首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effects of neuropeptide Y on the intracellular level of Ca2+ ([Ca2+]i) were studied in cultured rat adrenal chromaffin cells loaded with fura-2. A proportion (16%) of cells exhibited spontaneous rhythmic [Ca2+]i oscillations. In silent cells, oscillations could be induced by forskolin and 1,9–dideoxyforskolin. This action of forskolin was not modified by H-89, an inhibitor of protein kinase A. Spontaneous [Ca2+i fluctuations and [Ca2+]i fluctuations induced by forskolin- and 1,9-dideoxyforskolin were inhibited by neuropeptide Y. Increases in [Ca2+]i induced by 10 and 20 mM KCI but not by 50 mM KCI were diminished by neuropeptide Y. However, neuropeptide Y had no effect on [Ca2+]i increases evoked by (-)BAY K8644 and the inhibitory effect of neuropeptide Y on responses induced by 20 mM KCI was not modified by o-conotoxin GVIA, consistent with neither L- nor N-type voltage-sensitive Ca2+ channels being affected by neuropeptide Y. Rises in [Ca2+]i provoked by 10 mM tetraethylammonium were not decreased by neuropeptide Y, suggesting that K+ channel blockade reduces the effect of neuropeptide Y. However, [Ca2+]i transients induced by 1 mM tetraethylammonium and charybdotoxin were still inhibited by neuropeptide Y, as were those to 20 mM KCI in the presence of apamin. The actions of neuropeptide Y on [Ca2+]i transients provoked by 20 and 50 mM KCI, 1 mM tetraethylammonium, (-)BAY K8644 and charybdotoxin were mimicked by 8–bromo-cGMP. In contrast, 8–bromo-CAMP did not modify responses to 20 mM KCI or 1 mM tetraethylammonium. The inhibitory effects of neuropeptide Y and 8–bromo-cGMP on increases in [Ca2+]i induced by 1 mM tetraethylammonium were abolished by the Rp-8–pCPT-cGMPS, an inhibitor of protein kinase G, but not by H-89. A rapid, transient increase in cGMP level was found in rat adrenal medullary tissues stimulated with 1 μM neuropeptide Y. Rises in [Ca2+]i produced by DMPP, a nicotinic agonist, but not by muscarine, were decreased by neuropeptide Y. Our data suggest that neuropeptide Y activates a K+ conductance via a protein kinase G-dependent pathway, thereby opposing the depolarizing action of K+ channel blocking agents and the associated rise in [Ca2+]i.  相似文献   

2.
Intracellular Ca2+ ([Ca2+]i) and membrane properties were measured in fura-2 dialysed dorsal vagal neurons (DVN) spontaneously active at a frequency of 0.5–5 Hz. [Ca2+]i increased by about 30 nm upon rising spike frequency by more than 200% due to 20–50 pA current pulses or 10 μm serotonin. It fell by 30 nm upon block of spiking by current-injection, tetrodotoxin or Ni2+ and also during hyperpolarization due to γ-aminobutyric acid or opening of adenosine triphosphate (ATP) -sensitive K+ (KATP) channels with diazoxide. KATP channel-mediated hyperpolarizations during anoxia or cyanide produced an initial [Ca2+]i decrease which reversed into a secondary Ca2+ rise by less than 100 nm . Similar moderate rises of [Ca2+]i were observed during block of aerobic metabolism under voltage-clamp as well as in intact cells, loaded with fura-2 AM. The magnitude of the metabolism-related [Ca2+]i transients did not correlate with the amplitude of the KATP channel-mediated outward current. [Ca2+]i did not change during diazoxide-induced or spontaneous activation of KATP outward current observed in 10% of cells after establishing whole-cell recording. Increasing [Ca2+]i with cyclopiazonic acid did not activate KATP channels. [Ca2+]i was not affected upon block of outward current with sulphonylureas, but these KATP channel blockers were effective to reverse inhibition of spike discharge and, thus, the initial [Ca2+]i fall upon spontaneous or diazoxide-, anoxia- and cyanide-induced KATP channel activation. A sulphonylurea-sensitive hyperpolarization and [Ca2+]i fall was also revealed in the early phase of iodoacetate-induced metabolic arrest, whereas after about 20 min, occurrence of a progressive depolarization led to an irreversible rise of [Ca2+]i to more than 1 μm . The results indicate that KATP channel activity in DVN is not affected by physiological changes of intracellular Ca2+ and the lack of a major perturbance of Ca2+ homeostasis contributes to their high tolerance to anoxia.  相似文献   

3.
Long-term changes of synaptic efficacy, in particular when they are use-dependent, are candidate mechanisms for the storage of information in the nervous system. In a variety of brain structures, including the neocortex and hippocampus, synapses are susceptible to long-term potentiation (LTP) and long-term depression (LTD). It has been hypothesized that the polarity of the synaptic gain change depends on the amplitude of the postsynaptic [Ca2+]i rise, the threshold for the induction of LTD being lower than that for the induction of LTP. To test this assumption, we characterized Ca2+ signals in layer II/III pyramidal cells of rat visual cortex slices, using the fluorescent Ca2+ indicator fura-2, during application of stimulation protocols that had been adjusted to reliably induce either LTP or LTD in cells not loaded with fura-2. At dendritic sites activated by the stimulated afferents the intracellular [Ca2+] concentration ([Ca2+]i) reached higher amplitudes and decayed more slowly with stimuli inducing LTP than with those inducing LTD. To directly analyse the functional significance of the observed difference in the Ca2+ signal amplitude, we examined whether a tetanization protocol suitable for the induction of LTP can be converted into a protocol inducing LTD by injecting the postsynaptic cells with Ca2+ chelators that reduce the concentration of effective free Ca2+. In the presence of fura-2 or BAPTA [bis(2-aminophenoxy) ethane-N,N,N′,N′-tetraacetate], the stimulation protocol that would normally produce LTP induced either LTD or failed to induce synaptic modifications altogether. These results support the hypothesis that the amplitude of the postsynaptic rise in [Ca2+]i is a key factor in the determination of the polarity of synaptic gain change.  相似文献   

4.
This study investigates the alterations in the spatiotemporal distribution pattern of the free intracellular Ca2+ concentration ([Ca2+]i) during axotomy and throughout the recovery process of cultured Aplysia neurons, and correlates these alterations with changes in the neurons input resistance and trans-membrane potential. For the experiments, the axons were transected while imaging the changes in [Ca2+]i with fura-2, and monitoring the neurons’resting potential and input resistance (Ri) with an intracellular microelectrode inserted into the cell body. The alterations in the spatiotemporal distribution pattern of [Ca2+]i were essentially the same in the proximal and the distal segments, and occurred in two distinct steps: concomitantly with the rupturing of the axolemma, as evidenced by membrane depolarization and a decrease in the input resistance, [Ca2+]i increased from resting levels of 0.05 – 0.1 μM to 1 – 1.5 μM along the entire axon. This is followed by a slower process in which a [Ca2+]i front propagates at a rate of 11 – 16 μm/s from the point of transection towards the intact ends, elevating [Ca2+]i to 3 – 18 μM. Following the resealing of the cut end 0.5 – 2 min post-axotomy, [Ca2+]i recovers in a typical pattern of a retreating front, travelling from the intact ends towards the cut regions. The [Ca2+]i recovers to the control level 7 – 10 min post-axotomy. In Ca2+-free artificial sea water (2.5 mM EGTA) axotomy does not lead to increased [Ca2+]i and a membrane seal is not formed over the cut end. Upon reperfusion with normal artificial sea water, [Ca2+]i is elevated at the tip of the cut axon and a membrane seal is formed. This experiment, together with the observations that injections of Ca2+, Mg2+ and Na+ into intact axons do not induce the release of Ca2+ from intracellular stores, indicates that Ca2+ influx through voltage gated Ca2+ channels and through the cut end are the primary sources of [Ca2+]i following axotomy. However, examination of the spatiotemporal distribution pattern of [Ca2+]i following axotomy and during the recovery process indicates that diffusion is not the dominating process in shaping the [Ca2+]i gradients. Other Ca2+ regulatory mechanisms seem to be very effective in limiting these gradients, thus enabling the neuron to survive the injury.  相似文献   

5.
In the present study, the effects of glutamate and of agonists for ionotropic and metabotropic glutamate receptors on intracellular Ca2+ concentration ([Ca2+]i) were investigated in neurons of the rat supraoptic nucleus (SON). We used the intracellular Ca2+ imaging technique with fura-2, in single magnocellular neurons dissociated from the SON of rats. Glutamate (10?6?10?4 M) evoked a dose-dependent increase in [Ca2+]i. The glutamate agonists exerted similar effects, although with some differences in the characteristics of their responses. The [Ca2+]i response to NMDA was smaller than those of glutamate or the non-NMDA receptor agonists, AMPA and kainate, but was significantly enhanced by the removal of extracellular Mg2+. Glutamate, as well as quisqualate, an agonist for both ionotropic and metabotropic glutamate receptors, evoked a [Ca2+]i increase in a Ca2+-free condition, suggesting Ca2+ release from intracellular Ca2+ stores. This was further evidenced by [Ca2+]i increases in response to a more selective metabotropic glutamate receptor agonist, t-ACPD, in the absence of extracellular Ca2+. Furthermore, the quisqualate-induced Ca2+ release was abolished by the selective metabotropic glutamate receptor antagonist, (S)-4-carboxyphenylglycine. The results suggest that metabotropic glutamate receptors as well as non-NMDA and NMDA receptors are present in the SON neurons, and that activation of the first leads to Ca2+ release from intracellular Ca2+ stores and the activation of the latter two types induces Ca2+ entry. These dual mechanisms of Ca2+ signalling may play a role in the regulation of SON neurosecretory cells by glutamate.  相似文献   

6.
To investigate the correlation between neural activity and intracellular Ca2+ ([Ca2+]i) mobilization in immature and adult brain during ischemia (hypoxia and glucose deprivation) and deprivation of glucose, hippocampal slices were prepared from 7-, 10-day-old and adult rats. Population spikes (PS) and antidromic responses (AR) were recorded in the pyramidal cell layer of the CA1 area as an index of neural function. [Ca2+]i mobilization of the stratum radiatum in the CA1 area was measured using the fluorescent dye fura-2 AM. The rise in [Ca2+]i occurred earlier in the adult animal and the decay times for the orthodromic PS and antidromic responses were shorter in the adult during ischemia. The field potentials and antidromic responses decreased substantially prior to the elevation of [Ca2+]i in both developing and adult brains. Furthermore, ATP levels decreased substantially before the elevation of [Ca2+]i during ischemia. These results suggest that neural activity and intracellular Ca2+ homeostasis in the immature rats brain are more resistant to energy failure than adult rats and that neuronal activity in the developing and adult brain is impaired initially by energy depletion during ischemia. In the immature animal, during glucose deprivation, the antidromic responses were slowly decayed or even failed to extinguish and [Ca2+]i levels were maintained for a longer period or even failed to rise in spite of the rapid loss of PS. Furthermore, ATP levels were well preserved at the time of PS loss. These results agree well with our previous reports showing that glucose plays an important role in the preservation of synaptic transmission in addition to its major function as an energy substrate.  相似文献   

7.
Prior mechanical brain microinjury has been found to have a preventive effect on brain ischemia. To investigate the mechanism responsible for this, the effect of mechanical brain injury on changes in intracellular free Ca2+ concentration ([Ca2+]i) in response to ischemic insult was studied in mouse hippocampal slices. The mechanical injury was made by inserting a 25G hypodermic needle into the CA1 region of the hippocampus in mice anesthetized with pentobarbital. Sagittal slices of the hippocampus were prepared two hours, and 1, 3, 7, and 14 days after the brain injury. Changes in [Ca2+]i in the slices by oxygen-glucose deprivation were analyzed from fluorescence images, using fura-2. Increases in [Ca2+]i induced by oxygen-glucose deprivation were inhibited in the vicinity of the injury 1 and 3 days after injury. [Ca2+]i levels were lower in the posterior side from the injury than in the anterior side 1 and 3 days after injury. No significantly regional differences in [Ca2+]i responses were found 2 h or 7 and 14 days after the injury. Membrane potential and membrane resistance of CA1 neurons in the vicinity of the injury measured 1 day after the injury were not significantly altered in comparison with non-injured slices. These results indicate that mechanical brain injury inhibits ischemic [Ca2+]i increase. This inhibition may be induced not only by damage of the presynaptic fibers projecting to the CA1 neurons but also by the other certain factor(s) that prevent [Ca2+]i increase, and it appears to be related to the protective effect of prior mechanical injury against ischemic neuronal damage.  相似文献   

8.
More than 90% of dorsal horn neurons from embryonic day 15–16 rats responded to the inhibitory amino acids GABA and glycine by a transient elevation of intracellular Ca2+ concentration ([Ca2+]i) when maintained in culture for <1 week. This [Ca2+]i response has previously been shown to be due to depolarization and subsequent Ca2+ entry through voltage-gated Ca2+ channels following activation of bicuculline-sensitive GABAA receptors and strychnine-sensitive glycine receptors. Both the number of cells responding to GABA and glycine and the amplitude of the [Ca2+]i response diminished over time in culture. By 30 days in culture, none of the cells responded to GABA, muscimol or glycine by elevation of [Ca2+]i. The loss of the [Ca2+]i response was not due to a change in the abundance or the properties of voltage-gated Ca2+ channels, since over the same period of time dorsal horn neurons showed a large increase in the amplitude of the [Ca2+]i transient in response to 30 mM K+. Nor was the loss of the [Ca2+]i response due to a loss of GABA and glycine receptors. Instead, the decrease in the [Ca2+]i response over time paralleled a similar change in the electrophysiological responses. More than 90% of the neurons tested were depolarized in response to inhibitory amino acids during the first week in culture. After 30 days, all neurons tested responded to GABA and glycine with a hyperpolarization. These observations add support to the suggestion that GABA and glycine may excite dorsal horn neurons earlyin development and play a role in postmitotic differentiation.  相似文献   

9.
Cytosolic calcium concentrations ([Ca2+]i) in cultured hippocampal neurons from rat embryos were measured using fura-2. Neurons with higher resting [Ca2+]i showed greater [Ca2+]i responses toN-methyl-d-aspartate (NMDA) and K+ depolarization. There was a strong relationship between resting [Ca2+]i and the maximal changes in [Ca2+]i (Δ[Ca2+]i), which fit the our proposed equation to describe this relationship.  相似文献   

10.
The existence of voltage-sensitive Ca2+ channels in type I vestibular hair cells of mammals has not been conclusively proven. Furthermore, Ca2+ channels present in type II vestibular hair cells of mammals have not been pharmacologically identified. Fura-2 fluorescence was used to estimate, in both cell types, intracellular Ca2+ concentration ([Ca2+]i) variations induced by K+ depolarization and modified by specific Ca2+ channel agonists and antagonists. At rest, [Ca2+]i was 90 ± 20 nm in both cell types. Microperifusion of high-K+ solution (50 mm ) for 1 s increased [Ca2+]i to 290 ± 50 nm in type I (n = 20) and to 440 ± 50 nm in type II cells (n = 10). In Ca2+-free medium, K+ did not alter [Ca2+]i. The specific L-type Ca2+ channel agonist, Bay K, and antagonist, nitrendipine, modified in a dose-dependent manner the K+-induced [Ca2+]i increase in both cell types with maximum effect at 2 μm and 400 nm , respectively. Ni2+, a T-type Ca2+ channel blocker, reduced K+-evoked Ca2+ responses in a dose-dependent manner. For elevated Ni2+ concentrations, the response was differently affected by Ni2+ alone, or combined to nitrendipine (500 nm ). In optimal conditions, nitrendipine and Ni2+ strongly depressed by 95% the [Ca2+]i increases. By contrast, neither ω-agatoxin IVA (1 μm ), a specific P- and Q-type blocker, nor ω-conotoxin GVIA (1 μm ), a specific N-type blocker, affected K+-evoked Ca2+i responses. These results provide the first direct evidence that L- and probably T-type channels control the K+-induced Ca2+ influx in both types of sensory cells.  相似文献   

11.
We have previously shown that 10–12 kDa N-terminal fragments of rat proopiomelanocortin (POMC) and human POMC1–76 stimulate mitosis and/or differentiation in lactotrophs of early postnatal rat pituitary. A truncated form, POMC1–26, mimics the differentiation-inducing but not the mitogenic action of the former peptides. To further characterize these two biological responses, the present study compared changes in the intracellular free calcium concentration ([Ca2+]i) in response to POMC1–76 and POMC1–26 in isolated pituitary cells from 14-day-old female rats. Calcium (Ca2+) responses were also used as a guide to determine whether the responsive cells belong to the lactosomatotroph lineage. Application of POMC1–76 or POMC1–26 induced a maintained oscillating [Ca2+]i increase in a small population of cells. Increasing doses of the peptides did not affect the magnitude and the frequency of [Ca2+]i oscillations but clearly augmented the number of responding cells. Approximately 2% of the cells responded at 0.1 nM POMC1–76 or 5 nM POMC1–26, and 11–13% of the cells responded at 10 nM and 500 nM of the respective peptides. About one-third of the cells responsive to these peptides also showed a [Ca2+]i increase in response to growth hormone-releasing peptide-6 (GHRP-6) while, in a small number of responsive cells, [Ca2+]i was depressed by dopamine, suggesting that the former cells are somatotrophs and the latter lactotrophs. This interpretation was confirmed by immunocytochemical identification of prolactin and growth hormone (GH) in the cells. Of the cells showing Ca2+ response to POMC1–76, approximately one-third contained GH and another third prolactin. The remainder contained neither GH nor prolactin. Comparable results were obtained with POMC1–26. The rise of [Ca2+]i induced by the N-terminal POMC peptides persisted after depletion of intracellular Ca2+ stores by thapsigargin. Removal of Ca2+ from the extracellular medium or addition of cadmium completely abolished both the POMC1–76- and POMC1–26-induced [Ca2+]i increase. Nifedipine inhibited the Ca2+ response to both peptides, although only in 55% of the responsive cells. Depletion of some isoforms of protein kinase C by preincubation with the phorbol ester PMA for 24 h did not modify the Ca2+ responses. In contrast, blockade of the protein kinase A pathway with Rp-cAMPs partially inhibited the POMC1–76- or POMC1–26-induced [Ca2+]i increase. The present data show that, in immature pituitary cells, POMC1–76 induces an increase in [Ca2+]i through extracellular Ca2+ influx, possibly mediated in part by protein kinase A activation. The active domain of POMC1–76 seems to comprise its N-terminal moiety. The data support the hypothesis that POMC1–76 exerts a specific function in the development of different members of the lactosomatotroph lineage and that the peptide mobilizes different subsets of cells within this lineage, by a mechanism determined by its concentration.  相似文献   

12.
Changes in levels of intracellular calcium ion ([Ca2+]i) induced by in vitro ischemic conditions in gerbil cerebellar and hippocampal slices were investigated using a calcium imaging system and electron microscopy. When the cerebellar slice was perfused with a glucose-free physiological medium equilibrated with a 95% N2/5% CO2 gas mixture (in vitro ischemic medium), a large [Ca2+]i elevation was region-specifically induced in the molecular laver of the cerebellar cortex (a dendritic field of Purkinje cells). When the hippocampal slice was perfused with in vitro ischemic medium, a large [Ca2+]i elevation was region-specifically induced in CA1 field of the hippocampal slices. Electron microscopic examinations showed that the large [Ca2+]i elevations occurred in Purkinje cells and CA1 pyramidal neurons. To isolate Ca2+ release from intracellular Ca2+ store sites, the slices were perfused with Ca2+-free in vitro ischemic medium. the increases in [Ca2+]i in both cerebellar and hippocampal slices were significantly lower than those observed in the slices perfused with the Ca2+-containing in vitro ischemic medium. However, the suppression of the [Ca2+]i-elevation in the molecular layer of the cerebellar slices was smaller than that in the CA1 field of the hippocampal slices. These results reinforce the hypothesis that calcium plays a pivotal role in the development of ischemia-induced neuronal death, and suggest that Ca2+ release from intracellular Ca2+ store sites may play an important role in the ischemia-induced [Ca2+]i elevation in Purkinje cells.  相似文献   

13.
The most compelling evidence for a functional role of caffeine-sensitive intracellular Ca2+ reservoirs in nerve cells derives from experiments on peripheral neurons. However, the properties of their ryanodine receptor calcium release channels have not been studied. This work combines single-cell fura-2 microfluorometry, [3 H]ryanodine binding and recording of Ca2+ release channels to examine calcium release from these intracellular stores in rat sympathetic neurons from the superior cervical ganglion. Intracellular Ca2+ measurements showed that these cells possess caffeine-sensitive intracellular Ca2+ stores capable of releasing the equivalent of 40% of the calcium that enters through voltage-gated calcium channels. The efficiency of caffeine in releasing Ca2+ showed a complex dependence on [Ca2+]i. Transient elevations of [Ca2+]i by 50–500 nM were facilitatory, but they became less facilitatory or depressing when [Ca2+]i reached higher levels. The caffeine-induced Ca2+ release and its dependence on [Ca2+]i was further examined by [3 H]ryanodine binding to ganglionic microsomal membranes. These membranes showed a high-affinity binding site for ryanodine with a dissociation constant (KD= 10 nM) similar to that previously reported for brain microsomes. However, the density of [3H]ryanodine binding sites (Bmax= 2.06 pmol/mg protein) was at least three-fold larger than the highest reported for brain tissue. [3 H]Ryanodine binding showed a sigmoidal dependence on [Ca2+] in the range 0.1–10 μM that was further increased by caffeine. Caffeine-dependent enhancement of [3 H]ryanodine binding increased and then decreased as [Ca2+] rose, with an optimum at [Ca2+] between 100 and 500 nM and a 50% decrease between 1 and 10 μM. At 100 μM [Ca2+], caffeine and ATP enhanced [3 H]ryanodine binding by 35 and 170% respectively, while binding was reduced by >90% with ruthenium red and MgCl2. High-conductance (240 pS) Ca2+ release channels present in ganglionic microsomal membranes were incorporated into planar phospholipid bilayers. These channels were activated by caffeine and by micromolar concentrations of Ca2+ from the cytosolic side, and were blocked by Mg2+ and ruthenium red. Ryanodine (2 μM) slowed channel gating and elicited a long-lasting subconductance state while 10 mM ryanodine closed the channel with infrequent opening to the subconductance level. These results show that the properties of the ryanodine receptor/Ca2+ release channels present in mammalian peripheral neurons can account for the properties of caffeine-induced Ca2+ release. Our data also suggest that the release of Ca2+ by caffeine has a bell-shaped dependence on Ca2+ in the physiological range of cytoplasmic [Ca2+].  相似文献   

14.
Norepinephrine (NE) activates adrenergic receptors (ARs) in the hypothalamic paraventricular nucleus (PVN) to increase excitatory currents, depolarise neurones and, ultimately, augment neuro‐sympathetic and endocrine output. Such cellular events are known to potentiate intracellular calcium ([Ca2+]i); however, the role of NE with respect to modulating [Ca2+]i in PVN neurones and the mechanisms by which this may occur remain unclear. We evaluated the effects of NE on [Ca2+]i of acutely isolated PVN neurones using Fura‐2 imaging. NE induced a slow increase in [Ca2+]i compared to artificial cerebrospinal fluid vehicle. NE‐induced Ca2+ elevations were mimicked by the α1‐AR agonist phenylephrine (PE) but not by α2‐AR agonist clonidine (CLON). NE and PE but not CLON also increased the overall number of neurones that increase [Ca2+]i (ie, responders). Elimination of extracellular Ca2+ or intracellular endoplasmic reticulum Ca2+ stores abolished the increase in [Ca2+]i and reduced responders. Blockade of voltage‐dependent Ca2+ channels abolished the α1‐AR induced increase in [Ca2+]i and number of responders, as did inhibition of phospholipase C inhibitor, protein kinase C and inositol triphosphate receptors. Spontaneous phasic Ca2+ events, however, were not altered by NE, PE or CLON. Repeated K+‐induced membrane depolarisation produced repetitive [Ca2+]i elevations. NE and PE increased baseline Ca2+, whereas NE decreased the peak amplitude. CLON also decreased peak amplitude but did not affect baseline [Ca2+]i. Taken together, these data suggest receptor‐specific influence of α1 and α2 receptors on the various modes of calcium entry in PVN neurones. They further suggest Ca2+ increase via α1‐ARs is co‐dependent on extracellular Ca2+ influx and intracellular Ca2+ release, possibly via a phospholipase C inhibitor‐mediated signalling cascade.  相似文献   

15.
Isolated and cultured glomus cells, obtained from mouse carotid bodies, were superfused with Ham's F-12 equilibrated with air (mean PO2, 119 Torr; altitude 1350 m). [Ca2+]o was 3.0 mM. In one experimental series, dual cell penetrations with microelectrodes measured intracellular calcium ([Ca2+]i) and the resting potential (Em). In another series, [Ca2+]i was measured with Indo-1/AM, dissolved in DMSO. Normoxic cells had a mean Em of −42.4 mV and [Ca2+]i was about 80 nM (measured with both methods). The calculated calcium equilibrium potential (ECa) was 137±0.74 mV. Hypoxia, induced by Na2S2O4 1 mM, reduced pO2 to 10–14 Torr. This effect was accompanied by cell depolarization to −19.1 mV. Hypoxia increased [Ca2+]i to 231 nM when detected with Ca-sensitive microelectrodes, but only to 130.2 nM when measured with Indo-1/AM. Calcium increases were preceded by decreases in [Ca2+]i, which also were more pronounced with microelectrode measurements. CoCl2 1 mM blocked the hypoxic [Ca2+]i increase and exaggerated the decreases in [Ca2+]i. Correlations between ΔEm and Δ[Ca2+]i during hypoxia were significant (p<0.05) in 19% of the cells. But, in 29% of them significance was at the p<0.1 level. In the rest (52%), there was no correlation between these parameters. Thus, voltage-gated calcium channels are rare in mouse glomus cells. Their activation by depolarization cannot explain the two to threefold increase in [Ca2+]i seen during hypoxia. More likely, [Ca2+]i increase may be due to hypoxic inactivation of a Ca–Mg ATPase transport system across the cell membrane. The blunting of hypoxic [Ca2+]i increase, seen in Indo-1/AM experiments, is probably due to its solvent (DMSO), which also depresses hypoxic cell depolarization.  相似文献   

16.
Purpose: We analyzed the effects of seletracetam (ucb 44212; SEL), a new antiepileptic drug candidate, in an in vitro model of epileptic activity. The activity of SEL was compared to the effects of levetiracetam (LEV; Keppra), in the same assays. Methods: Combined electrophysiologic and microfluorometric recordings were performed from layer V pyramidal neurons in rat cortical slices to study the effects of SEL on the paroxysmal depolarization shifts (PDSs), and the simultaneous elevations of intracellular Ca2+ concentration [Ca2+]i. Moreover, the involvement of high‐voltage activated Ca2+ currents (HVACCs) was investigated by means of patch‐clamp recordings from acutely dissociated pyramidal neurons. Results: SEL significantly reduced both the duration of PDSs (IC50 = 241.0 ± 21.7 nm ) as well as the number of action potentials per PDS (IC50 = 82.7 ± 9.7 nm ). In addition, SEL largely decreased the [Ca2+]i rise accompanying PDSs (up to 75% of control values, IC50 = 345.0 ± 15.0 nm ). Furthermore, SEL significantly reduced HVACCs in pyramidal neurons. This effect was mimicked by ω‐conotoxin GVIA and, to a lesser extent, by ω‐conotoxin MVIIC, blockers of N‐ and Q‐type HVACC, respectively. The combination of these two toxins occluded the action of SEL, suggesting that N‐type Ca2+ channels, and partly Q‐type subtypes are preferentially targeted. Conclusions: These results demonstrate a powerful inhibitory effect of SEL on epileptiform events in vitro. SEL showed a higher potency than LEV. The effective limitation of [Ca2+]i influx might be relevant for its antiepileptic efficacy and, more broadly, for pathologic processes involving neuronal [Ca2+]i overload.  相似文献   

17.
In some cells, Ca2+ depletion induces an increase in intracellular Ca2+ ([Ca2+]i) after reperfusion with Ca2+-containing solution, but the mechanism for the reperfusion injury is not fully elucidated. Using an antisense strategy we studied the role of the Na+-Ca2+ exchanger in reperfusion injury in cultured rat astrocytes. When astrocytes were perfused in Ca2+-free medium for 15–60 min, a persistent increase in [Ca2+]i was observed immediately after reperfusion with Ca2+-containing medium, and the number of surviving cells decreased 3–5 days latter. The increase in [Ca2+]i was enhanced by low extracellular Na+ ([Na+]o) during reperfusion and blocked by the inhibitors of the Na+-Ca2+ exchanger amiloride and 3,4-dichlorobenzamil, but not by the Ca2+ channel antagonists nifedipine, Cd2+ and Ni2+. Treatment of astrocytes with antisense, but not sense, oligodeoxynucleotide to the Na+-Ca2+ exchanger decreased Na+–Ca2+ exchanger protein level and exchange activity. The antisense oligomer attenuated reperfusion-induced increase in [Ca2+]i and cell toxicity. The Na+-Ca2+ exchange inhibitors 3,4-dichlorobenzamil and ascorbic acid protected astrocytes from reperfusion injury partially, while the stimulators sodium nitroprusside and 8-bromo-cyclic GMP and low [Na+]o exacerbated the injury. Pretreatment of astrocytes with ouabain and monensin caused similar delayed glial cell death. These findings suggest that Ca2+ entry via the Na+–Ca2+ exchanger plays an important role in reperfusion-induced delayed glial cell death.  相似文献   

18.
Elevation of intracellular calcium levels [Ca2+]i induces microtubule depolymerization, a process which plays roles in regulation of cell motility and axonal transport. However, excessive Ca2+ influx, as occurs in neurons subjected to excitotoxic conditions, can kill neurons. We now provide evidence that the polymerization state of microtubules influences neuronal [Ca2+]i homeostasis and vulnerability to excitotoxicity. The microtubule-stabilizing agent taxol significantly attenuated glutamate neurotoxicity in cultured rat hippocampal neurons. Experiments in which [Ca2+]i was monitored using the Ca2+ indicator dye fura-2 showed that the elevation of [Ca2+]i induced by glutamate was significantly attenuated in neurons pretreated with taxol. Experiments using selective glutamate receptor agonists suggested that taxol suppressed Ca2+ influx through α-amino-3-hydroxy-5-methylisoxazole-4-propionate (AMPA) receptors, but not through N-methyl-D-aspartate (NMDA) receptors. Taxol attenuated the neurotoxicity of the microtubule-depolymerizing agent colchicine; colchicine neurotoxicity was, in part, dependent on Ca2+ influx. These findings suggest that microtobules play a role in the mechanism of excitotoxicity and suggest that taxol and related compounds may be useful as antiexcitotoxic agents.  相似文献   

19.
The actions of serotonin on rat basolateral amygdala neurons were studied with conventional intracellular recording techniques and fura-2 fluorimetric recordings. Bath application of 5-hydroxytryptamine (5-HT or serotonin) reversibly suppressed the excitatory postsynaptic potential in a concentration-dependent manner without affecting the resting membrane potential and neuronal input resistance. Extracellular Ba2+ or pertussis toxin pretreatment did not affect the depressing effect of 5-HT suggesting that it is not mediated through activation of Gi/o protein-coupled K+ conductance. The sensitivity of postsynaptic neurons to glutamate receptor agonist was unaltered by the 5-HT pretreatment. In addition, the magnitude of paired-pulse facilitation was increased in the presence of 5-HT indicating a presynaptic mode of action. The effect of 5-HT was mimicked by the selective 5-HT1A agonist 8-hydroxy-dipropylaminotetralin (8-OH-DPAT) and was blocked by the selective 5-HT1A antagonist 1-(2-methoxyphenyl)-4[4-(2-phthalimido)butyl]piperazine oxadiazol-3-yl]methyl]phenyl]methanesulphonamide. In contrast, the selective 5-HT2 receptor antagonist ketanserin failed to affect the action of 5-HT. The effects of 5-HT and 8-OH-DPAT on the high K+-induced increase in [Ca2+]i were studied in acutely dissociated basolateral amygdala neurons. High K+-induced increase in [Ca2+]i was blocked by Ca2+-free solution and Cd2+ suggesting that Ca2+ entry responsible for the depolarizaton-evoked increase in [Ca2+]i occurred through voltage-dependent Ca2+ channels. Application of 5-HT and 8-OH-DPAT reduced the K+-induced Ca2+ influx in a concentration-dependent manner. The effect of 5-HT was completely abolished in slices pretreated with Rp-cyclic adenosine 3′,5′-monophosphothioate (Rp-cAMP), a regulatory site antagonist of protein kinase A, suggesting that 5-HT may act through a cAMP-dependent mechanism. Taken together, these results suggest that functional 5-HT1A receptors are present in the excitatory terminals and mediate the 5-HT inhibition of synaptic transmission in the amygdala. Introduction  相似文献   

20.
We have examined how NGF-dependent rat sympathetic neurons maintain Ca2+ homeostasis when challenged with high K+ or 8-(4-chlorophenylthio)cyclic AMP (CPTcAMP), two survival factors. In the presence of NGF, high K+ (55 mM) caused a stable, 65% reduction in the density of cell soma voltage-sensitive Ca2+ channels within 2 days. Although resting [Ca2+]i was elevated by 1.6-fold, this was 50% less than the rise in [Ca2+]i measured before down-regulation occurred, suggesting that down-regulation may help prevent the toxic effects of persistently elevated [Ca2+]i. Inhibition of protein synthesis by cycloheximide blocked recovery from down-regulation. Moreover, treatment with cycloheximide or actinomycin-D caused a 2-fold rise in the peak Ca2+ current, suggesting that voltage-sensitive Ca2+ channel activity may be tonically attenuated during normal growth. In the absence of NGF, neurons survived for several days in high K+ medium with no significant rise in resting [Ca2+]i, although neurites did not grow. Neither Ca2+ channel density nor resting [Ca2+]i were altered in neurons surviving with CPTcAMP. Moreover, CPTcAMP lowered the dependence on extracellular Ca2+. However, the dihydropyridine antagonist nitrendipine blocked both high K+- and CPTcAMP-dependent survival although it had no effect in the presence of NGF. Thus, in the absence of NGF, sympathetic neurons do not require elevation of [Ca2+]i above resting levels to survive with either high K+ or CPTcAMP, but dihydropyridine-sensitive Ca2+ channel activity may be essential for their survival promoting actions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号