首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Transforming growth factor-β (TGF-β) is a key factor in cancer development and progression. TGF-β can suppress tumorigenesis by inhibiting cell cycle progression and stimulating apoptosis in early stages of cancer progression. However, TGF-β can modulate cancer-related processes, such as cell invasion, distant metastasis, and microenvironment modification that may be used by cancer cells to their advantage in late stages. Corresponding mechanisms include angiogenesis promotion, anti-tumor immunity suppression, and epithelial-to-mesenchymal transition (EMT) induction. The correlation between TGF-β expression and cancer prognosis has also been extensively investigated. Results suggest that TGF-β pathway can be targeted to treat cancer; as such, the feasibility of this treatment is investigated in clinical trials.KEYWORDS : Transforming growth factor-β (TGF-β), neoplasms, prognosis, therapeutics  相似文献   

2.
Transforming growth factor (TGF)-β signalling plays a dichotomous role in tumour progression, acting as a tumour suppressor early and as a pro-metastatic pathway in late-stages. There is accumulating evidence that advanced-stage tumours produce excessive levels of TGF-β, which acts to promote tumour growth, invasion and colonisation of secondary organs. In light of the pro-metastasis function, many strategies are currently being explored to antagonise the TGF-β pathway as a treatment for metastatic cancers. Strategies such as using large molecule ligand traps, reducing the translational efficiency of TGF-β ligands using antisense technology, and antagonising TGF-β receptor I/II kinase function using small molecule inhibitors are the most prominent methods being explored today. Administration of anti-TGF-β therapies alone, or in combination with immunosuppressive or cytotoxic therapies, has yielded promising results in the preclinical and clinical settings. Despite these successes, the temporal- and context-dependent roles of TGF-β signalling in cancer has made it challenging to define patient subgroups that are most likely to respond, and the therapeutic regimens that will be most effective in the clinic. Novel mouse models and diagnostic tools are being developed today to circumvent these issues, which may potentially expedite anti-TGF-β drug development and clinical application.  相似文献   

3.
4.
Despite a primary tumor suppressor role, there is compelling evidence suggesting that TGF-β can promote tumor growth, invasion and metastasis in advanced stages of colorectal cancer. Blocking these tumor-promoting effects of TGF-β provides a potentially important therapeutic strategy for the treatment of colorectal cancer. However, little is known about how the inhibitors of TGF-β receptor kinases affect colorectal carcinogenesis in vivo. Here, we have observed that a novel dual kinase inhibitor of TGF-β type I and type II receptors, LY2109761, inhibits TGF-β-mediated activation of Smad and non-Smad pathways in CT26 colon adenocarcinoma cells having K-Ras mutation. The inhibitor attenuates the oncogenic effects of TGF-β on cell migration, invasion and tumorigenicity of CT26 cells. Furthermore, LY2109761 decreases liver metastases and prolongs survival in an experimental metastasis model. These findings suggest that the dual kinase inhibitor LY2109761 has potential therapeutic value for metastatic colorectal cancer.  相似文献   

5.
Gastrointestinal (GI) cancer, including esophageal, gastric, and colorectal cancer, is one of the most prevalent types of malignant carcinoma and the leading cause of cancer-related deaths. Despite significant advances in therapeutic strategies for GI cancers in recent decades, drug resistance with various mechanisms remains the prevailing cause of therapy failure in GI cancers. Accumulating evidence has demonstrated that the transforming growth factor (TGF)-β signaling pathway has crucial, complex roles in many cellular functions related to drug resistance. This review summarizes current knowledge regarding the role of the TGF-β signaling pathway in the resistance of GI cancers to conventional chemotherapy, targeted therapy, immunotherapy, and traditional medicine. Various processes, including epithelial-mesenchymal transition, cancer stem cell development, tumor microenvironment alteration, and microRNA biogenesis, are proposed as the main mechanisms of TGF-β-mediated drug resistance in GI cancers. Several studies have already indicated the benefit of combining antitumor drugs with agents that suppress the TGF-β signaling pathway, but this approach needs to be verified in additional clinical studies. Moreover, the identification of potential biological markers that can be used to predict the response to TGF-β signaling pathway inhibitors during anticancer treatments will have important clinical implications in the future.  相似文献   

6.
7.
Gliomas are characterized by a deregulation of growth factor production and growth factor receptors expression, e.g. overproduction of the cytokine transforming growth factor- (TGF-) and overexpression/constitutive activation of receptors for the epidermal growth factor (EGF). Potential interactions of such growth factors and their signaling cascades could enhance the malignancy of these tumors. Therefore, we investigated the effects of TGF- and EGF alone and in combination on the proliferation of glioma cells cultivated from eight solid human WHO grade IV gliomas and one glioma cell line, analyzed the expression and intactness of the TGF--signaling molecules Samd-4 and -2, and the phosphorylation of the EGF-signaling kinases ERK 1/2. The effects were divergent and complex: Whereas EGF mostly stimulated glioma cell proliferation, TGF- either enhanced, inhibited or had no significant effect on proliferation. In combination, co-stimulation and inhibition of the EGF-induced mitogenic activity could be observed. Smad-4/-2 were expressed in all glioma cells, one point mutation at base 1595 in Smad-4 did not affect its protein sequence. In part of the glioma cells, reduced phosphorylation of ERK 1/2 and expression of cyclin-dependent kinase inhibitor 1 or p21 was observed in co-stimulation experiments. These experiments show that TGF- can inhibit EGF-mediated effects only in some gliomas, whereas it enhances it in others. The interaction of both factors is very complex and varies between different gliomas.  相似文献   

8.

Background

Drug resistance remains a great challenge in the treatment of pancreatic cancer. The goal of this study was to determine whether TGF-β1 is associated with drug resistance in pancreatic cancer.

Methods

Pancreatic cancer BxPC3 cells were stably transfected with TGF-β1 cDNA. Cellular morphology and cell cycle were determined and the suppressive subtracted hybridization (SSH) assay was performed to identify differentially expressed genes induced by TGF-β1. Western blotting and immunohistochemistry were used to detect expression of TGF-β1-related genes in the cells and tissue samples. After that, the cells were further treated with an anti-cancer drug (e.g., cisplatin) after pre-incubated with the recombinant TGF-β1 plus PKCα inhibitor Gö6976. TGF-β1 type II receptor, TβRII was also knocked down using TβRII siRNA to assess the effects of these drugs in the cells. Cell viability was assessed by MTT assay.

Results

Overexpression of TGF-β1 leads to a markedly increased invasion potential but a reduced growth rate in BxPC3 cells. Recombinant TGF-β1 protein increases expression of PKCα in BxPC3 cells, a result that we confirmed by SSH. Moreover, TGF-β1 reduced the sensitivity of BxPC3 cells to cisplatin treatment, and this was mediated by upregulation of PKCα. However, blockage of PKCα with Gö6976 and TβRII with siRNA reversed the resistance of BxPC3 cells to gemcitabine, even in the presence of TGF-β1. Immunohistochemical data show that pancreatic cancers overexpress TGF-β1 and P-gp relative to normal tissues. In addition, TGF-β1 expression is associated with P-gp and membranous PKCα expression in pancreatic cancer.

Conclusions

TGF-β1-induced drug resistance in pancreatic cancer cells was associated with PKCα expression. The PKCα inhibitor Gö6976 could be a promising agent to sensitize pancreatic cancer cells to chemotherapy.  相似文献   

9.

Purpose

Clinically evident chronic pancreatitis is a strong risk factor for pancreatic cancer. A small Japanese cohort study previously reported that pre-diagnostic serum transforming growth factor-β1 (TGF-β1) concentration, a potential marker of subclinical pancreatic inflammation, was associated with higher risk of pancreatic cancer. We further explored this association in a larger prospective study.

Methods

Serum TGF-β1 concentrations were measured in pre-diagnostic samples from 729 pancreatic cancer cases and 907 matched controls from a cohort of Finnish male smokers (the Alpa-Tocopherol, Beta-Carotene (ATBC) Cancer Prevention Study) and two cohorts of US men and women, the Cancer Prevention Study-II and the Prostate Lung, Colorectal and Ovarian (PLCO) Cancer Screening Trial. Multivariable-adjusted odds ratios (ORs) were estimated using conditional logistic regression.

Results

Overall, serum TGF-β1 concentration was not associated with a clear increase in pancreatic cancer risk (OR 1.36, 95 % confidence interval (CI) 0.98–1.88 for highest vs. lowest quintile, p trend = 0.20). However, this association differed significantly by follow-up time (p = 0.02). Serum TGF-β1 concentration was not associated with risk during the first 10 years of follow-up, but was associated with higher risk during follow-up after 10 years (OR 2.13, 95 % CI 1.23–3.68 for highest vs. lowest quintile, p trend = 0.001). During follow-up after 10 years, serum TGF-β1 was associated with higher risk only in the ATBC cohort, although most subjects were from ATBC during this time period and statistical evidence for heterogeneity across cohorts was limited (p = 0.14).

Conclusions

These results suggest that high serum TGF-β1 may be associated with increased risk of pancreatic cancer although a long follow-up period may be needed to observe this association.  相似文献   

10.
Glioblastoma cells secrete transforming growth factor- (TGF-), whichhas a variety of immunosuppressive properties. We investigatedthe effect of irradiation TGF- secretion by malignantglioma cells. Three malignant glioma cell lines (T98G,A172, KG-1-C) were cultured and irradiated using 10and 50 Gy Linac radiation. After further culturefor 36 hours in serum-free culture medium, thesupernatants were collected. The TGF- activity in theculture supernatants was determined using a specific bioassay.The levels of the active form and totalTGF- in the supernatants from irradiated malignant gliomacells decreased compared to those from un-irradiated cells.However, since irradiation inhibited the growth of tumorcells, the amount of TGF- secretion per cellin irradiated cells tended to increase after irradiation.These results suggest that malignant glioma cells canstill secrete TGF- and activate latent TGF- evenafter large dose irradiation, despite the inhibition oftumor growth.  相似文献   

11.
Pleomorphic carcinoma (PC) of the lung consists of an epithelial component showing the histology of poorly differentiated non-small cell carcinoma of the lung and a sarcomatous component, that is more aggressive compared to non-small cell carcinoma of the lung. To determine the differences between an epithelial component of PC and poorly differentiated non-small cell carcinoma, the expression of adhesion molecules (E-cadherin, β-catenin and N-cadherin) and transforming growth factor-β (TGF-β) was compared immunohistochemically among 14 poorly differentiated adenocarcinomas of the lung (PDAs) and 14 PCs of the lung, with an epithelial component, showing the histology of PDA. Expression levels of E-cadherin and β-catenin were significantly lower in epithelial or sarcomatous components of PCs than in PDAs while that of TGF-β was significantly higher in epithelial components of PCs than in PDAs. No significant difference was found in incidences of the expression of these molecules between epithelial and sarcomatous components of PCs. No significant difference was noted in the expression level of N-cadherin among PDAs and epithelial and sarcomatous components of PCs. The present results showed that E-cadherin and β-catenin expression is reduced and TGF-β expression is increased in epithelial components of PCs with the same histology as PDA when compared to PDAs, suggesting that an epithelial component of PC is distinct from non-small cell carcinoma with the same histology.  相似文献   

12.
13.
This cross-sectional investigation in Hawaii explored the relation between soy foods and mammographic characteristics using two food frequency questionnaires and a computer-assisted density assessment method. Japanese and Chinese women reported significantly greater soy food intake than Caucasian women. Whereas soy intake and the size of the dense areas were not related, soy intake and percent mammographic densities were positively associated. The size of the entire breast and the nondense area (ie the fatty part of the breast) were inversely related to soy intake. These results suggest the hypothesis that soy foods by themselves or as part of an Asian dietary pattern may affect the growth of the female breast before adulthood, but the possible mechanisms of action have to be explored in future studies.  相似文献   

14.
Transforming growth factor-β in cancer and metastasis   总被引:2,自引:0,他引:2  
Transforming growth factor-beta (TGF-β) is a multifunctional regulatory polypeptide that is the prototypical member of a large family of cytokines that controls many aspects of cellular function, including cellular proliferation, differentiation, migration, apoptosis, adhesion, angiogenesis, immune surveillance, and survival. The actions of TGF-β are dependent on several factors including cell type, growth conditions, and the presence of other polypeptide growth factors. One of the biological effects of TGF-β is the inhibition of proliferation of most normal epithelial cells using an autocrine mechanism of action, and this suggests a tumor suppressor role for TGF-β. Loss of autocrine TGF-β activity and/or responsiveness to exogenous TGF-β appears to provide some epithelial cells with a growth advantage leading to malignant progression. This suggests a pro-oncogenic role for TGF-β in addition to its tumor suppressor role. During the early phase of epithelial tumorigenesis, TGF-β inhibits primary tumor development and growth by inducing cell cycle arrest and apoptosis. In late stages of tumor progression when tumor cells become resistant to growth inhibition by TGF-β due to inactivation of the TGF-β signaling pathway or aberrant regulation of the cell cycle, the role of TGF-β becomes one of tumor promotion. Resistance to TGF-β-mediated inhibition of proliferation is frequently observed in multiple human cancers, as are various alterations in the complex TGF-β signaling and cell cycle pathways. TGF-β can exert effects on tumor and stromal cells as well as alter the responsiveness of tumor cells to TGF-β to stimulate invasion, angiogenesis, and metastasis, and to inhibit immune surveillance. Because of the dual role of TGF-β as a tumor suppressor and pro-oncogenic factor, members of the TGF-β signaling pathway are being considered as predictive biomarkers for progressive tumorigenesis, as well as molecular targets for prevention and treatment of cancer and metastasis.  相似文献   

15.
In order to improve the prognosis of patients with unresectable pancreatic cancer, there is an urgent need for enhancement of the anticancer effect of gemcitabine (Gem), a first-line drug for the disease. Here, we demonstrated that ligands for peroxisome proliferator-activated receptor γ (PPARγ) such as pioglitazone (Pio) and rosiglitazone potentiated the cytotoxic action of Gem on human pancreatic cancer cells in a dosage-dependent manner. Notably, the synergistic effect was PPARγ-dependent, since the effect was augmented by PPARγ overexpression and was attenuated by both a PPARγ inhibitor (GW9662) and PPARγ-specific siRNA. To further increase the collaborative effect, the histone deacetylase (HDAC) inhibitor valproic acid (VPA), a known potentiator for PPARγ function, was added to the combinatorial treatment, robustly inducing apoptosis mediated by highly expressed death receptors, including Fas/CD95 and DR5. In xenograft tumor experiments in nude mice, Gem plus Pio significantly suppressed tumor growth as compared with the control treatment, while Gem-only treatment did not. Triple treatment with Gem, Pio, and VPA failed to demonstrate a significant antitumor effect when compared with Gem plus Pio in the current setting. Considered together, Gem plus PPARγ ligands, including Pio, may have therapeutic advantage in the treatment of advanced pancreatic cancer. Since Pio is widely used in the treatment of diabetes mellitus, it may become a feasible partner of Gem-based chemotherapy, fine-tuning the strength of the therapy in a dosage-dependent fashion.  相似文献   

16.
17.
18.
Altered responsiveness to extracellular signals and cell cycle dysregulation are hallmarks of cancer. The cell cycle is governed by cyclin-dependent kinases (cdks) that integrate mitogenic and growth inhibitory signals. Transforming growth factor (TGF)-β mediates G1 cell cycle arrest by inducing or activating cdk inhibitors, and by inhibiting factors required for cdk activation. Mechanisms that lead to cell cycle arrest by TGF-β are reviewed. Loss of growth inhibition by TGF-β occurs early in breast cell transformation, and may contribute to breast cancer progression. Dysregulation of cell cycle effectors at many different levels may contribute to loss of G1 arrest by TGF-β. Elucidation of these pathways in breast cancer may ultimately lead to novel and more effective treatments for this disease.  相似文献   

19.
ABSTRACT: INTRODUCTION: Transforming growth factor beta (TGF-β) has a dual role during tumor progression, initially as a suppressor and then as a promoter. Epithelial TGF-β signaling regulates fibroblast recruitment and activation. Concurrently, TGF-β signaling in stromal fibroblasts suppresses tumorigenesis in adjacent epithelia, while its ablation potentiates tumor formation. Much is known about the contribution of TGF-β signaling to tumorigenesis, yet the role of TGF-β in epithelial-stromal migration during tumor progression is poorly understood. We hypothesize that TGF-β is a critical regulator of tumor-stromal interactions that promote mammary tumor cell migration and invasion. METHODS: Fluorescently labeled murine mammary carcinoma cells, isolated from either MMTV-PyVmT transforming growth factor-beta receptor II knockout (TβRII KO) or TβRIIfl/fl control mice, were combined with mammary fibroblasts and xenografted onto the chicken embryo chorioallantoic membrane. These combinatorial xenografts were used as a model to study epithelial-stromal crosstalk. Intravital imaging of migration was monitored ex ovo, and metastasis was investigated in ovo. Epithelial RNA from in ovo tumors was isolated by laser capture microdissection and analyzed to identify gene expression changes in response to TGF-β signaling loss. RESULTS: Intravital microscopy of xenografts revealed that mammary fibroblasts promoted two migratory phenotypes dependent on epithelial TGF-β signaling: single cell/strand migration or collective migration. At epithelial-stromal boundaries, single cell/strand migration of TβRIIfl/fl carcinoma cells was characterized by expression of α-smooth muscle actin and vimentin, while collective migration of TβRII KO carcinoma cells was identified by E-cadherin+/p120+/β-catenin+ clusters. TβRII KO tumors also exhibited a twofold greater metastasis than TβRIIfl/fl tumors, attributed to enhanced extravasation ability. In TβRII KO tumor epithelium compared with TβRIIfl/fl epithelium, Igfbp4 and Tspan13 expression was upregulated while Col1α2, Bmp7, Gng11, Vcan, Tmeff1, and Dsc2 expression was downregulated. Immunoblotting and quantitative PCR analyses on cultured cells validated these targets and correlated Tmeff1 expression with disease progression of TGF-β-insensitive mammary cancer. CONCLUSION: Fibroblast-stimulated carcinoma cells utilize TGF-β signaling to drive single cell/strand migration but migrate collectively in the absence of TGF-β signaling. These migration patterns involve the signaling regulation of several epithelial-to-mesenchymal transition pathways. Our findings concerning TGF-β signaling in epithelial-stromal interactions are important in identifying migratory mechanisms that can be targeted as recourse for breast cancer treatment.  相似文献   

20.
In the later stages of breast cancer, estrogen receptor (ER)α-negative cancers typically have higher histological grades than ERα-positive cancers, and transforming growth factor (TGF)-β promotes invasion and metastasis. Our previous study indicated that ERα inhibited TGF-β signaling by inducing the degradation of Smad in an estrogen-dependent manner. In the present study, we report that the suppressive effects of ERα and estrogen on tumor progression are mediated by inhibiting TGF-β signaling. Furthermore, we investigated the effects of antiestrogens such as ICI182,780 (ICI) or tamoxifen (TAM) on TGF-β signaling and breast cancer invasiveness. The levels of total Smad and pSmad were reduced by estrogen, whereas ICI slightly increased them, and TAM had no effect. To investigate the effect of antiestrogens on breast cancer invasiveness, we generated highly migratory and invasive MCF-7-M5 cells. The migration and invasion of these cells were suppressed by the inhibitor of TGF-β receptor kinase, SB-505124, and estrogen. However, antiestrogens did not suppress the migration and invasion of these cells. In addition, we screened TGF-β target genes whose expression was reduced by estrogen treatment and identified four genes associated with breast cancer invasiveness and poor prognosis. The expression of these genes was not decreased by antiestrogens. These observations provide a new insight into estrogen function and the mechanisms underlying estrogen-mediated suppression of tumor progression.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号