首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The thalamus relays sensory information to cortex, but this information may be influenced by excitatory feedback from cortical layer VI. The full importance of this feedback has only recently been explored, but among its possible functions are influences on the processing of sensory features, synchronization of thalamic firing, and transitions in response mode of thalamic relay cells. Uncontrolled, corticothalamic feedback has also been implicated in pathological thalamic rhythms associated with certain neurological disorders. We have found a form of presynaptic inhibition of corticothalamic synaptic transmission that is mediated by a Group II metabotropic glutamate receptor (mGluR) and activated by high-frequency corticothalamic activity. We tested putative retinogeniculate and corticogeniculate synapses for Group II mGluR modulation within the dorsal lateral geniculate nucleus of the ferret thalamus. Stimulation of optic-tract fibers elicited paired-pulse depression of excitatory postsynaptic currents (EPSCs), whereas stimulation of the optic radiations elicited paired-pulse facilitation. Paired-pulse responses were subsequently used to characterize the pathway of origin of stimulated synapses. Group II mGluR agonists (LY379268 and DCG-IV) applied to thalamic neurons under voltage-clamp conditions reduced the amplitude of corticogeniculate EPSCs. Stimulation with high-frequency trains produced a facilitating response that was reduced by Group II mGluR agonists, but was enhanced by the selective antagonist LY341495, revealing a presynaptic, mGluR-mediated reduction of high-frequency corticogeniculate feedback. Agonist treatment did not affect EPSCs from stimulation of the optic tract. NAAG (reported to be selective for mGluR3) was ineffective at the corticogeniculate synapse, implicating mGluR2 in the observed effects. Our data are the first to show a synaptically elicited form of presynaptic inhibition of corticothalamic synaptic transmission that is mediated by presynaptic action of mGluR2. This presynaptic inhibition may partially mute sensory feedback and prevent reentrant excitation from initiating abnormal thalamic rhythms.  相似文献   

3.
4.
Lee HS  Chong W  Han SK  Lee MH  Ryu PD 《Neuroscience》2001,102(2):401-411
Glutamate is known to increase neuronal excitability in the subfornical organ, a circumventricular organ devoid of the blood-brain barrier. To understand the synaptic mechanism of neuronal excitation by glutamate in this nucleus, we examined the effects of glutamate on GABAergic spontaneous inhibitory postsynaptic currents recorded from subfornical organ neurons in the rat brain slice. The baseline frequency, amplitude and decay time-constant of such spontaneous synaptic currents were 5.60 Hz, 119 pA and 17.3 ms, respectively. Glutamate (10-1000 microM) selectively inhibited the frequency of spontaneous GABAergic inhibitory postsynaptic currents (half-maximal effective concentration=47 microM) with little effects on their amplitudes and decay time constants. The inhibitory effect of glutamate on the frequency of spontaneous GABAergic postsynaptic currents was not blocked by tetrodotoxin (1 microM), or by the antagonists of ionotropic glutamate receptors. In contrast, such inhibitory effect of glutamate was mimicked by general or group II selective metabotropic glutamate receptor agonists such as DCGIV (2S,1'R,2'R,3'R)-2-(2',3'-dicarboxycyclopropyl)glycine (half-maximal effective concentration=112 nM), but not by the agonists for group I or group III metabotropic glutamate receptors. Under current clamp mode, glutamate reduced the frequencies of spontaneous inhibitory postsynaptic potentials and action potentials in subfornical organ neurons. Our data indicate that glutamate decreases the frequency of spontaneous inhibitory postsynaptic currents by acting on the group II metabotropic glutamate receptors on axonal terminals in the subfornical organ. From these results we suggest that the glutamate-induced modulation of tonic GABAergic inhibitory synaptic activity can influence the excitability of subfornical organ neurons.  相似文献   

5.
6.
7.
Glutamate is the predominant excitatory neurotransmitter in the vertebrate CNS. Ionotropic glutamate receptors mediate fast excitatory actions whereas metabotropic glutamate receptors (mGluRs) mediate a variety of slower effects. For example, mGluRs can mediate presynaptic inhibition, postsynaptic excitation, or, more rarely, postsynaptic inhibition. We previously described an unusually slow form of postsynaptic inhibition in one class of projection neuron in the song-control nucleus HVc of the songbird forebrain. These neurons, which participate in a circuit that is essential for vocal learning, exhibit an inhibitory postsynaptic potential (IPSP) that lasts several seconds. Only a portion of this slow IPSP is mediated by GABA(B) receptors. Since these cells are strongly hyperpolarized by agonists of mGluRs, we used intracellular recording from brain slices to investigate the mechanism of this hyperpolarization and to determine whether mGluRs contribute to the slow synaptic inhibition. We report that mGluRs hyperpolarize these HVc neurons by activating G protein-coupled, inwardly-rectifying potassium (GIRK) channels. MGluR antagonists blocked this response and the slow synaptic inhibition. Thus, glutamate can combine with GABA to mediate slow synaptic inhibition by activating GIRK channels in the CNS.  相似文献   

8.
9.
10.
The metabotrophic subtype 5 glutamate receptor (mGluR5) plays a critical role in synaptic plasticity besides its involvement in numerous neurological disorders, such as depression. As mGluR5 availability in humans is altered in sleep deprivation, we hypothesized that mGluR5 availability underlies a circadian variation. To investigate whether mGluR5 underlies potential circadian changes we measured its density in a randomized fashion at six different daytimes in 11 adult Sprague–Dawley rats. mGluR5 density was quantified by positron emission tomography (PET) using the radioactive ligand [11C]ABP688. [11C]ABP688 uptake was quantified in nine regions of interest with a reference tissue model. Significant differences in the binding potential (BPND) and therefore mGluR5 availability between the different circadian times were found in cortex, cingulate cortex, amygdala, caudate putamen and nucleus accumbens. Further post‐hoc statistical analysis (Tukey–Kramer test) of the different time‐points revealed significant changes in BPND between 07:00 hours (start of light‐on phase) and 15:00 hours (last time‐point of the light‐on phase) in the caudate putamen. This study shows that mGluR5 availability is increased during the light‐on, or sleep phase, of rodents by approximately 10%. Given that altered mGluR5 densities play a role in psychiatric disorders, further investigation is warranted to evaluate their circadian involvement in mood changes in humans.  相似文献   

11.
12.
We examined the ontogenesis of a subtype of metabotropic glutamate receptors, termed mGluR1, which is linked to phosphoinositide metabolism, in various regions of rat brain during neonatal development. Northern blot analyses of mGluR1 mRNA indicated that mRNA increased monotonously or remained at plateau levels during the first 5 weeks after birth. In situ hybridization analyses supported this conclusion. The result is in contrast with the reported development of the activity in excitatory amino acid-stimulated phosphoinositide turnover during the same period. The latter increases during the first few weeks and then decreases sharply.  相似文献   

13.
14.
In pyramidal neurons of the rat sensorimotor cortex, we have investigated the modulation of high voltage-activated calcium currents by agonists at group III metabotropic glutamate receptors (mGluRs). l-2-Amino-4-phosphonobutyrate (l-AP4) and l-serine-O-phosphate (l-SOP) reduced calcium currents in the vast majority of cells isolated from the adult animal. Interestingly, this modulation was negligible in the young animals (2–14 postnatal days), becoming prominent only after full development (more than 21 days). The efficacy of l-SOP mimicked l-AP4 in reducing calcium currents. Yet, l-SOP produced saturating responses at about 3 μM and significant modulation at nanomolar concentrations (EC50=923 nM). The voltage-dependence of the group III mGluR-mediated responses was evaluated by comparing the inhibition of “standard” and “facilitated” conductances. On the calcium currents facilitated by depolarizing prepulse, 3 μM l-SOP produced a mean 13.4% inhibition compared with 19.6% in control condition, supporting the proposition that part of the modulation was voltage-dependent. The calcium current inhibition caused by the activation of group III metabotropic glutamate receptors was only partially sensitive to ω-conotoxin GVIA, but largely inhibited by ω-agatoxin IVA, at concentrations (100 nM) known to block P- and Q-type channels. Conversely, the dihydropyridine antagonists nifedipine and nimodipine (50–500 nM) failed to prevent the group III mGluR-mediated response in the majority of tested cells (more than 65%). Furthermore, the long-lasting tail promoted by the inclusion of the dihydropyridine agonist Bay K 8644 was not consistently affected by l-SOP and l-AP4. These findings imply that the observed modulation involves different channel subtypes, namely N- and P- or Q-type channels, and suggests that group III mGluRs play an important role in the intrinsic and synaptic functions of adult cortical pyramidal neurons. Received: 10 April 1997 / Accepted: 10 September 1997  相似文献   

15.
Transient receptor potential (TRP) channels form cationic channels activated by diverse factors including mechanical stimuli, changes in osmolarity, pH and temperature, as well as the exogenous irritant, capsaicin. Metabotropic glutamate receptors have also recently been linked to TRP channel activation in neurones of the substantia nigra, hippocampus and cerebellum, suggesting a novel role for such channels in synaptic communication via endogenous neurotransmitters. We tested this for dopamine neurones in rat brain slices by characterizing the current–voltage relationship and pharmacology of EPSCs mediated by group I metabotropic glutamate receptor subtype 1 (mGluR1). Slow inward currents (273 ± 35 pA peak amplitude, 381 ± 25 ms latency, holding potential ( V h) =−73 mV) representing evoked mGluR1 EPSCs were isolated in the presence of antagonists of AMPA, NMDA, GABAA, GABAB, muscarinic and glycine receptors. CPCCOEt (100 μ m ), an mGluR1 antagonist, blocked the residual EPSC in all recordings. mGluR1-activated EPSCs reversed polarity near −10 mV, consistent with the involvement of a cationic channel. Extracellular application of the non-selective TRP channel blockers SKF 96365, flufenamic acid and ruthenium red caused reversible inhibition of mGluR1-activated EPSCs. These characteristics parallel those of mGluR1 activation with an agonist and indicate the involvement of a TRP-like channel in mGluR1-mediated EPSCs.  相似文献   

16.
17.
18.
Effects of metabotropic glutamate receptor activation in auditory thalamus.   总被引:1,自引:0,他引:1  
Metabotropic glutamate receptors (mGluRs) are expressed predominantly in dendritic regions of neurons of auditory thalamus. We studied the effects of mGluR activation in neurons of the ventral partition of medial geniculate body (MGBv) using whole cell current- and voltage-clamp recordings in brain slices. Bath application of the mGluR-agonist, 1S,3R-1-aminocyclopentan-1,3-dicarboxylic acid or 1S,3R-ACPD (5-100 microM), depolarized MGBv neurons (n = 67), changing evoked response patterns from bursts to tonic firing as well as frequency responses from resonance ( approximately 1 Hz) to low-pass filter characteristics. The depolarization was resistant to Na(+)-channel blockade with tetrodotoxin (TTX; 300 nM) and Ca(2+)-channel blockade with Cd(2+) (0.1 mM). The application of 1S, 3R-ACPD did not change input conductance and produced an inward current (I(ACPD)) with an average amplitude of 84.2 +/- 5.3 pA (at -70 mV, n = 22). The application of the mGluR antagonist, (RS)-alpha-methyl-4-carboxyphenylglycine (0.5 mM), reversibly blocked the depolarization or I(ACPD). During intracellular application of guanosine 5'-O-(3-thiotriphosphate) from the recording electrode, bath application of 1S,3R-ACPD irreversibly activated a large amplitude I(ACPD). During intracellular application of guanosine 5'-O-(2-thiodiphosphate), application of 1S, 3R-ACPD evoked only a small I(ACPD). These results implicate G proteins in mediation of the 1S,3R-ACPD response. A reduction of external [Na(+)] from 150 to 26 mM decreased I(ACPD) to 32.8 +/- 10. 3% of control. Internal applications of a Ca(2+) chelator, 1, 2-bis-(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid (BAPTA; 10 mM), suppressed I(ACPD), implying a contribution of a Ca(2+) signal or Na(+)/Ca(2+) exchange. However, partial replacement of Na(+) with Li(+) (50 mM) did not significantly change I(ACPD). Therefore it seemed less likely that a Na(+)/Ca(2+) exchange current was a major participant in the response. A reduction of extracellular [K(+)] from 5.25 to 2.5 mM or external Ba(2+) (0.5 mM) or Cs(+) (2 mM) did not significantly change I(ACPD) between -40 and -85 mV. Below -85 mV, 1S,3R-ACPD application reversibly attenuated an inward rectification, displayed by 11 of 20 neurons. Blockade of an inwardly rectifying K(+) current with Ba(2+) (1 mM) or Cs(+) (2-3 mM) occluded the attenuation. In the range positive to -40 mV, 1S, 3R-ACPD application activated an outward current which Cs(+) blocked; this unmasked a voltage dependence of the inward I(ACPD) with a maximum amplitude at approximately -30 mV. The I(ACPD) properties are consistent with mGluR expression as a TTX-resistant, persistent Na(+) current in the dendritic periphery. We suggest that mGluR activation changes the behavior of MGBv neurons by three mechanisms: activation of a Na(+)-dependent inward current; activation of an outward current in a depolarized range; and inhibition of the inward rectifier, I(KIR). These mechanisms differ from previously reported mGluR effects in the thalamus.  相似文献   

19.
1. The present experiments investigated the effects of gamma-amino-butyric acidB (GABAB) receptor stimulation on the excitatory and inhibitory responses of neostriatal neurons evoked by stimulation of the subcortical white matter in a rat neostriatal slice preparation. 2. Intracellular recordings showed that single-impulse stimulation of the corpus callosum evoked monosynaptic, 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX)-sensitive excitatory postsynaptic potentials (EPSPs) that were attenuated by the GABAB receptor agonist, p-chlorophenyl-GABA (baclofen, 0.5-10 microM) in a concentration-dependent manner. Baclofen also blocked the GABAA-mediated inhibition of neostriatal cell responses, which were revealed by paired-impulse stimulation of the subcortical white matter. Both of these effects persisted in slices in which the anterior cortex was removed, indicating that the site of action for baclofen was intrinsic to the neostriatum. The GABAB antagonist 3-amino-2-hydroxy-2-(4-chlorophenyl)-propanesulfonic acid (saclofen, 250-500 microM) reversed the depressant actions of baclofen on both the excitatory and inhibitory responses of neostriatal cells. 3. Concentrations of baclofen as high as 100 microM, which markedly attenuated EPSP amplitude, did not exert direct effects on resting membrane potential, current-voltage relationship, input resistance, or spike threshold and thus appeared to have no postsynaptic effect on the population of neurons recorded. 4. These results indicate that, in contrast to other regions of the CNS, the depressant effects of baclofen on glutamate-dependent EPSPs are mediated exclusively through GABAB receptors located presynaptically on the terminals of glutamatergic afferents.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号