首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Patterns of short‐term synaptic plasticity could considerably differ between synapses of the same axon. This may lead to separation of synaptic receptors transmitting either low‐ or high‐frequency signals and, therefore, may have functional consequences for the information transfer in the brain. Here, we estimated a degree of such separation at hippocampal GABAergic synapses using a use‐dependent GABAA receptor antagonist, picrotoxin, to selectively suppress a pool of GABAA receptors monosynaptically activated during the low‐frequency stimulation. The relative changes in postsynaptic responses evoked by the high‐frequency stimulation before and after such block were used to estimate the contribution of this GABAA receptor pool to synaptic transmission at high frequencies. Using this approach, we have shown that IPSCs evoked by low‐frequency (0.2 Hz) stimulation and asynchronous currents evoked by high‐frequency (20–40 Hz) stimulation are mediated by different pools of postsynaptic GABAA receptors. Thus, our findings suggest that inhibition produced by a single hippocampal interneuron may be selectively routed to different postsynaptic targets depending on the presynaptic discharge frequency. Synapse 68:344–354, 2014 . © 2014 Wiley Periodicals, Inc.  相似文献   

2.
GABA (γ‐aminobutyric acid) can mediate inhibition via pre‐ and post/extrasynaptic GABA receptors. In this paper we demonstrate potentially post/extrasynaptic GABAB receptor‐dependent tonic inhibition in L2/3 pyramidal cells of rat medial prefrontal cortex (mPFC) in vitro. First, we show via voltage‐clamp experiments the presence of a tonic GABAB receptor‐dependent outward current in these neurons. This GABABergic current could be induced by ambient GABA when present at sufficient concentrations. To increase ambient GABA levels in the usually silent slice preparation, we amplified network activity and hence synaptic GABA release with a modified artificial cerebrospinal fluid. The amplitude of tonic GABAB current was similar at different temperatures. In addition to the tonic GABAB current, we found presynaptic GABAB effects, GABAB‐mediated inhibitory postsynaptic currents and tonic GABAA currents. Second, we performed current‐clamp experiments to evaluate the functional impact of GABAB receptor‐mediated inhibition in the mPFC. Activating or inactivating GABAB receptors led to rightward (reduction of excitability) or leftward (increase of excitability) shifts, respectively, of the input–output function of mPFC L2/3 pyramidal cells without effects on the slope. Finally, we showed in electrophysiological recordings and epifluorescence Ca2+‐imaging that GABAB receptor‐mediated tonic inhibition is capable of regulating network activity. Blocking GABAB receptors increased the frequency of excitatory postsynaptic currents impinging on a neuron and prolonged network upstates. These results show that ambient GABA via GABAB receptors is powerful enough to modulate neuronal excitability and the activity of neural networks.  相似文献   

3.
Lateral habenula (LHb) hyperactivity plays a pivotal role in the emergence of negative emotional states, including those occurring during withdrawal from addictive drugs. We have previously implicated cocaine‐driven adaptations at synapses from the entopeduncular nucleus (EPN) to the LHb in this process. Specifically, ionotropic GABAA receptor (R)‐mediated neurotransmission at EPN‐to‐LHb synapses is reduced during cocaine withdrawal, due to impaired vesicle filling. Recent studies have shown that metabotropic GABABR signaling also controls LHb activity, although its role at EPN‐to‐LHb synapses during drug withdrawal is unknown. Here, we predicted that cocaine treatment would reduce GABABR‐mediated neurotransmission at EPN‐to‐LHb synapses. We chronically treated mice with saline or cocaine, prepared brain slices after two days of withdrawal and performed voltage‐clamp recordings from LHb neurons whilst optogenetically stimulating EPN terminals. Compared with controls, mice in cocaine withdrawal exhibited reduced GABAAR‐mediated input to LHb neurons, and a reduced occurrence of GABABR‐signaling at EPN‐to‐LHb synapses. We then assessed the underlying mechanism of this decrease. Application of GABABR agonist baclofen evoked similar postsynaptic responses in EPN‐innervated LHb neurons in saline‐ and cocaine‐treated mice. Release probability at EPN‐to‐LHb GABAergic synapses was also comparable between groups. However, incubating brain slices in glutamine to facilitate GABA vesicle filling, normalized GABABR‐currents at EPN‐to‐LHb synapses in cocaine‐treated mice. Overall, we show that during cocaine withdrawal, together with reduced GABAAR transmission, also GABABR‐mediated inhibitory signaling is diminished at EPN‐to‐LHb synapses, likely via the same presynaptic deficit. In concert, these alterations are predicted to contribute to the emergence of drug withdrawal symptoms, facilitating drug relapse.  相似文献   

4.
In presynaptic terminals, membrane-delimited Gi/o-mediated presynaptic inhibition is ubiquitous and acts via Gβγ to inhibit Ca2+ entry, or directly at SNARE complexes to inhibit Ca2+-dependent synaptotagmin-SNARE complex interactions. At CA1-subicular presynaptic terminals, 5-HT1B and GABAB receptors colocalize. GABAB receptors inhibit Ca2+ entry, whereas 5-HT1B receptors target SNARE complexes. We demonstrate in male and female rats that GABAB receptors alter Pr, whereas 5-HT1B receptors reduce evoked cleft glutamate concentrations, allowing differential inhibition of AMPAR and NMDAR EPSCs. This reduction in cleft glutamate concentration was confirmed by imaging glutamate release using a genetic sensor (iGluSnFR). Simulations of glutamate release and postsynaptic glutamate receptor currents were made. We tested effects of changes in vesicle numbers undergoing fusion at single synapses, relative placement of fusing vesicles and postsynaptic receptors, and the rate of release of glutamate from a fusion pore. Experimental effects of Pr changes, consistent with GABAB receptor effects, were straightforwardly represented by changes in numbers of synapses. The effects of 5-HT1B receptor-mediated inhibition are well fit by simulated modulation of the release rate of glutamate into the cleft. Colocalization of different actions of GPCRs provides synaptic integration within presynaptic terminals. Train-dependent presynaptic Ca2+ accumulation forces frequency-dependent recovery of neurotransmission during 5-HT1B receptor activation. This is consistent with competition between Ca2+-synaptotagmin and Gβγ at SNARE complexes. Thus, stimulus trains in 5-HT1B receptor agonist unveil dynamic synaptic modulation and a sophisticated hippocampal output filter that itself is modulated by colocalized GABAB receptors, which alter presynaptic Ca2+. In combination, these pathways allow complex presynaptic integration.SIGNIFICANCE STATEMENT Two G protein-coupled receptors colocalize at presynaptic sites, to mediate presynaptic modulation by Gβγ, but one (a GABAB receptor) inhibits Ca2+ entry whereas another (a 5-HT1B receptor) competes with Ca2+-synaptotagmin binding to the synaptic vesicle machinery. We have investigated downstream effects of signaling and integrative properties of these receptors. Their effects are profoundly different. GABAB receptors alter Pr leaving synaptic properties unchanged, whereas 5-HT1B receptors fundamentally change properties of synaptic transmission, modifying AMPAR but sparing NMDAR responses. Coactivation of these receptors allows synaptic integration because of convergence of GABAB receptor alteration on Ca2+ and the effect of this altered Ca2+ signal on 5-HT1B receptor signaling. This presynaptic convergence provides a novel form of synaptic integration.  相似文献   

5.
The intra‐pallidal application of γ‐aminobutyric acid (GABA) transporter subtype 1 (GAT‐1) or GABA transporter subtype 3 (GAT‐3) transporter blockers [1‐(4,4‐diphenyl‐3‐butenyl)‐3‐piperidinecarboxylic acid hydrochloride (SKF 89976A) or 1‐[2‐[tris(4‐methoxyphenyl)methoxy]ethyl]‐(S)‐3‐piperidinecarboxylic acid (SNAP 5114)] reduces the activity of pallidal neurons in monkey. This effect could be mediated through the activation of presynaptic GABAB heteroreceptors in glutamatergic terminals by GABA spillover following GABA transporter (GAT) blockade. To test this hypothesis, we applied the whole‐cell recording technique to study the effects of SKF 89976A and SNAP 5114 on evoked excitatory postsynaptic currents (eEPSCs) in the presence of gabazine, a GABAA receptor antagonist, in rat globus pallidus slice preparations. Under the condition of postsynaptic GABAB receptor blockade by the intra‐cellular application of N‐(2,6‐dimethylphenylcarbamoylmethyl)‐triethylammonium bromide (OX314), bath application of SKF 89976A (10 μm ) or SNAP 5114 (10 μm ) decreased the amplitude of eEPSCs, without a significant effect on its holding current and whole cell input resistance. The inhibitory effect of GAT blockade on eEPSCs was blocked by (2S)‐3‐[[(1S)‐1‐(3,4‐dichlorophenyl)ethyl]amino‐2‐hydroxypropyl](phenylmethyl)phosphinic acid, a GABAB receptor antagonist. The paired‐pulse ratio of eEPSCs was increased, whereas the frequency, but not the amplitude, of miniature excitatory postsynaptic currents was reduced in the presence of either GAT blocker, demonstrating a presynaptic effect. These results suggest that synaptically released GABA can inhibit glutamatergic transmission through the activation of presynaptic GABAB heteroreceptors following GAT‐1 or GAT‐3 blockade. In conclusion, our findings demonstrate that presynaptic GABAB heteroreceptors in putative glutamatergic subthalamic afferents to the globus pallidus are sensitive to increases in extracellular GABA induced by GAT inactivation, thereby suggesting that GAT blockade represents a potential mechanism by which overactive subthalamopallidal activity may be reduced in parkinsonism.  相似文献   

6.
The precise timing of pre‐postsynaptic activity is vital for the induction of long‐term potentiation (LTP) or depression (LTD) at many central synapses. We show in synapses of rat CA1 pyramidal neurons in vitro that spike timing dependent plasticity (STDP) protocols that induce LTP at glutamatergic synapses can evoke LTD of inhibitory postsynaptic currents or STDP‐iLTD. The STDP‐iLTD requires a postsynaptic Ca2+ increase, a release of endocannabinoids (eCBs), the activation of type‐1 endocananabinoid receptors and presynaptic muscarinic receptors that mediate a decreased probability of GABA release. In contrast, the STDP‐iLTD is independent of the activation of nicotinic receptors, GABABRs and G protein‐coupled postsynaptic receptors at pyramidal neurons. We determine that the downregulation of presynaptic Cyclic adenosine monophosphate/protein Kinase A pathways is essential for the induction of STDP‐iLTD. These results suggest a novel mechanism by which the activation of cholinergic neurons and retrograde signaling by eCBs can modulate the efficacy of GABAergic synaptic transmission in ways that may contribute to information processing and storage in the hippocampus. © 2013 Wiley Periodicals, Inc.  相似文献   

7.
The cAMP signaling pathway mediates synaptic plasticity and is essential for memory formation in both vertebrates and invertebrates. In the fruit fly Drosophila melanogaster, mutations in the cAMP pathway lead to impaired olfactory learning. These mutant genes are preferentially expressed in the mushroom body (MB), an anatomical structure essential for learning. While cAMP‐mediated synaptic plasticity is known to be involved in facilitation at the excitatory synapses, little is known about its function in GABAergic synaptic plasticity and learning. In this study, using whole‐cell patch‐clamp techniques on Drosophila primary neuronal cultures, we demonstrate that focal application of an adenylate cyclase activator forskolin (FSK) suppressed inhibitory GABAergic postsynaptic currents (IPSCs). We observed a dual regulatory role of FSK on GABAergic transmission, where it increases overall excitability at GABAergic synapses, while simultaneously acting on postsynaptic GABA receptors to suppress GABAergic IPSCs. Further, we show that cAMP decreased GABAergic IPSCs in a PKA‐dependent manner through a postsynaptic mechanism. PKA acts through the modulation of ionotropic GABA receptor sensitivity to the neurotransmitter GABA. This regulation of GABAergic IPSCs is altered in the cAMP pathway and short‐term memory mutants dunce and rutabaga, with both showing altered GABA receptor sensitivity. Interestingly, this effect is also conserved in the MB neurons of both these mutants. Thus, our study suggests that alterations in cAMP‐mediated GABAergic plasticity, particularly in the MB neurons of cAMP mutants, account for their defects in olfactory learning.  相似文献   

8.
9.
The acoustic startle reflex is strongly inhibited by a moderate‐intensity acoustic stimulus that precedes the startling stimulus by roughly 10–1000 ms (prepulse inhibition, PPI). At long interstimulus intervals (ISIs) of 100–1000 ms, PPI in rats is reduced by the muscarinic receptor antagonist scopolamine. Here, we studied the role of GABA receptors in PPI at full ISI ranges in both mice and rats. In B6 mice, PPI begins and ends at shorter ISIs (4 and 1000 ms, respectively) than in Wistar rats (8 and 5000 ms). The GABAA antagonist bicuculline (1 mg/kg i.p.) reduced PPI at ISIs near the peak of PPI in both rats and mice. The GABAB antagonist phaclofen (10 or 30 mg/kg i.p. in rats or mice, respectively) reduced PPI only at long ISIs, similar to the effects of the muscarinic antagonist scopolamine (1 mg/kg i.p.). The effects of phaclofen and scopolamine were additive in rats, suggesting independent effects of GABAB and muscarinic receptors. Patch‐clamp recordings of startle‐mediating PnC (nucleus reticularis pontis caudalis) giant neurons in rat slices show that EPSCs evoked by either trigeminal or auditory fiber stimulation were inhibited by the GABAA/C agonist muscimol or the GABAB agonist baclofen via postsynaptic mechanisms. Hyperpolarization of PnC neurons by muscimol was reversed with bicuculline, indicating that postsynaptic GABAA receptors strongly inhibit PnC giant neurons needed for startle. Therefore, GABA receptors on PnC giant neurons mediate a substantial part of PPI, with GABAA receptors contributing at the peak of PPI, and GABAB receptors adding to muscarinic effects on PPI at long ISIs.  相似文献   

10.
Intracortical axons originating from pyramidal cells in layer 3 of the rat somatosensory cortex are shared between adjacent columns, and receive the presynaptic inhibition that is mediated by the GABAB receptor. Synaptic actions by intracortical axons of single layer 3 pyramidal cells covary between the two adjacent columns in response to stimulation of layer 3 of either column. We examined whether GABAB receptor‐mediated presynaptic inhibition affects the covariability of synaptic actions by intracortical axons between adjacent columns in slice preparations of the rat barrel cortex. Paired stimulations of superficial layer 3 evoked first and second excitatory postsynaptic currents (EPSCs) of varying amplitudes, yielding varying paired‐pulse depression of EPSCs in layer 3 pyramidal cells that were located in the stimulated column, but not in its adjacent column. The amplitude of the second EPSC was inversely proportional to that of the first EPSC in layer 3 pyramidal cells in the stimulated column, yielding a negative correlation coefficient between the first and second EPSCs. Baclofen and CGP55845 attenuated paired‐pulse depression and abolished the inverse relationship. Simultaneous recordings from two layer 3 pyramidal cells in the stimulated and adjacent columns revealed a positive correlation between the paired first EPSC amplitudes and a negative correlation between the paired second EPSC amplitudes, which, respectively, indicate the positive and negative covariability of synaptic actions by intracortical axons between the two adjacent columns. These results suggest that GABAB receptor‐mediated presynaptic inhibition can reverse the positive covariability of inter‐columnar synaptic actions, which may serve as a basis for inter‐columnar desynchronisation.  相似文献   

11.
The mechanisms that underlie the selection of an inhibitory GABAergic axon's postsynaptic targets and the formation of the first contacts are currently unknown. To determine whether expression of GABAA receptors (GABAARs) themselves – the essential functional postsynaptic components of GABAergic synapses – can be sufficient to initiate formation of synaptic contacts, a novel co‐culture system was devised. In this system, the presynaptic GABAergic axons originated from embryonic rat basal ganglia medium spiny neurones, whereas their most prevalent postsynaptic targets, i.e. α1/β2/γ2‐GABAARs, were expressed constitutively in a stably transfected human embryonic kidney 293 (HEK293) cell line. The first synapse‐like contacts in these co‐cultures were detected by colocalization of presynaptic and postsynaptic markers within 2 h. The number of contacts reached a plateau at 24 h. These contacts were stable, as assessed by live cell imaging; they were active, as determined by uptake of a fluorescently labelled synaptotagmin vesicle‐luminal domain‐specific antibody; and they supported spontaneous and action potential‐driven postsynaptic GABAergic currents. Ultrastructural analysis confirmed the presence of characteristics typical of active synapses. Synapse formation was not observed with control or N‐methyl‐d ‐aspartate receptor‐expressing HEK293 cells. A prominent increase in synapse formation and strength was observed when neuroligin‐2 was co‐expressed with GABAARs, suggesting a cooperative relationship between these proteins. Thus, in addition to fulfilling an essential functional role, postsynaptic GABAARs can promote the adhesion of inhibitory axons and the development of functional synapses.  相似文献   

12.
Purpose: Effects of pre‐ and postsynaptic γ‐aminobutyric acid B (GABAB) receptor activation were characterized in human tissue from epilepsy surgery. Methods: Slices of human cortical tissue were investigated in a submerged‐type chamber with intracellular recordings in layers II/III. Parallel experiments were performed in rat neocortical slices with identical methods. Synaptic responses were elicited with single or paired stimulations of incrementing intervals. Results: Neurons in human epileptogenic tissue exhibited usually small inhibitory postsynaptic potentials (IPSP) mediated by GABAB receptor, verified by the sensitivity to the selective antagonist CGP 55845A. The IPSPB conductance averaged 5.8 nS in neurons from epileptogenic tissues and 15.9 nS in neurons from nonepileptogenic tissues (p < 0.0001). Application of baclofen caused small conductance increases in human neurons, which were linearly related to IPSPB conductances. Paired‐pulse stimulation revealed constant synaptic responses in human temporal lobe epilepsy (TLE) slices at all interstimulus intervals (ISIs). Pharmacologically isolated IPSPA in the human tissue exhibited a small paired‐pulse depression (average 10% at 500 ms ISI). Bicuculline‐induced paroxysmal depolarization shifts (PDSs) were transiently depressed by 24% in human TLE tissue; and by 74% in rat neocortical slices (200 ms ISI; p = 0.015). The depressions of bicuculline‐induced PDSs were antagonized by CGP 55845A in both species. Staining for GABAB receptors revealed significantly smaller numbers of immunopositive dots in human epileptogenic neurons versus human control neurons. Discussion: The small IPSPB, baclofen‐conductances, and paired‐pulse depression of PDSs and IPSPs in human TLE tissue indicate a reduced density of post‐ and presynaptic GABAB receptors. The reduced efficacy of presynaptic GABAB receptors facilitates the occurrence of repetitive synaptic activity.  相似文献   

13.
The role of γ-aminobutyric acid B (GABAB) receptors in the generation and maintenance of bicuculline-induced epileptiform activity in rat neocortical slices was studied using electrophysiological methods. A block of GABAB receptors in the presence of functional GABAA receptor-mediated inhibition was not sufficient to induce epileptiform activity. In the presence of the GABAA receptor antagonist bicuculline (10 μm ) and at suprathreshold stimulation, the GABAB receptor antagonist CGP 35348 (10–300 μm ) significantly potentiated epileptiform activity. With stimulation at threshold intensity, low concentrations of CGP 35348 (10–30 μm ) potentiated bicuculline-induced activity, whereas higher concentrations (100–300 μm ) invariably led to a reversible suppression of stimulus-evoked epileptiform discharges. CGP 35348 also enhanced picrotoxin-induced epileptiform activity, but at higher concentrations it was considerably less effective in suppressing such epileptiform discharges. The GABA uptake inhibitor nipecotic acid partially mimicked the actions of CGP 35348: with stimulation at threshold intensity, it reversibly suppressed bicuculline-induced epileptiform field potentials, but it did not influence epileptiform activity induced by picrotoxin. We conclude that a postsynaptic blockade of GABAB receptors induces an amplification of epileptiform activity in neocortical slices disinhibited by GABAA receptor antagonists. An additional blockade of presynaptic GABAB receptors, especially under conditions of weak stimulation of the neurons, reduces the inhibitory auto-feedback control of GABA release, leading to a displacement of competitive antagonists from the postsynaptic GABAA receptor and hence, to a suppression of epileptiform activity induced by competitive GABAA receptor antagonists.  相似文献   

14.
Tonic inhibition mediated by extrasynaptic GABAA receptors (GABAARs) is an important regulator of neuronal excitability. Phosphorylation by protein kinase C (PKC) provides a key mode of regulation for synaptic GABAARs underlying phasic inhibition; however, less attention has been focused on the plasticity of tonic inhibition and whether this can also be modulated by receptor phosphorylation. To address this issue, we used whole‐cell patch clamp recording in acute murine brain slices at both room and physiological temperatures to examine the effects of PKC‐mediated phosphorylation on tonic inhibition. Recordings from dentate gyrus granule cells in the hippocampus and dorsal lateral geniculate relay neurons in the thalamus demonstrated that PKC activation caused downregulation of tonic GABAAR‐mediated inhibition. Conversely, inhibition of PKC resulted in an increase in tonic GABAAR activity. These findings were corroborated by experiments on human embryonic kidney 293 cells expressing recombinant α4β2δ GABAARs, which represent a key extrasynaptic GABAAR isoform in the hippocampus and thalamus. Using bath application of low GABA concentrations to mimic activation by ambient neurotransmitter, we demonstrated a similar inhibition of receptor function following PKC activation at physiological temperature. Live cell imaging revealed that this was correlated with a loss of cell surface GABAARs. The inhibitory effects of PKC activation on α4β2δ GABAAR activity appeared to be mediated by direct phosphorylation at a previously identified site on the β2 subunit, serine 410. These results indicate that PKC‐mediated phosphorylation can be an important physiological regulator of tonic GABAAR‐mediated inhibition.  相似文献   

15.
Spikes population evoked by a paired pulse protocol were used to assess the influence of GABAA and GABAB receptors agonists and antagonists on the synaptic potentials and in the S2/S1 ratio in a paired pulse (PP) protocol in the cortico‐paleostriatum augmentatum synapses of the turtle. GABAA agonist, muscimol, decreased the amplitude of synaptic responses whereas the facilitation produced with the PP protocol did not change, suggesting a postsynaptic action for GABAA receptors. GABAB agonist, baclofen, enhanced paired pulse ratio indicating a presynaptic modulation through the GABAB receptor. Selective antagonists for N‐ and P/Q‐type Ca2+‐channels also enhanced paired pulse ratio, suggesting that any of these channel types may be involved in neurotransmitter release. However, the strong paired pulse facilitation produced by baclofen was occluded by blocking the N‐type Ca2+ channels with ω‐conotoxin GVIA (1 μM), but not by the blockage of P/Q‐type Ca2+ channels with ω‐agatoxin TK (400 nM). These data suggest that N and P/Q channels participate in the neurotransmitter release, whereas only N‐type Ca2+ channels are involved in the presynaptic modulation of GABAB in the corticostriatal synapse of the turtle. Synapse 63:855–862, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

16.
The properties of pre- and postsynaptic GABAB receptors were investigated with intracellular recordings from rat neocortical neurons in vitro. An antagonist of the GABAB receptor (CGP 35348) and ions or drugs interfering with GABAB receptor-mediated K+ conductance (Ba2+, QX 314) were employed to delineate possible differences. CGP 35348 reduced the conductance of the late inhibitory postsynaptic potential (IPSPB) in a dose-dependent manner. Neither the early GABAA receptor-mediated inhibitory postsynaptic potential (IPSPA), nor resting membrane potential or direct excitability, were consistently affected by CGP 35348. Bath application of 100 μmol/l Ba2+ decreased IPSPB conductance to about 40% and increased IPSPA conductance to 130% of control. The depression of a second IPSP by a pair of stimuli (paired pulse depression, or PPD) was used as an index for presynaptic GABAB receptor activation. Neither CGP 35348 nor Ba2+ exerted significant effects on the PPD at intervals of 400 msec. The dependence of PPD on the latency of the interval of the stimulus pair was investigated after intracellular application of QX 314 had virtually abolished the IPSPB. Decreasing the stimulus interval from 500 msec to 100 msec revealed a stronger depression of the second IPSPA. Application of CGP 35348 alleviated PPD for stimulus intervals below 300 msec. The data indicate a distinct pharmacological difference between pre- and postsynaptic GABAB receptors. Moreover, we suggest that two temporally distinct presynaptic GABAB receptor effects contribute to PPD: a short-lasting effect, sensitive to CGP 35348, and a long-lasting effect, insensitive to CGP 35348. The latter is insensitive to Ba2+, implying that this component is not associated with a K conductance mechanism. Synapse 25:62–72, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

17.
Specialized primary afferents, although they terminate in different laminae within the dorsal horn (DH), are known to interact through local circuit excitatory and inhibitory neurons. That a loss of segmental inhibition probably contributes to persistent pain hypersensitivity during chronic pain raises the question as to how disinhibition‐induced changes in cross‐modal interactions account for chronic pain symptoms. We sought to characterize how pharmacological blockade of glycine and gamma‐aminobutyric acid (GABA) receptors modifies synaptic transmission between primary afferent fibers and second‐order neurons by recording field potentials in the superficial medullary dorsal horn (MDH) of anesthetized rats. Transcutaneous electrical stimulation evokes three negative field potentials elicited by, from earliest to latest, Aβ‐, Aδ‐ and C‐fiber primary afferents. Blocking segmental glycine and/or GABAA receptors, with strychnine and bicuculline, respectively, strongly facilitates Aβ‐ and Aδ‐fiber‐evoked polysynaptic field potentials but, conversely, inhibits, or even abolishes, the whole C‐fiber field potential. Blocking segmental GABAB receptors, with phaclofen, reverses such suppression of C‐fiber field potentials. Interestingly, it also potentiates C‐fiber field potentials under control conditions. Finally, activation of segmental GABAB receptors, with baclofen, preferentially inhibits C‐fiber field potentials. Our results suggest that activation of A‐fiber primary afferents inhibits C‐fiber inputs to the MDH by the way of polysynaptic excitatory pathways, last‐order GABAergic interneurons and presynaptic GABAB receptors on C‐fiber primary afferents. Under physiological conditions, activation of such local DH circuits is closely controlled by segmental inhibition but it might contribute to paradoxically reduced pain hypersensitivity under pathological disinhibition.  相似文献   

18.
Whole‐cell patch‐clamp recordings of non‐N‐methyl‐d ‐aspartate glutamatergic excitatory postsynaptic currents (EPSCs) were carried out from cholinergic neurons in slices of basal forebrain (BF) of developing rats aged 21–42 postnatal days to elucidate postnatal developmental change in Ca2+ channel subtypes involved in the transmission as well as that in dopamine D1‐like receptor‐mediated presynaptic inhibition. The amplitude of EPSCs was inhibited by bath application of ω‐conotoxin GVIA (ω‐CgTX; 3 μm ) or ω‐agatoxin‐TK (ω‐Aga‐TK; 200 nm ) throughout the age range examined, suggesting that multiple types of Ca2+ channel are involved in the transmission. The EPSC fraction reduced by ω‐CgTX decreased with age, whereas that reduced by ω‐Aga‐TK increased. Inhibition of the EPSCs by a D1‐like receptor agonist, SKF 81297 (SKF; 30 μm ) increased with age in parallel with the increase in ω‐Aga‐TK‐induced inhibition. An activator of the adenylyl cyclase (AC) pathway, forskolin (FK; 10 μm ) inhibited the EPSCs, and FK‐induced inhibition also increased with age in parallel with the increase in SKF‐induced inhibition. Throughout the age range examined, SKF showed no further inhibitory effect on the EPSCs after ω‐Aga‐TK‐ or FK‐induced effect had reached steady‐state. These findings suggest that D1‐like receptor‐mediated presynaptic inhibition of glutamate release onto cholinergic BF neurons increases with age, and that the change is coupled with a developmental increase in the contribution of P/Q‐type Ca2+ channels as well as a developmental increase in AC pathway contribution.  相似文献   

19.
Pituitary adenylate cyclase-activating polypeptide (PACAP) is a pleiotropic neuropeptide found at synapses throughout the central and autonomic nervous system. We previously found that PACAP engages a selective G-protein coupled receptor (PAC1R) on ciliary ganglion neurons to rapidly enhance quantal acetylcholine (ACh) release from presynaptic terminals via neuronal nitric oxide synthase (NOS1) and cyclic AMP/protein kinase A (PKA) dependent processes. Here, we examined how PACAP stimulates NO production and targets resultant outcomes to synapses. Scavenging extracellular NO blocked PACAP-induced plasticity supporting a retrograde (post- to presynaptic) NO action on ACh release. Live-cell imaging revealed that PACAP stimulates NO production by mechanisms requiring NOS1, PKA and Ca2 + influx. Ca2 +-permeable nicotinic ACh receptors composed of α7 subunits (α7-nAChRs) are potentiated by PKA-dependent PACAP/PAC1R signaling and were required for PACAP-induced NO production and synaptic plasticity since both outcomes were drastically reduced following their selective inhibition. Co-precipitation experiments showed that NOS1 associates with α7-nAChRs, many of which are perisynaptic, as well as with heteromeric α3*-nAChRs that generate the bulk of synaptic activity. NOS1–nAChR physical association could facilitate NO production at perisynaptic and adjacent postsynaptic sites to enhance focal ACh release from juxtaposed presynaptic terminals. The synaptic outcomes of PACAP/PAC1R signaling are localized by PKA anchoring proteins (AKAPs). PKA regulatory-subunit overlay assays identified five AKAPs in ganglion lysates, including a prominent neuronal subtype. Moreover, PACAP-induced synaptic plasticity was selectively blocked when PKA regulatory-subunit binding to AKAPs was inhibited. Taken together, our findings indicate that PACAP/PAC1R signaling coordinates nAChR, NOS1 and AKAP activities to induce targeted, retrograde plasticity at autonomic synapses. Such coordination has broad relevance for understanding the control of autonomic synapses and consequent visceral functions.  相似文献   

20.
In the brain, neurons establish bona fide synapses onto oligodendrocyte precursor cells (OPCs), but the function of these neuron‐glia synapses remains unresolved. A leading hypothesis suggests that these synapses regulate OPC proliferation and differentiation. However, a causal link between synaptic activity and OPC cellular dynamics is still missing. In the developing somatosensory cortex, OPCs receive a major type of synapse from GABAergic interneurons that is mediated by postsynaptic γ2‐containing GABAA receptors. Here we genetically silenced these receptors in OPCs during the critical period of cortical oligodendrogenesis. We found that the inactivation of γ2‐mediated synapses does not impact OPC proliferation and differentiation or the propensity of OPCs to myelinate their presynaptic interneurons. However, this inactivation causes a progressive and specific depletion of the OPC pool that lacks γ2‐mediated synaptic activity without affecting the oligodendrocyte production. Our results show that, during cortical development, the γ2‐mediated interneuron‐to‐OPC synapses do not play a role in oligodendrogenesis and suggest that these synapses finely tune OPC self‐maintenance capacity. They also open the interesting possibility that a particular synaptic signaling onto OPCs plays a specific role in OPC function according to the neurotransmitter released, the identity of presynaptic neurons or the postsynaptic receptors involved.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号