首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Renal drug elimination involves three major processes: glomerular filtration, tubular secretion, and tubular reabsorption. Drug filtration is a simple unidirectional diffusion process. Renal tubular secretion and reabsorption are bidirectional processes that often involve both passive diffusion and carrier-mediated membrane processes. Various in vivo and in vitro techniques are available to study renal drug elimination and renal drug transport. The complete renal handling of a drug is best understood from data obtained from a combination of in vivo and in vitro methodologies. At the membranes of the renal proximal tubule, a number of carrier systems are involved in the tubular secretion and/or reabsorption of various drugs. Organic acid and base transporters are two major carrier systems important in the tubular transport of a number of organic acid and base drugs, respectively. Nucleoside and P-glycoprotein transporters appear to play an important role in renal tubular transport of dideoxynucleosides (e.g., zidovudine, dideoxyinosine) and digoxin, respectively. Clinically, these transporters are not only necessary for the renal tubular secretion and reabsorption of various drugs, but are also responsible in part for the drug's pharmacologic response (e.g., furosemide), drug-drug interactions of therapeutic or toxic importance, and drug nephrotoxicity.  相似文献   

2.
PURPOSE: The aim of this study was to investigate the transport properties of carnosine in kidney using SKPT cell cultures as a model of proximal tubular transport, and to isolate the functional activities of renal apical and basolateral transporters in this process. METHODS: The membrane transport kinetics of 10 microM [3H]carnosine was studied in SKPT cells as a function of time, pH, potential inhibitors and substrate concentration. A cellular compartment model was constructed in which the influx, efflux and transepithelial clearances of carnosine were determined. Peptide transporter expression was probed by RT-PCR. RESULTS: Carnosine uptake was 15-fold greater from the apical than basolateral surface of SKPT cells. However, the apical-to-basolateral transepithelial transport of carnosine was severely rate-limited by its cellular efflux across the basolateral membrane. The high-affinity, proton-dependence, concentration-dependence and inhibitor specificity of carnosine supports the contention that PEPT2 is responsible for its apical uptake. In contrast, the basolateral transporter is saturable, inhibited by PEPT2 substrates but non-concentrative, thereby, suggesting a facilitative carrier. CONCLUSIONS: Carnosine is expected to have a substantial cellular accumulation in kidney but minimal tubular reabsorption in blood because of its high influx clearance across apical membranes by PEPT2 and very low efflux clearance across basolateral membranes.  相似文献   

3.
The uptake of cephalosporin antibiotics by brush border membrane vesicles isolated from rat renal cortex has been studied by a rapid filtration technique, demonstrating a carrier-mediated transport system for amino-cephalosporins such as cephalexin and cephradine. The antibiotics were taken up into an osmotically reactive intravesicular space. The uptake of cephalexin was saturable (apparent Km2.2 mM), was inhibited by structural analogues and sulfhydryl reagents, and was stimulated by the countertransport effect, although the Na+ gradient did not affect the uptake. This transport system was essentially different from the transport system for p-aminohippurate in brush border membranes. The uptake properties for cephradine in brush border membrane vesicles appeared to be similar to those for cephalexin. The present results suggest the existence of a carrier-mediated transport system for amino-cephalosporins in brush border membranes. This system may be a part of the mechanism of tubular reabsorption of these antibiotics.  相似文献   

4.
Mechanisms and clinical implications of renal drug excretion.   总被引:3,自引:0,他引:3  
The body defends itself against potentially harmful compounds like drugs, toxic compounds, and their metabolites by elimination, in which the kidney plays an important role. Renal clearance is used to determine renal elimination mechanisms of a drug, which is the result of glomerular filtration, active tubular secretion and reabsorption. The renal proximal tubule is the primary site of carrier-mediated transport from blood to urine. Renal secretory mechanisms exists for, anionic compounds and organic cations. Both systems comprises several transport proteins, and knowledge of the molecular identity of these transporters and their substrate specificity has increased considerably in the past decade. Due to overlapping specificities of the transport proteins, drug interactions at the level of tubular secretion is an event that may occur in clinical situation. This review describes the different processes that determine renal drug handling, the techniques that have been developed to attain more insight in the various aspects of drug excretion, the functional characteristics of the individual transport proteins, and finally the implications of drug interactions in a clinical perspective.  相似文献   

5.
The mean renal epithelial cell residence time, Tcell, was defined as a model-independent characteristic of the transcellular transport process in the isolated perfused kidney. The transcellular transport process includes transport at the basolateral membrane, diffusion in the cytosol, and transport at the brush border membrane. The parameter Tcell represents the mean time for the drug secreted from the tubules to pass through the renal epithelial cells, and is calculated as the difference of the mean urinary transit time between secreted drug and inulin in the single-pass perfusion system. Therefore, the urinary excretion rate-time course is indispensable to evaluate Tcell. p-Amino-hippuric acid was used as a model compound. The bovine erythrocytes in the perfusate kept the isolated kidney in an almost constant physiological condition, including secretion function. The renal vein outflow curves were also analyzed by the use of moments. The dispersion in the catheter was corrected by a deconvolution. The apparent secretion intrinsic clearance and the apparent volume of distribution were calculated from the moments. The present method will be useful for analysis of the transcellular transport mechanism and the effect of disease states on renal transport of drugs.  相似文献   

6.
Renal tubular secretion of digoxin appears to be one of the main ports of elimination of the glycoside from the body. Because of its narrow therapeutic window and severe toxicity, the mechanisms of tubular handling of digoxin are important. Moreover, several drugs which are commonly administered with digoxin, including quinidine, spironolactone, verapamil and amiodarone have been shown to decrease renal clearance of digoxin without affecting GFR. We studied the handling of digoxin using in vitro and in vivo approaches. The handling of the glycoside by the brush border suggests passive reabsorption which is not enhanced by commonly coadministered drugs. Digoxin binding to the antiluminal (basal) membrane suggests that the secretion of the glycoside may not involve the pharmacologic receptor, the Na+, K+, ATPase. Using the multiple indicator dilution technique, we could directly show the two steps of secretion of digoxin: Its sequestration from the postglomerular circulation, and its appearance in the urine after transtubular transport. Digoxin transport is not inhibited by a cationic or anionic molecule (PAH and tolazoline). It is possible that digoxin is secreted by a yet unidentified transport mechanism.  相似文献   

7.
M17055 was developed as a novel diuretic that inhibits both Na(+), K(+), and 2Cl(-) cotransport at the thick ascending Henle's loop and Na(+) reuptake at the distal tubule. It is secreted at the renal proximal tubules. The purpose of the present study was to characterize the renal excretion mechanism of M17055. We used the renal cortical slices and brush border membrane vesicles (BBMVs) to investigate the transport mechanisms across the basolateral and brush border membranes, respectively. M17055 uptake by rat renal slices increased with time and was saturable. Several organic anions including probenecid, para-aminohippurate (PAH), and estrone-3-sulfate, decreased M17055 uptake. The uptake of M17055 was also observed into HEK293 cells expressing rat OAT1, and was inhibited by PAH. M17055 uptake by BBMVs was time-dependent, saturable, osmolarity-sensitive, and inhibited by several organic anions, but not by PAH. These results suggest that plural organic anion transport systems are involved in M17055 transport via both basolateral and brush border membranes of proximal tubule epithelial cells, a part of the renal uptake being mediated by OAT1.  相似文献   

8.
Drug transport in intestine, liver and kidney is similar, because in each case transport occurs across a barrier of epithelial cells. However, the physiological conditions differ in each organ: intestinal drug absorption is largely influenced by physicochemical conditions in the intestinal lumen; actual transport across the epithelial barrier occurs mainly by diffusion; carrier-mediated transport plays a subordinate role. In contrast, hepatic uptake is mediated by specific carriers, which transport a wide variety of drugs into the liver cell and then release them either into bile, or back into the portal blood. It is unclear how many carrier systems are involved, how they are organized in the liver cell membrane, and to what extent their substrate specificities overlap. Renal secretion and reabsorption of drugs is mediated by highly active carrier systems for cations and anions. Their cooperative action results in either active reabsorption or active secretion of drugs.Dedicated to Professor Dr. med. Herbert Remmer on the occasion of his 65th birthday  相似文献   

9.
The mechanism involved in the renal excretion of disopyramide (DPM) is still incompletely understood. The purpose of this study was to examine the renal handling of DPM and the interactions between DPM and several organic anionic or cationic drugs related to the renal tubular secretion, using the renal clearance and renal cortical slices uptake techniques in rats. The clearance ratio of DPM was greater than that of glomerular filtration and this suggests the tubular secretion of DPM. The clearance ratio of DPM did not change after infusion of either anionic drugs (p-aminohippurate and probenecid) or a cationic drug (cimetidine). The results of time and concentration-dependent experiments using renal cortical slices demonstrated that DPM was accumulated against a concentration gradient by a saturable process. Inhibition of uptake by 2,4-dinitrophenol and cyanide indicated an energy dependence. DPM uptake was considerably inhibited by the cationic drugs, cimetidine and quinine, suggesting that DPM was transported by the cation transport mechanism. Probenecid, a competitor for the anion transport mechanism, moderately inhibited DPM uptake.  相似文献   

10.
By utilizing filtration, active secretion and reabsorption processes, the kidney can conserve essential nutrients, and eliminate drugs and potentially toxic compounds. Active uptake of organic anions and cations across the basolateral membrane, and their extrusion into the urine across the brush border membrane mainly takes place in the renal proximal tubule cells, and is facilitated via a range of substrate-specific tubular transporters. Many drugs and their phase II conjugates are anionic compounds, and therefore renal organic anion transporters are important determinants of their distribution and elimination. Competition for renal excretory transporters may cause drugs to accumulate in the body leading to toxicity, which is a potential hazard of concomitant drug administration. Here, we present a brief update on the most prominent human proximal tubule organic anion transporters, which either belong to the ATP-binding cassette (ABC) or the solute carrier transporter (SLC) families. We focus on the participation of the individual transporters in renal anionic drug elimination, in an attempt to understand their overall biological and pharmacological significance, hoping to inspire further studies in the renal transporters field.  相似文献   

11.
Rosuvastatin is a potent HMG-CoA reductase inhibitor that has proven to be effective in the treatment of dyslipidemia. Rosuvastatin is cleared from the body by both biliary and renal clearance, the latter believed to be due to active tubular secretion. Whereas the mechanisms of hepatic clearance of rosuvastatin are well documented, those of renal clearance are not. Because rosuvastatin (and other statins) may alter proximal tubular function, this study aimed to characterize the mechanisms of tubular rosuvastatin secretion to define the factors that could influence the presence/concentration of rosuvastatin in proximal tubular cells. Hereto, polarized monolayers of primary human tubular cells were used. We found rosuvastatin net secretion across proximal tubule cells, which was saturable (K50=20.4+/-4.1 microM). The basolateral uptake step was rate-limiting and mediated by OAT3. Rosuvastatin efflux at the apical membrane was mediated by MRP2/4 and ABCG2 together with a small contribution from MDR1 or P-glycoprotein. These data, obtained in an intact human tubule cell model, provide a detailed insight into rosuvastatin's renal handling and the possible factors influencing it.  相似文献   

12.
d ‐Malate inhibits a Krebs cycle enzyme and the tubular transport of α‐ketoglutarate, an intermediate of the Krebs cycle and the driving force for rat organic anion transporter 1 (rOAT1) and rOAT3 in the kidney. This study examined the effects of d ‐malate on the rat organic anion transport system. The uptake of 6‐carboxyfluorescein by HEK293 cells expressing rOAT1 or rOAT3 was not affected by d ‐malate and l ‐malate. Up to 60 min after the intravenous injection of phenolsulfonphthalein (PSP), a typical substrate of the renal organic anion transporters, as a bolus to rats, 47.1% of the dose was recovered in the urine, and its renal clearance was estimated to be 8.60 ml/min/kg. d ‐Malate but not l ‐malate interfered with its renal excretion, resulting in the delayed elimination of PSP from plasma. No effect of d ‐malate was recognized on creatinine clearance or the expression level of rOAT3 in the kidney cortex. d ‐Malate increased the plasma concentration of α‐ketoglutarate. In addition, the compound greatly stimulated the renal excretion of α‐ketoglutarate, implying that d ‐malate inhibited its reabsorption. The content of α‐ketoglutarate was significantly decreased in the kidney cortex of rats administered d ‐malate. Collectively, this study shows that d ‐malate abrogates the tubular secretion of PSP, and the reduction of the renal content of α‐ketoglutarate was proposed to be one of the mechanisms. A relationship between the reabsorption of α‐ketoglutarate and the basolateral uptake of organic anion in the kidney is suggested.  相似文献   

13.
Renal handling of NS-49, which is an organic cation and a chiral compound, was investigated in rats, rabbits and dogs. Renal clearance (Cl(re)) of NS-49 was 3.4-fold the glomerular filtration rate (GFR) in the rat in vivo study. The clearance ratio (Cl(re)/GFR) approached unity during cimetidine infusion. Change in the urine flow rate or urinary pH did not affect the Cl(re) of NS-49. The stop-flow patterns of NS-49 in the rabbits and dogs showed a secretion peak in the proximal tubules. On concomitant administration of cimetidine, the secretion peak disappeared, the stop-flow pattern showing neither a secretion nor reabsorption peak. These findings indicate that in these species NS-49 undergoes glomerular filtration and extensive proximal tubular secretion, but little reabsorption. A transport mechanism study of NS-49 in brush-border membrane vesicles (BBMVs) isolated from rat kidney cortex showed that it is transported via the carrier-mediated H(+)/organic cation antiport system. In the rat renal clearance studies (in vivo) tubular secretion of NS-49 was significantly inhibited by quinine (p<0.01) but not by quinidine. Transport studies done with rat BBMVs (in vitro) also showed quinine to be more potent than quinidine in inhibiting NS-49 uptake. These results indicate that stereoselective interaction occurs in active renal tubular secretion.  相似文献   

14.
The pharmacokinetics of thiamine in plasma and urine was investigated in 13 healthy and 3 renal-insufficient volunteers. Doses ranging from 5 to 200mg thiamine hydrochloride were administered either as an iv bolus or a 50-min infusion. A sum of 3 exponentials was used as the unit impulse response function to characterize plasma kinetics. Drug input was mathematically described as a rectangular pulse of length 2 or 50 min. Total clearance, defined as the reciprocal of the area under the unit impulse response function, was found to depend on dose and creatinine clearance, as shown by a multiple nonlinear regression analysis. The nonrenal component of the total clearance was demonstrated to be dose-dependent, whereas its meanrenal component was only dependent on creatinine clearance. At high plasma concentrations renal clearance approached renal plasma flow, and remained constant during the decline to near physiological plasma levels. With further decline under a characteristic threshold concentration, renal clearance decreased far below the glomerular filtration rate, indicating tubular reabsorption. Binding to plasma proteins was excluded by ultrafiltration experiments. The process of renal excretion can be described by a combination of glomerular filtration, flow-dependent tubular secretion, and saturable tubular reabsorption. The concentration dependency of renal clearance was reflected in its mean value, which was only 76% of its maximum value measured in the higher concentration range. In the dose range studied, most of the given dose had already been linearly excreted before tubular reabsorption became evident, and consequently the measured mean renal clearances did not differ enough from one another to exhibit the expected dose dependency. With increasing dose a shift of the cleared dose fraction from the nonrenal to the renal side was observed. Saturated nonrenal clearance alone could explain this effect.  相似文献   

15.
The pharmacokinetics of thiamine in plasma and urine was investigated in 13 healthy and 3 renal-insufficient volunteers. Doses ranging from 5 to 200 mg thiamine hydrochloride were administered either as an iv bolus or a 50-min infusion. A sum of 3 exponentials was used as the unit impulse response function to characterize plasma kinetics. Drug input was mathematically described as a rectangular pulse of length 2 or 50 min. Total clearance, defined as the reciprocal of the area under the unit impulse response function, was found to depend on dose and creatinine clearance, as shown by a multiple nonlinear regression analysis. The nonrenal component of the total clearance was demonstrated to be dose-dependent, whereas its mean renal component was only dependent on creatinine clearance. At high plasma concentrations renal clearance approached renal plasma flow, and remained constant during the decline to near physiological plasma levels. With further decline under a characteristic threshold concentration, renal clearance decreased far below the glomerular filtration rate, indicating tubular reabsorption. Binding to plasma proteins was excluded by ultrafiltration experiments. The process of renal excretion can be described by a combination of glomerular filtration, flow-dependent tubular secretion, and saturable tubular reabsorption. The concentration dependency of renal clearance was reflected in its mean value, which was only 76% of its maximum value measured in the higher concentration range. In the dose range studied, most of the given dose had already been linearly excreted before tubular reabsorption became evident, and consequently the measured mean renal clearances did not differ enough from one another to exhibit the expected dose dependency. With increasing dose a shift of the cleared dose fraction from the nonrenal to the renal side was observed. Saturated nonrenal clearance alone could explain this effect.  相似文献   

16.
Orotate, a nutritional compound typically utilized as an intermediate in pyrimidine synthesis, has been suggested to undergo renal reabsorption. However, the detailed mechanisms involved in the process remain unclear, with only urate transporter 1 (URAT1/SLC22A12) being indicated as a transporter involved in its tubular uptake. As an attempt to identify transporters involved in that to help clarify the mechanisms, we examined a possibility that organic anion transporter 10 (OAT10/SLC22A13), which is present at the brush border membrane in renal tubular epithelial cells, could transport orotate. The operation of human OAT10 for orotate transport was demonstrated indeed and analyzed in detail in Madin-Darby canine kidney II cells introduced with this transporter by stable transfection. Orotate transport by OAT10 was found to be kinetically saturable with a biphasic characteristic and dependent on Cl. These are unique characteristics previously unknown in its operation for the other substrates. Orotate transport by OAT10 was, on the other hand, inhibited by several anionic compounds known as OAT10 inhibitors. Finally, the rat ortholog of OAT10 was found not to be able to transport orotate, indicating animal species differences in that function. Thus, human OAT10 has been demonstrated to operate for orotate transport with unique characteristics.  相似文献   

17.
18.
Summary The renal handling of digoxin in animals involves glomerular filtration, tubular secretion and tubular reabsorption, while only glomerular filtration and tubular secretion have been described in humans. The influence of plasma digoxin and urine flow on the renal handling of digoxin was investigated in 6 healthy volunteers. Non-glomerular renal excretion of digoxin (tubular secretion minus tubular reabsorption) was inversely correlated with plasma digoxin concentration and directly with urine flow. Hence, the present study demonstrated the occurrence of tubular reabsorption in addition to glomerular filtration and tubular secretion of digoxin. The results suggest that renal clearance of digoxin should be increased by increased urine flow, which might be of importance during digoxin toxicity.  相似文献   

19.
Pharmacokinetics of L-carnitine   总被引:6,自引:0,他引:6  
L-Carnitine is a naturally occurring compound that facilitates the transport of fatty acids into mitochondria for beta-oxidation. Exogenous L-carnitine is used clinically for the treatment of carnitine deficiency disorders and a range of other conditions.In humans, the endogenous carnitine pool, which comprises free L-carnitine and a range of short-, medium- and long-chain esters, is maintained by absorption of L-carnitine from dietary sources, biosynthesis within the body and extensive renal tubular reabsorption from glomerular filtrate. In addition, carrier-mediated transport ensures high tissue-to-plasma concentration ratios in tissues that depend critically on fatty acid oxidation. The absorption of L-carnitine after oral administration occurs partly via carrier-mediated transport and partly by passive diffusion. After oral doses of 1-6g, the absolute bioavailability is 5-18%. In contrast, the bioavailability of dietary L-carnitine may be as high as 75%. Therefore, pharmacological or supplemental doses of L-carnitine are absorbed less efficiently than the relatively smaller amounts present within a normal diet.L-Carnitine and its short-chain esters do not bind to plasma proteins and, although blood cells contain L-carnitine, the rate of distribution between erythrocytes and plasma is extremely slow in whole blood. After intravenous administration, the initial distribution volume of L-carnitine is typically about 0.2-0.3 L/kg, which corresponds to extracellular fluid volume. There are at least three distinct pharmacokinetic compartments for L-carnitine, with the slowest equilibrating pool comprising skeletal and cardiac muscle.L-Carnitine is eliminated from the body mainly via urinary excretion. Under baseline conditions, the renal clearance of L-carnitine (1-3 mL/min) is substantially less than glomerular filtration rate (GFR), indicating extensive (98-99%) tubular reabsorption. The threshold concentration for tubular reabsorption (above which the fractional reabsorption begins to decline) is about 40-60 micromol/L, which is similar to the endogenous plasma L-carnitine level. Therefore, the renal clearance of L-carnitine increases after exogenous administration, approaching GFR after high intravenous doses.Patients with primary carnitine deficiency display alterations in the renal handling of L-carnitine and/or the transport of the compound into muscle tissue. Similarly, many forms of secondary carnitine deficiency, including some drug-induced disorders, arise from impaired renal tubular reabsorption. Patients with end-stage renal disease undergoing dialysis can develop a secondary carnitine deficiency due to the unrestricted loss of L-carnitine through the dialyser, and L-carnitine has been used for treatment of some patients during long-term haemodialysis. Recent studies have started to shed light on the pharmacokinetics of L-carnitine when used in haemodialysis patients.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号