首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The regenerative potential of mesenchymal stromal or stem cells (MSCs) has generated tremendous interest for treating various degenerative diseases. Regulatory preference is to use a culture medium that is devoid of bovine components for stem cell expansion intended for therapeutic applications. However, a clear choice an alternative to fetal bovine serum (FBS) has not yet emerged. We have screened five different commercially available serum‐free media (SFM) for their ability to support the growth and expansion of pre‐isolated undifferentiated bone marrow‐derived MSCs (BM‐MSCs) and compared the results with cells grown in standard FBS‐containing medium as control. In addition, based on initial screening results, BD Mosaic? Mesenchymal Stem Cell Serum‐free (BD‐SFM) medium was evaluated in large‐scale cultures for the performance and culture characteristics of BM‐MSCs. Of the five different serum‐free media, BD‐SFM enhanced BM‐MSCs growth and expansion in Cell STACK (CS), but the cell yield per CS‐10 was less when compared to the control medium. The characteristics of MSCs were measured in terms of population doubling time (PDT), cell yield and expression of MSC‐specific markers. Significant differences were observed between BD‐SFM and control medium in terms of population doublings (PDs), cell yield, CFU‐F and morphological features, whereas surface phenotype and differentiation potentials were comparable. The BD‐SFM‐cultured MSCs were also found to retain the differentiation potential, immune‐privileged status and immunosuppressive properties inherent to MSCs. Our results suggest that BD‐SFM supports large‐scale expansion of BM‐MSCs for therapeutic use. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

2.
The development of treatments that modulate corneal wound healing to avoid fibrosis during tissue repair is important for the restoration of corneal transparency after an injury. To date, few studies have studied the influence of growth factors (GFs) on human corneal fibroblast (HCF) expression of extracellular matrix (ECM) proteins such as collagen types I and III, proteoglycans such as perlecan, or proteins implicated in cellular migration such as α5β1‐integrin and syndecan‐4. Using in vitro HCFs, a mechanical wound model was developed to study the influence of the GFs basic fibroblast GF (bFGF), platelet‐derived GF (PDGF‐BB) and transforming GF‐β1 (TGFβ1) on ECM protein production and cellular migration. Our results show that mechanical wounding provokes the autocrine release of bFGF and TGFβ1 at different time points during the wound closure. The HCF response to PDGF‐BB was a rapid closure due to fast cellular migration associated with a high focal adhesion replacement and a high expression of collagen and proteoglycans, producing nonfibrotic healing. bFGF stimulated nonfibrotic ECM production and limited the migration process. Finally, TGFβ1 induced expression of the fibrotic markers collagen type III and α5β1 integrin, and it inhibited cellular migration due to the formation of focal adhesions with a low turnover rate. The novel in vitro HCF mechanical wound model can be used to understand the role played by GFs in human corneal repair. The model can also be used to test the effects of different treatments aimed at improving the healing process. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

3.
Human mesenchymal stem cells (MSC) are being explored for cell therapies targeting varied human diseases. For that, cells are being expanded in vitro, many times with fetal bovine serum (FBS) as the main source of growth factors. However, animal‐derived components should not be used, to avoid immune rejection from the patient that receives the MSC. To solve this issue, different xeno‐free media are being developed, and an industrial‐grade human plasma fraction (SCC) is a promising candidate to substitute FBS. Indeed, we have previously shown that MSC expanded in SCC‐medium maintain their phenotype and genetic stability. However, a reduction on MSC motility was observed when comparing with MSC motility on FBS‐medium. Thus, in this present study, we have tested different factors to improve the motility of MSC in SCC‐medium. Time lapse assays and experiments with transwells revealed that supplementation of the xeno‐free medium with FGF or PDGF, but not TNF‐α or SDF‐1, increased MSC motility. Interestingly, FGF and PDGF supplementation also led to alterations on MSC morphology to a shape similar to the one observed when using FBS. The mechanism behind the effect of FGF on MSC motility involved the increased expression of αVβ3 integrin. Furthermore, assays with small molecule inhibitors revealed that the signalling molecule p38 MAPK is important for MSC motility and that MEK/ERK and PI3K/AKT also have a role on FGF‐supplemented expanded MSC. Thus, it was found that FGF supplementation can improve the motility of xeno‐free‐expanded MSC and that the cells motility is regulated by αVβ3 integrin.  相似文献   

4.
The expansion of donor‐derived corneal endothelial cells (ECs) is a promising approach for regenerative therapies in corneal diseases. To achieve the best Good Manufacturing Practice standard the entire cultivation process should be devoid of nonhuman components. However, so far, there is no suitable xeno‐free protocol for clinical applications. We therefore introduce a processed variant of a platelet lysate for the use in corneal cell and tissue culture based on a Good Manufacturing Practice‐grade thrombocyte concentrate. This processed human platelet lysate (phPL), free of any animal components and of anticoagulants such as heparin with a physiological ionic composition, was used to cultivate corneal ECs in vitro and ex vivo in comparison to standard cultivation with fetal calf serum (FCS). Human donor corneas were cut in quarters while 2 quarters of each cornea were incubated with the respective medium supplement. Three fields of view per quarter were taken into account for the analysis. Evaluation of phPL as a medium supplement in cell culture of immortalized EC showed a superior viability compared with FCS control with reduced cell proliferation. Furthermore, the viability during the expansion of primary cells is significantly (3‐fold ±0.5) increased with phPL compared with FCS standard medium. Quartering donor corneas was traumatic for the endothelium and therefore resulted in increased EC loss. Interestingly, however, cultivation of the quartered pieces for 2 weeks in 0.1‐mg/ml pHPL in Biochrome I showed a 21 (±10) % EC loss compared with 67 (±12) % EC loss when cultivated in 2% FCS in Biochrome I. The cell culture protocol with pHPL as FCS replacement seems to be superior to the standard FCS protocols with respect to EC survival. It offers a xeno‐free and physiological environment for corneal endothelial cells. This alternative cultivation protocol could facilitate the use of EC for human corneal cell therapy.  相似文献   

5.
Induced pluripotent stem (iPS) cells possess the ability of self‐renewal and can differentiate into cells of the three germ layers, both in vitro and in vivo. Here we report a new method to efficiently induce differentiation of mouse iPS cells into the odontogenic lineage. Using ameloblasts serum‐free conditioned medium (ASF–CM), we successfully generated ameloblast‐like cells from mouse iPS cells. Importantly, culturing mouse iPS cells in ASF–CM supplemented with BMP4 (ASF–BMP4) promoted odontogenic differentiation, which was evident by the upregulation of ameloblast‐specific as well as odontoblast‐specific genes. On the other hand, culturing mouse iPS cells in ASF–CM supplemented with noggin (ASF–noggin), an inhibitor of BMP4, abrogated this effect. These results suggest that mouse iPS cells can be induced by ASF–BMP4 to differentiate into ameloblast‐like and odontoblast‐like cells. The results of our study raise the possibility of using patient‐specific iPS cells for tooth regeneration in the future. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

6.
Niche appears important for preventing the spontaneous differentiation or senescence that cells undergo during in vitro expansion. In the present study, it was revealed that human bone marrow‐derived mesenchymal stem cells (hBM‐MSCs) undergo senescence‐related differentiation into the myocardial lineage in vitro without any induction treatment. This phenomenon occurred over the whole population of MCSs, much different from conventional differentiation with limited frequency of occurrence, and was accompanied by a change of morphology into large, flat cells with impeded proliferation, which are the representative indications of MSC senescence. By culturing MSCs under several culture conditions, it was determined that induction treatment with 5‐azacytidine was not associated with the phenomenon, but the serum‐starvation condition, under which proliferation is severely hampered, caused senescence progression and upregulation of cardiac markers. Nevertheless, MSCs gradually developed a myocardial phenotype under normal culture conditions over a prolonged culture period and heterogeneous populations were formed. In perspectives of clinical applications, this must be prevented for fair and consistent outcomes. Hence, the biomimetic 'niche' was constituted for hBM‐MSCs by cultivating on a conventionally available extracellular matrix (ECM). Consequently, cells on ECM regained a spindle‐shape morphology, increased in proliferation rate by two‐fold and showed decreased expression of cardiac markers at both the mRNA and protein levels. In conclusion, the outcome indicates that progression of MSC senescence may occur via myocardial differentiation during in vitro polystyrene culture, and this can be overcome by employing appropriate ECM culture techniques. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

7.
Promoting mesenchymal stem cell (MSC) proliferation has numerous applications in stem cell therapies, particularly in the area of regenerative medicine. In order for cell‐based regenerative approaches to be realized, MSC proliferation must be achieved in a controlled manner without compromising stem cell differentiation capacities. Here we demonstrate that 6‐bromoindirubin‐3′‐oxime (BIO) increases MSC β‐catenin activity 106‐fold and stem cell‐associated gene expression ~33‐fold, respectively, over untreated controls. Subsequently, BIO treatment increases MSC populations 1.8‐fold in typical 2D culture conditions, as well as 1.3‐fold when encapsulated within hydrogels compared to untreated cells. Furthermore, we demonstrate that BIO treatment does not reduce MSC multipotency where MSCs maintain their ability to differentiate into osteoblasts, chondrocytes and adipocytes using standard conditions. Taken together, our results demonstrate BIO's potential utility as a proliferative agent for cell transplantation and tissue regeneration. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

8.
Summary. Background: Transforming growth factor‐β1 (TGF‐β1) is a profibrotic cytokine that plays a major role in vascular biology, and is known to regulate the phenotype and activity of various vascular cell populations. Because most fibrotic diseases, such as idiopathic pulmonary fibrosis (IPF), are associated with vascular remodeling, and as endothelial progenitor cells (EPCs) may be involved in this process, we investigated the impact of TGF‐β1 modulation of EPC angiogenic properties. Methods: TGF‐β1 plasma levels were determined in 64 patients with IPF and compared with those in controls. The effect of TGF‐β1 on angiogenesis was studied in vivo in a Matrigel plug model and in vitro on endothelial colony‐forming cells (ECFCs). We studied the effects of inhibiting the expression of the three main receptors of TGF‐β1 in ECFCs by using short interfering RNA. Results: Total TGF‐β1 plasma levels were significantly increased in patients with IPF as compared with controls (P < 0.0001). TGF‐β1 had proangiogenic effects in vivo by increasing hemoglobin content and blood vessel formation in Matrigel plugs implanted in C57/Bl6 mice, and in vitro by enhancing ECFC viability and migration. The effects were abolished by silencing the three main TGF‐β1 receptors. Conclusions: TGF‐β1 is proangiogenic in vivo and induces ECFC angiogenic properties in vitro, suggesting that TGF‐β1 may play a role during vascular remodeling in fibrotic disease states via EPCs.  相似文献   

9.
Cell‐derived extracellular matrix (ECM) consists of a complex assembly of fibrillary proteins, matrix macromolecules, and associated growth factors that mimic the composition and organization of native ECM micro‐environment. Therefore, cultured cell‐derived ECM has been used as a scaffold for tissue engineering settings to create a biomimetic micro‐environment, providing physical, chemical, and mechanical cues to cells, and support cell adhesion, proliferation, migration, and differentiation. Here, we present a new strategy to produce different combinations of decellularized cultured cell‐derived ECM (dECM) obtained from different cultured cell types, namely, mesenchymal stem/stromal cells (MSCs) and human umbilical vein endothelial cells (HUVECs), as well as the coculture of MSC:HUVEC and investigate the effects of its various compositions on cell metabolic activity, osteogenic differentiation, and angiogenic properties of human bone marrow (BM)‐derived MSCs, vital features for adult bone tissue regeneration and repair. Our findings demonstrate that dECM presented higher cell metabolic activity compared with tissue culture polystyrene. More importantly, we show that MSC:HUVEC ECM enhanced the osteogenic and angiogenic potential of BM MSCs, as assessed by in vitro assays. Interestingly, MSC:HUVEC (1:3) ECM demonstrated the best angiogenic response of MSCs in the conditions tested. To the best of our knowledge, this is the first study that demonstrates that dECM derived from a coculture of MSC:HUVEC impacts the osteogenic and angiogenic capabilities of BM MSCs, suggesting the potential use of MSC:HUVEC ECM as a therapeutic product to improve clinical outcomes in bone regeneration.  相似文献   

10.
Human adult bone marrow‐derived mesenchymal stem cells (MSCs) are a promising tool in the newly emerging avenue of regenerative medicine. MSCs have already been translated from basic research to clinical transplantation research. However, there is still a lack of consensus on the ideal method of culturing MSCs. Here we have compared different culture conditions of human MSCs with an attempt to preserve their characteristics and multi‐lineage differentiation potential. We compare the different basal culture media DMEM‐F12, DMEM‐high glucose (DMEM‐HG), DMEM‐low glucose (DMEM‐LG), knock‐out DMEM (DMEM‐KO) and Mesencult® on the proliferation rate, surface markers and differentiation potentials of MSCs. At every fifth passage until the 25th passage, the differentiation potential and the presence of a panel of surface markers was observed, using flow cytometry. We also compared the characteristics of human MSCs when cultured in reduced concentrations of fetal bovine serum (FBS), knockout serum replacement (KO‐SR) and human plasma. Data indicate that the presence of serum is essential to sustain and propagate MSCs cultures. The choice of basal medium is equally important so as to preserve their characteristics and multipotent properties even after prolonged culture in vitro. With MSCs emerging as a popular tool for regenerative therapies in incurable diseases, it is essential to be able to obtain a large number of MSCs that continue to preserve their characteristics following passaging. The data reveal the optimum basal medium for prolonged culture of MSCs while retaining their ability to differentiate and hence this may be used for up‐scaling to provide sufficient numbers for transplantation. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

11.
Systems composed of high density cells incorporated with growth factor‐releasing polymer microspheres have recently been shown to promote chondrogenic differentiation and cartilage formation. Within these systems, the effects of spatial and temporal patterning of growth factor release on hyaline cartilage‐specific extracellular matrix production have been examined. However, at present, it is unclear which microsphere densities and growth factor delivery profiles are optimal for inducing human mesenchymal stem cell differentiation and glycosaminoglycan production. A mathematical model to describe glycosaminoglycan production as a function of initial microsphere loading and microsphere degradation rate over a period of 3 weeks is presented. Based on predictions generated by this model, it may be feasible to design a bioactive microsphere system with specific spatiotemporal growth factor presentation characteristics to promote glycosaminoglycan production at controllable rates. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

12.
Human bone marrow‐derived mesenchymal stem/stromal cells (hMSCs) are considered promising therapeutic agents in the field of cell therapy and regenerative medicine, mainly due to their relative facility to be isolated, multi‐differentiation potential, and immunomodulatory role. However, their application in clinics requires a crucial step of in vitro expansion. Most of the protocols for hMSCs in vitro culture use foetal bovine serum as medium supplement that, being from animal origin, presents several safety concerns and may initiate xenogeneic immune responses after cells transplantation. This work reports the optimization of a pharmaceutical‐grade xeno‐free strategy for hMSCs in vitro expansion based on the supplementation of basal medium with a pharmaceutical‐grade human plasma‐derived supplement for cell culture (SCC) and 2 human growth factors (bFGF and TGFβ1), plus a coating of human plasma fibronectin (Fn). After 4 weeks in culture, this strategy improves hMSCs expansion yield about 4.3‐fold in comparison with foetal bovine serum supplementation and 4.5‐fold compared with a commercially available xeno‐free medium. hMSCs expanded in SCC‐based formulation maintained their phenotype and differentiation capacity into osteogenic, adipogenic, and chondrogenic lineages, without alterations in cell karyotype. Overall, the SCC‐based medium appears to be an excellent alternative for the xeno‐free expansion of hMSCs as therapeutic agents for clinical applications.  相似文献   

13.
Osteoarthritis (OA) is a common joint disease associated with articular cartilage degeneration. To improve the therapeutic options of OA, tissue engineering based on the use of mesenchymal stem cells (MSCs) has emerged. However, the presence of inflammatory cytokines, such as interleukin‐1β (IL‐1β), during chondrogenesis reduces the efficacy of cartilage engineering repair procedures by preventing chondrogenic differentiation. Previous studies have shown that electromagnetic fields (EMFs) stimulate anabolic processes in OA cartilage and limit IL‐1β catabolic effects. We investigated the role of EMFs during chondrogenic differentiation of MSCs, isolated from bovine synovial fluid, in the absence and presence of IL‐1β. Pellets of MSCs were differentiated for 3 and 5 weeks with transforming growth factor‐β3 (TGFβ3), in the absence and presence of IL‐1β and exposed or unexposed to EMFs. Biochemical, quantitative real‐time RT–PCR and histological results showed that EMFs alone or in the presence of TGFβ3 play a limited role in promoting chondrogenic differentiation. Notably, in the presence of IL‐1β and TGFβ3 a recovery of proteoglycan (PG) synthesis, PG content and aggrecan and type II collagen mRNA expression in the EMF‐exposed compared to unexposed pellets was observed. Also, histological and immunohistochemical results showed an increase in staining for alcian blue, type II collagen and aggrecan in EMF‐exposed pellets. In conclusion, this study shows a significant role of EMFs in counteracting the IL‐1β‐induced inhibition of chondrogenesis, suggesting EMFs as a therapeutic strategy for improving the clinical outcome of cartilage engineering repair procedures, based on the use of MSCs. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

14.
Commercially available skin substitutes lack essential non‐immune cells for adequate tissue regeneration of non‐healing wounds. A tissue‐engineered, patient‐specific, dermal substitute could be an attractive option for regenerating chronic wounds, for which adipose‐derived mesenchymal stem cells (ADMSCs) could become an autologous source. However, ADMSCs are multipotent in nature and may differentiate into adipocytes, osteocytes and chondrocytes in vitro, and may develop into undesirable tissues upon transplantation. Therefore, ADMSCs committed to the fibroblast lineage could be a better option for in vitro or in vivo skin tissue engineering. The objective of this study was to standardize in vitro culture conditions for ADMSCs differentiation into dermal‐like fibroblasts which can synthesize extracellular matrix (ECM) proteins. Biomimetic matrix composite, deposited on tissue culture polystyrene (TCPS), and differentiation medium (DM), supplemented with fibroblast‐conditioned medium and growth factors, were used as a fibroblast‐specific niche (FSN) for cell culture. For controls, ADMSCs were cultured on bare TCPS with either DM or basal medium (BM). Culture of ADMSCs on FSN upregulated the expression of differentiation markers such as fibroblast‐specific protein‐1 (FSP‐1) and a panel of ECM molecules specific to the dermis, such as fibrillin‐1, collagen I, collagen IV and elastin. Immunostaining showed the deposition of dermal‐specific ECM, which was significantly higher in FSN compared to control. Fibroblasts derived from ADMSCs can synthesize elastin, which is an added advantage for successful skin tissue engineering as compared to fibroblasts from skin biopsy. To obtain rapid differentiation of ADMSCs to dermal‐like fibroblasts for regenerative medicine, a matrix‐directed differentiation strategy may be employed. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

15.
The aim of this study was to optimize culture conditions for human mesenchymal stem cells (hMSCs) in β‐tricalcium phosphate ceramics with large interconnected channels. Fully interconnected macrochannels comprising pore diameters of 750 µm and 1400 µm were inserted into microporous β‐tricalcium phosphate (β‐TCP) scaffolds by milling. Human bone marrow‐derived MSCs were seeded into the scaffolds and cultivated for up to 3 weeks in both static and perfusion culture in the presence of osteogenic supplements (dexamethasone, β‐glycerophosphate, ascorbate). It was confirmed by scanning electron microscopic investigations and histological staining that the perfusion culture resulted in uniform distribution of cells inside the whole channel network, whereas the statically cultivated cells were primarily found at the surface of the ceramic samples. It was also determined that perfusion with standard medium containing 10% fetal calf serum (FCS) led to a strong increase (seven‐fold) of cell numbers compared with static cultivation observed after 3 weeks. Perfusion with low‐serum medium (2% FCS) resulted in moderate proliferation rates which were comparable to those achieved in static culture, although the specific alkaline phosphatase (ALP) activity increased by a factor of more than 3 compared to static cultivation. Gene expression analysis of the ALP gene also revealed higher levels of ALP mRNA in low‐serum perfused samples compared to statically cultivated constructs. In contrast, gene expression of the late osteogenic marker bone sialoprotein II (BSPII) was decreased for perfused samples compared to statically cultivated samples. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

16.
Mechanical loading has been utilized as an effective tool to direct mesenchymal stem cells (MSCs) commitment into cell lineages of mesodermal origin. However, the use of this tool to induce transdifferentiation of MSCs into the neural lineage has never been attempted. In this study, we examined the potential of uniaxial cyclic tensile loading in promoting neuronal differentiation of human MSCs (hMSCs) on modified biodegradable poly(ε‐caprolactone) (PCL). The stem cell morphology, tissue‐specific gene and protein expression, microfilament structure and, subsequently, Rho GTPase activity were analysed after cyclically stretching the cells at a range of amplitudes (0.5%, 2% or 3.5%) and frequencies (0.5, 1 or 1.5 Hz) for 8 h. hMSCs responded to these stimuli and displayed distinctly different microfilament organization. However, only those stretched at 0.5% strain amplitude and 0.5 Hz frequency showed promoted outgrowth of filopodia with significant upregulation of neurogenic genes expression. Positive staining of the neurogenic protein markers Nestin and Tuj1 suggested that the hMSCs had been committed to early neuronal progenitors. In addition, Rac1 but not RhoA was activated at this particular loading parameter. Furthermore, inhibition of Rac1 activity with NSC23766 disrupted the effect of cyclic loading. The results suggest that cyclic tensile loading at low amplitude and frequency is capable of triggering neuron‐like differentiation through the regulation of Rho GTPases activity, even in the absence of neurogenic induction medium. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

17.
Keratinocyte migration is a mandatory aspect of wound healing. We have previously shown that amniotic membrane (AM) applied to chronic wounds assists healing through a process resulting in the overexpression of c‐Jun at the wound's leading edge. We have also demonstrated that AM modifies the genetic programme induced by transforming growth factor‐ß (TGF‐ß) in chronic wounds. Here we used a scratch assay of mink lung epithelial cells (Mv1Lu) and a spontaneously immortalized human keratinocyte cell line (HaCaT) cells to examine the influence of AM application on the underlying signalling during scratch closure. AM application induced c‐Jun phosphorylation at the leading edge of scratch wounds in a process dependent on MAPK and JNK signalling. Strikingly, when the TGF‐ß‐dependent Smad‐activation inhibitor SB431542 was used together with AM, migration improvement was partially restrained, whereas the addition of TGF‐ß had a synergistic effect on the AM‐induced cell migration. Moreover, antagonizing TGF‐ß with specific antibodies in both cell lines or knocking out TGF‐ß receptors in Mv1Lu cells had similar effects on cell migration as using SB431542. Furthermore, we found that AM was able to attenuate TGF‐ß‐Smad signalling specifically at the migrating edge; AM treatment abated Smad2 and Smad3 nuclear localization in response to TGF‐ß in a process dependent on mitogen‐activated protein kinase kinase 1 (MEK1) activation but independent of EGF receptor or JNK activation. The involvement of Smad signalling on AM effects on HaCaT keratinocytes was further corroborated by overexpression of either Smad2 or Smad3 and the use of Smad phosphorylation‐specific inhibitors, revealing a differential influence on AM‐induced migration for each Smad. Thus, AM TGF‐ß‐Smad signalling abating is essential for optimal cell migration and wound closure.  相似文献   

18.
Substantial evidence has demonstrated that the decreased osteogenic differentiation of bone mesenchymal stem cells (BMSCs) is closely related to bone metabolic diseases. Thus, it is very important to develop several potentially useful therapeutic agents to enhance BMSC osteogenesis. Flavonoids show promise in enhancing bone mass. Dihydromyricetin (DMY), a type of flavonoid, has not yet been investigated regarding its effects on BMSC osteogenesis. To investigate the effects of DMY on osteogenesis, human BMSCs were induced with or without DMY. We found that DMY (0.1–50 μm ) exhibited no cytotoxic effect on proliferation, but increased alkaline phosphatase activity, osteoblast‐specific gene expression, and mineral deposition. It also enhanced active β‐catenin expression and reduced dickkopf‐1(DKK1) and sclerostin expression. The Wnt/β‐catenin signaling pathway inhibitor (DKK1 and β‐catenin‐specific siRNA) decreased the enhanced bone mineral formation caused by DMY. Taken together, these findings reveal that DMY enhances osteogenic differentiation of human BMSCs partly through Wnt/β‐catenin in vitro.  相似文献   

19.
20.
Stable pluripotent feeder‐free propagation of human embryonic stem cells (hESCs) prior to their therapeutic applications remains a major challenge. Matrigel? (BD Singapore) is a murine sarcoma‐derived extracellular matrix (ECM) widely used as a cell‐free support combined with conditioned or chemically defined media; however, inherent xenogenic and immunological threats invalidate it for clinical applications. Using human fibrogenic cells to generate ECM is promising but currently suffers from inefficient and time‐consuming deposition in vitro. We recently showed that macromolecular crowding (MMC) accelerated ECM deposition substantially in vitro. In the current study, we used dextran sulfate 500 kDa as a macromolecular crowder to induce WI‐38 fetal human lung fibroblasts at 0.5% serum condition to deposit human ECM in three days. After decellularization, the generated ECMs allowed stable propagation of H9 hESCs over 20 passages in chemically‐defined medium (mTEsR1) with an overall improved outcome compared to Matrigel in terms of population doubling while retaining teratoma formation and differentiation capacity. Of significance, only ECMs generated by MMC allowed the successful propagation of hESCs. ECMs were highly complex and in contrast to Matrigel, contained no vitronectin but did contain collagen XII, ig‐h3 and novel for hESC‐supporting human matrices, substantial amounts of transglutaminase 2. Genome‐wide analysis of promoter DNA methylation states revealed high overall similarity between human ECM‐ and Matrigel‐cultured hESCs; however, distinct differences were observed with 49 genes associated with a variety of cellular functions. Thus, human ECMs deposited by MMC by selected fibroblast lines are a suitable human microenvironment for stable hESC propagation and clinically translational settings. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号