutical industry and has the ability to form stable gels without the use of harsh reagents. Gellan gum can function as a minimally invasive injectable system, gelling inside the body in situ under physiological conditions and efficiently adapting to the defect site. In this work, gellan gum hydrogels were combined with human articular chondrocytes (hACs) and were subcutaneously implanted in nude mice for 4 weeks. The implants were collected for histological (haematoxylin and eosin and Alcian blue staining), biochemical [dimethylmethylene blue (GAG) assay], molecular (real‐time PCR analyses for collagen types I, II and X, aggrecan) and immunological analyses (immunolocalization of collagen types I and II). The results showed a homogeneous cell distribution and the typical round‐shaped morphology of the chondrocytes within the matrix upon implantation. Proteoglycans synthesis was detected by Alcian blue staining and a statistically significant increase of proteoglycans content was measured with the GAG assay quantified from 1 to 4 weeks of implantation. Real‐time PCR analyses showed a statistically significant upregulation of collagen type II and aggrecan levels in the same periods. The immunological assays suggest deposition of collagen type II along with some collagen type I. The overall data shows that gellan gum hydrogels adequately support the growth and ECM deposition of human articular chondrocytes when implanted subcutaneously in nude mice. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

10.
Recently, computer‐designed three‐dimensional (3D) printing techniques have emerged as an active research area with almost unlimited possibilities. In this study, we used a computer‐designed 3D scaffold to drive new bone formation in a bone defect. Poly‐L‐lactide (PLLA) and bioactive β‐tricalcium phosphate (TCP) were simply mixed to prepare ink. PLLA + TCP showed good printability from the micronozzle and solidification within few seconds, indicating that it was indeed printable ink for layer‐by‐layer printing. In the images, TCP on the surface of (and/or inside) PLLA in the printed PLLA + TCP scaffold looked dispersed. MG‐63 cells (human osteoblastoma) adhered to and proliferated well on the printed PLLA + TCP scaffold. To assess new bone formation in vivo, the printed PLLA + TCP scaffold was implanted into a full‐thickness cranial bone defect in rats. The new bone formation was monitored by microcomputed tomography and histological analysis of the in vivo PLLA + TCP scaffold with or without MG‐63 cells. The bone defect was gradually spontaneously replaced with new bone tissues when we used both bioactive TCP and MG‐63 cells in the PLLA scaffold. Bone formation driven by the PLLA + TCP30 scaffold with MG‐63 cells was significantly greater than that in other experimental groups. Furthermore, the PLLA + TCP scaffold gradually degraded and matched well the extent of the gradual new bone formation on microcomputed tomography. In conclusion, the printed PLLA + TCP scaffold effectively supports new bone formation in a cranial bone defect.  相似文献   

11.
The remnant auricular cartilage from microtia has become a valuable cell source for ear regeneration. It is important to clarify the issue of whether the genetically defective microtia chondrocytes could engineer cartilage tissue comparable to healthy ear chondrocytes. In the current study, the histology and cell yield of native microtia and normal ear cartilage were investigated, and the biological characteristics of derived chondrocytes examined, including proliferation, chondrogenic phenotype and cell migration. Furthermore, the in vivo cartilage‐forming capacity of passaged microtia and normal auricular chondrocytes were systematically compared by seeding them onto polyglycolic acid/polylactic acid scaffold to generate tissue engineered cartilage in nude mice. Through histological examinations and quantitative analysis of glycosaminoglycan, Young's modulus, and the expression of cartilage‐related genes, it was found that microtia chondrocytes had a slower dedifferentiation rate with the decreased expression of stemness‐related genes, and weaker migration ability than normal ear chondrocytes, and the microtia chondrocytes‐engineered cartilage was biochemically and biomechanically inferior to that constructed using normal ear chondrocytes. This study provides valuable information for the clinical application of the chondrocytes derived from congenital microtia to engineer cartilage. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

12.
Several strategies have been used to promote bone repair, with many failing due to the lack of osteoinduction. This report describes an approach for promoting bone healing that attempts to overcome prior shortcomings. First, the role was compared of different concentrations of gelatine (Gel), nanostructured‐hydroxyapatite (nHA), simvastatin (Sim) and nHA‐Sim particles on healing of small femoral bone defects in rabbits. The effective concentration of each was studied, and then a three‐dimensional porous scaffold was designed using Gel, nHA and Sim, which was then cross‐linked with genipin. Morphology, degradation profile and Sim delivery properties of the scaffolds were evaluated in vitro. Then, the scaffolds were subcutaneously tested in vivo to determine their biocompatibility, biodegradability and osteogenic properties. Finally, the scaffolds were implanted in a large radial bone defect model in rabbits and their effect on bone regeneration was investigated. The Gel, nHA and Sim with concentrations of 1, 1 and 5 mg/femoral hole were effective during bone healing respectively, and the Sim showed the most osteoinduction and osteoconduction when compared to controls. The Gel‐Sim and Gel‐nHA‐Sim scaffolds continuously and homogenously released Sim into the simulated body fluid in vitro. Subcutaneously, the scaffolds were biocompatible, biodegradable and able to produce ectopic bone after 30 days. Thirty and 60 days after implantation of the scaffolds in radial bone defects, they were completely degraded and replaced with the new bone that had significantly superior morphology, mineral density, bioelectrical, biophysical and micromechanical properties compared with controls. Such bioactive grafts may be a suitable option for bone reconstruction, healing and repair.  相似文献   

13.
Surgical repair of larger peripheral nerve lesions requires the use of autologous nerve grafts. At present, clinical alternatives to avoid nerve transplantation consist of empty tubes, which are only suitable for the repair over short distances and have limited success. We developed a cell‐free, three‐dimensional scaffold for axonal guidance in long‐distance nerve repair. Sub‐micron scale fibres of biodegradable poly‐ε‐caprolactone (PCL) and collagen/PCL (c/PCL) blends were incorporated in a gelatin matrix and inserted in collagen tubes. The conduits were tested by replacing 15‐mm‐long segments of rat sciatic nerves in vivo. Biocompatibility of the implants and nerve regeneration were assessed histologically, with electromyography and with behavioural tests for motor functions. Functional repair was achieved in all animals with autologous transplants, in 12 of 13 rats that received artificial implants with an internal structure and in half of the animals with empty nerve conduits. In rats with implants containing c/PCL fibres, the extent of recovery (compound muscle action potentials, motor functions of the hind limbs) was superior to animals that had received empty implants, but not as good as with autologous nerve transplantation. Schwann cell migration and axonal regeneration were observed in all artificial implants, and muscular atrophy was reduced in comparison with animals that had received no implants. The present design represents a significant step towards cell‐free, artificial nerve bridges that can replace autologous nerve transplants in the clinic. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

14.
Regenerative medicine is targeted to improve, restore or replace damaged tissues or organs using a combination of cells, materials and growth factors. Both tissue engineering and developmental biology currently deal with the process of tissue self‐assembly and extracellular matrix (ECM) deposition. In this investigation, additive manufacturing (AM) with a multihead deposition system (MHDS) was used to fabricate three‐dimensional (3D) cell‐printed scaffolds using layer‐by‐layer (LBL) deposition of polycaprolactone (PCL) and chondrocyte cell‐encapsulated alginate hydrogel. Appropriate cell dispensing conditions and optimum alginate concentrations for maintaining cell viability were determined. In vitro cell‐based biochemical assays were performed to determine glycosaminoglycans (GAGs), DNA and total collagen contents from different PCL–alginate gel constructs. PCL–alginate gels containing transforming growth factor‐β (TGFβ) showed higher ECM formation. The 3D cell‐printed scaffolds of PCL–alginate gel were implanted in the dorsal subcutaneous spaces of female nude mice. Histochemical [Alcian blue and haematoxylin and eosin (H&E) staining] and immunohistochemical (type II collagen) analyses of the retrieved implants after 4 weeks revealed enhanced cartilage tissue and type II collagen fibril formation in the PCL–alginate gel (+TGFβ) hybrid scaffold. In conclusion, we present an innovative cell‐printed scaffold for cartilage regeneration fabricated by an advanced bioprinting technology. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

15.
Differentiated human neural stem cells were cultured in an inert three‐dimensional (3D) scaffold and, unlike two‐dimensional (2D) but otherwise comparable monolayer cultures, formed spontaneously active, functional neuronal networks that responded reproducibly and predictably to conventional pharmacological treatments to reveal functional, glutamatergic synapses. Immunocytochemical and electron microscopy analysis revealed a neuronal and glial population, where markers of neuronal maturity were observed in the former. Oligonucleotide microarray analysis revealed substantial differences in gene expression conferred by culturing in a 3D vs a 2D environment. Notable and numerous differences were seen in genes coding for neuronal function, the extracellular matrix and cytoskeleton. In addition to producing functional networks, differentiated human neural stem cells grown in inert scaffolds offer several significant advantages over conventional 2D monolayers. These advantages include cost savings and improved physiological relevance, which make them better suited for use in the pharmacological and toxicological assays required for development of stem cell‐based treatments and the reduction of animal use in medical research. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

16.
Chitosan–gelatin B microspheres with an open, interconnected, highly macroporous (100–200 µm) structure were prepared via a three‐step protocol combining freeze‐drying with an electrostatic and ionic cross‐linking method. Saturated tripolyphosphate ethanol solution (85% ethanol) was chosen as the crosslinking agent to prevent destruction of the porous structure and to improve the biostability of the chitosan–gelatin B microspheres, with N‐(3‐dimethylaminopropyl)‐N′‐ethyl‐carbodiimide/N‐hydroxysuccinimide as a second crosslinking agent to react with gelatin A and fixed chitosan–gelatin B microspheres to attain improved biocompatibility. Water absorption of the three‐dimensional macroporous chitosan–gelatin B microspheres (3D‐P‐CGMs) was 12.84, with a porosity of 85.45%. In vitro lysozyme degradation after 1, 3, 5, 7, 10, 14, and 21 days showed improved biodegradation in the 3D‐P‐CGMs. The morphology of human hepatoma cell lines (HepG2 cells) cultured on the 3D‐P‐CGMs was spherical, unlike that of cells cultured under traditional two‐dimensional conditions. Scanning electron microscopy and paraffin sections were used to confirm the porous structure of the 3D‐P‐CGMs. HepG2 cells were able to migrate inside through the pore. Cell proliferation and levels of albumin and lactate dehydrogenase suggested that the 3D‐P‐CGMs could provide a larger specific surface area and an appropriate microenvironment for cell growth and survival. Hence, the 3D‐P‐CGMs are eminently suitable as macroporous scaffolds for cell cultures in tissue engineering and cell carrier studies. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

17.
Tissue engineering was proposed approximately 15 years ago as an alternative and innovative way to address tissue regeneration problems. During the development of this field, researchers have proposed a variety of ways of looking into the regeneration and engineering of tissues, using different types of materials coupled with a wide range of cells and bioactive agents. This trilogy is commonly considered the basis of a tissue‐engineering strategy, meaning by this the use of a support material, cells and bioactive agents. Different researchers have been adding to these basic approaches other parameters able to improve the functionality of the tissue‐engineered construct, such as specific mechanical environments and conditioned gaseous atmospheres, among others. Nowadays, tissue‐engineering principles have been applied, with different degrees of success, to almost every tissue lacking efficient regeneration ability and the knowledge and intellectual property produced since then has experienced an immense growth. Materials for regenerating tissues, namely cartilage, have also been continuously increasing and most of the theoretical requirements for a tissue engineering support have been addressed by a single material or a mixture of materials. Due to their intrinsic features, polysaccharides are interesting for cartilage tissue‐engineering approaches and as a result their exploitation for this purpose has been increasing. The present paper intends to provide an overview of some of the most relevant polysaccharides used in cartilage tissue‐engineering research. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

18.
Matrilin‐3 is an essential extracellular matrix component present only in cartilaginous tissues. Matrilin‐3 exerts chondroprotective effects by regulating an anti‐inflammatory function and extracellular matrix components. We hypothesized that the codelivery of matrilin‐3 with infrapatellar adipose‐tissue‐derived mesenchymal stem cells (Ad‐MSCs) may enhance articular cartilage regeneration. Matrilin‐3 treatment of Ad‐MSCs in serum‐free media induced collagen II and aggrecan expression, and matrilin‐3 in chondrogenic media also enhanced in vitro chondrogenic differentiation. Next, the in vivo effect of matrilin‐3 codelivery with Ad‐MSCs on cartilage regeneration was assessed in an osteochondral defect model in Sprague Dawley rats: Ad‐MSCs and hyaluronic acid were implanted at the defect site with or without matrilin‐3 (140, 280, and 700 ng). Safranin O staining revealed that matrilin‐3 (140 and 280 ng) treatment significantly improved cartilage regeneration and glycosaminoglycan accumulation. In the animals treated with 140‐ng matrilin‐3, in particular, the defect site exhibited complete integration with surrounding tissue and a smooth glistening surface. The International Cartilage Repair Society macroscopic and O'Driscoll microscopic scores for regenerated cartilage were furthermore shown to be considerably higher for this group (matrilin‐3; 140 ng) compared with the other groups. Furthermore, the defects treated with 140‐ng matrilin‐3 revealed significant hyaline‐like cartilage regeneration in the osteochondral defect model; in contrast, the defects treated with 700‐ng matrilin‐3 exhibited drastically reduced cartilage regeneration with mixed hyaline–fibrocartilage morphology. Codelivery of matrilin‐3 with Ad‐MSCs significantly influenced articular cartilage regeneration, supporting the potential use of this tissue‐specific protein for a cartilage‐targeted stem cell therapy.  相似文献   

19.
Research in regenerative medicine is developing at a significantly quick pace. Cell‐based bone and cartilage replacement is an evolving therapy aiming at the treatment of patients who suffer from limb amputation, damaged tissues and various bone and cartilage‐related disorders. Stem cells are undifferentiated cells with the capability to regenerate into one or more committed cell lineages. Stem cells isolated from multiple sources have been finding widespread use to advance the field of tissue repair. The present review gives a comprehensive overview of the developments in stem cells originating from different tissues and suggests future prospects for functional bone and cartilage tissue regeneration. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

20.
The potential empty spaces between cylindrical plugs remaining after autologous osteochondral mosaicplasty rely on fibrous repair, which may constrain the quality and integrity of the repair. Thus, the empty spaces should be repaired, and how to fill the empty spaces is still a problem. In the present study, a standardized full‐thickness defect (diameter, 6 mm) was created in the weight‐bearing area of each medial femoral condyle in both knees of 18 miniature pigs. The 36 knees were randomly assigned to four groups with nine in each group. The defects were initially repaired by autologous osteochondral mosaicplasty. Simultaneously, any empty spaces between the multiple plugs were filled with cell‐free poly(lactide‐co‐glycolide) (PLGA) scaffolds (the scaffold group), tissue‐engineered cartilage (the TE group) or bone marrow mononuclear cell (BMNC)–PLGA composites (the composite group). The empty spaces were left untreated as control (the control group). Six months after surgery, the repair results were assessed via macroscopic observation, histological evaluation, magnetic resonance imaging, biomechanical assessment and glycosaminoglycan content. The results demonstrated that mosaicplasty combined with the treatment of the empty spaces could improve cartilage regeneration. The filling of empty spaces by tissue‐engineered cartilage produced the best result in all the four groups. Meanwhile, utilizing BMNC–PLGA composites achieved a similar repair result. Considering the cost‐effective, time‐saving and convenient performance, the BMNC‐PLGA composite could be an alternative option to fill the empty spaces combined with mosaicplasty. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号