首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An immunochromatographic test for the simultaneous detection of Babesia caballi- and B. equi-specific antibodies (BceICT) was developed using a recombinant B. caballi 48-kDa rhoptry protein (rBc48) and a recombinant truncated B. equi merozoite antigen 2 (rEMA-2t). An evaluation of the ability of the BceICT to detect antibodies in sera from uninfected horses and experimentally infected horses showed high sensitivities and specificities of 83.3% (10/12 sera) and 92.9% (52/56 sera), respectively, for the anti-B. caballi antibody and 94.1% (16/17 sera) and 88.2% (45/51 sera), respectively, for the anti-B. equi antibody. Results from the detection of antibodies in field-collected sera indicated that the BceICT results corresponded with those of enzyme-linked immunosorbent assays (ELISA), showing 91.8% correspondence (67/73 sera) for B. caballi and 95.9% correspondence (70/73 sera) for B. equi, and that the BceICT results also corresponded with the ICT for B. caballi and for B. equi, both of which were 98.2% (55/56 sera). The comparable results of the ICT and ELISA and the simplicity and rapidity of the performance of the ICT suggest that the BceICT would be a feasible test for the simultaneous serodiagnosis of both agents of equine babesiosis in the field.  相似文献   

2.
A horse with no prior clinical history of equine piroplasmosis tested negative for Babesia caballi and Babesia equi in the complement fixation test before importation into the United States from France. After 5 years in residence in the United States, the animal tested serologically positive for B. equi by the complement fixation test, the immunofluorescent antibody test, and Western blot analysis. The carrier status of the horse was confirmed by culture of B. equi parasites. In vitro culture offers an efficient and comparatively inexpensive method to determine the carrier status of horses suspected of harboring B. equi.  相似文献   

3.
Parasitology Research - The agents of equine piroplasmosis, Theileria equi and Babesia caballi, are endemic in Trinidad, West Indies. While transmission is mainly by ixodid ticks, transplacental...  相似文献   

4.
Equi merozoite antigen 1 (EMA-1) is an immunodominant Babesia equi erythrocyte-stage surface protein. A competitive enzyme-linked immunosorbent assay (ELISA), based on inhibition of monoclonal antibody (MAb) 36/133.97 binding to recombinant EMA-1 by equine anti-B. equi antibodies, detects horses infected with strains present throughout the world. The objectives of this study were to define the epitope bound by MAb 36/133.97 and quantify the amino acid conservation of EMA-1, including the region containing the epitope bound by MAb 36/133.97. The alignment of the deduced amino acid sequence of full-length EMA-1 (Florida isolate) with 15 EMA-1 sequences from geographically distinct isolates showed 82.8 to 99.6% identities (median, 98.5%) and 90.5 to 99.6% similarities (median, 98.9%) between sequences. Full-length and truncated recombinant EMA-1 proteins were expressed and tested for their reactivities with MAb 36/133.97. Binding required the presence of amino acids on both N- and C-terminal regions of a truncated peptide (EMA-1.2) containing amino acids 1 to 98 of EMA-1. This result indicated that the epitope defined by MAb 36/133.97 is dependent on conformation. Sera from persistently infected horses inhibited the binding of MAb 36/133.97 to EMA-1.2 in a competitive ELISA, indicating that equine antibodies which inhibit binding of MAb 36/133.97 also recognize epitopes in the same region (the first 98 residues). Within this region, the deduced amino acid sequences had 85.7 to 100% identities (median, 99.0%), with similarities of 94.9 to 100% (median, 100%). Therefore, the region which binds to both MAb 36/133.97 and inhibiting equine antibodies has a median amino acid identity of 99.0% and a similarity of 100%. These data provide a molecular basis for the use of both EMA-1 and MAb 36/133.97 for the detection of antibodies against B. equi.  相似文献   

5.
Thirteen blood samples of horses from South Africa, five of which were seropositive for Babesia caballi and eight for both B. caballi and Theileria equi, were subjected to in vitro culture to identify carrier animals. None of the animals had a detectable parasitaemia on Giemsa-stained blood smears before culture initiation. Cultures were initiated in L-cysteine-enriched medium, either in an oxygen-reduced gas mixture or in a 5% CO2-in-air atmosphere. All five animals seropositive for B. caballi were identified as carrier animals using an oxygen-reduced atmosphere, whereas only four samples became culture positive under normal atmospheric conditions. Among the eight samples seropositive for both B. caballi and T. equi, two were identified as carriers for both. The remaining six samples were identified as carrying only T. equi.  相似文献   

6.
A competitive-inhibition enzyme-linked immunosorbent assay (cELISA) was developed for detection of equine antibodies specific for Babesia caballi. The assay used recombinant B. caballi rhoptry-associated protein 1 (RAP-1) and monoclonal antibody (MAb) 79/17.18.5, which is reactive with a peptide epitope of a native 60-kDa B. caballi antigen. The gene encoding the recombinant antigen was sequenced, and database analysis revealed that the gene product is a rhoptry-associated protein. Cloning and expression of a truncated copy of the gene demonstrated that MAb 79/17.18.5 reacts with the C-terminal repeat region of the protein. The cELISA was used to evaluate 302 equine serum samples previously tested for antibodies to B. caballi by a standardized complement fixation test (CFT). The results of cELISA and CFT were 73% concordant. Seventy-two of the 77 serum samples with discordant results were CFT negative and cELISA positive. Further evaluation of the serum samples with discordant results by indirect immunofluorescence assay (IFA) demonstrated that at a serum dilution of 1:200, 48 of the CFT-negative and cELISA-positive serum samples contained antibodies reactive with B. caballi RAP-1. Four of five CFT-positive and cELISA-negative serum samples contained antibodies reactive with B. caballi when they were tested by IFA. These data indicate that following infection with B. caballi, horses consistently produce antibody to the RAP-1 epitope defined by MAb 79/17.18.5, and when used in the cELISA format, recombinant RAP-1 is a useful antigen for the serologic detection of anti-B. caballi antibodies.  相似文献   

7.
A cDNA expression library prepared from Babesia caballi merozoite mRNA was screened with a monoclonal antibody BC11D against the rhoptry protein of B. caballi merozoite. A cDNA encoding a 48-kDa protein of B. caballi was cloned and designated BC48. The complete nucleotide sequence of the BC48 gene had 1,828 bp and was shown to contain no intron. Southern blotting analysis indicated that the BC48 gene contained more than two copies in the B. caballi genome. Computer analysis suggested that this sequence contained an open reading frame of 1,374 bp with a coding capacity of approximately 52 kDa. The recombinant protein expressed by the vaccinia virus vector in horse cells had an apparent molecular mass of 48 kDa, which was the same as that of the native B. caballi 48-kDa protein. Moreover, recombinant proteins expressed by the pGEX4T expression vector in Escherichia coli as glutathione S-transferase fusion proteins were used for antigen in an enzyme-linked immunosorbent assay (ELISA). The ELISA was able to differentiate very clearly between B. caballi-infected horse sera and B. equi-infected horse sera or noninfected normal horse sera. These results suggest that this simple and highly sensitive test might be applicable to the detection of B. caballi-infected horses in the field.  相似文献   

8.
The gene encoding the entire Babesia equi merozoite antigen 1 (EMA-1) was inserted into a baculovirus transfer vector, and a recombinant virus expressing EMA-1 was isolated. The expressed EMA-1 was transported to the surface of infected insect cells, as judged by an indirect fluorescent-antibody test (IFAT). The expressed EMA-1 was also secreted into the supernatant of a cell culture infected with recombinant baculovirus. Both intracellular and extracellular EMA-1 reacted with a specific antibody in Western blots. The expressed EMA-1 had an apparent molecular mass of 34 kDa that was identical to that of native EMA-1. The secreted EMA-1 was used as an antigen in an enzyme-linked immunosorbent assay (ELISA). The ELISA differentiated B. equi-infected horse sera from Babesia caballi-infected horse sera or normal horse sera. The ELISA was more sensitive than the complement fixation test and IFAT. These results demonstrated that the recombinant EMA-1 expressed in insect cells might be a useful diagnostic reagent for detection of antibodies to B. equi.  相似文献   

9.
Horses infected with Babesia equi were previously identified by the presence of antibodies reactive with a merozoite surface protein epitope (D. P. Knowles, Jr., L. E. Perryman, L. S. Kappmeyer, and S. G. Hennager. J. Clin. Microbiol. 29:2056-2058, 1991). The antibodies were detected in a competitive inhibition enzyme-linked immunosorbent assay (CI ELISA) by using monoclonal antibody 36/133.97, which defines a protein epitope on the merozoite surface. The gene encoding this B. equi merozoite epitope was cloned and expressed in Escherichia coli. The recombinant merozoite protein, designated equi merozoite antigen 1 (EMA-1), was evaluated in the CI ELISA. Recombinant EMA-1 bound antibody from the sera of B. equi-infected horses from 18 countries. The antibody response to EMA-1 was then measured in horses experimentally infected with B. equi via transmission by the tick vector Boophilus microplus or by intravenous inoculation. Anti-EMA-1 antibody was detected 7 weeks post-tick exposure and remained, without reexposure to B. equi, for the 33 weeks of the evaluation period. The data indicate that recombinant EMA-1 can be used in the CI ELISA to detect horses infected with B. equi.  相似文献   

10.
Parasitology Research - Equine piroplasmosis (EP) is a tick-borne disease of equids caused by Babesia caballi and/or Theileria equi, which is endemic in many tropical and temperate areas of the...  相似文献   

11.
A competitive inhibition enzyme-linked immunosorbent assay (CI ELISA) was developed to detect antibody to Babesia equi. One hundred fifty-four equine serum samples from 19 countries were tested for antibody to B. equi by the complement fixation test and by CI ELISA. The CI ELISA and complement fixation test results agreed in 94% (144) of the serum samples tested. The 10 discrepant serum samples were retested and analyzed for ability to immunoprecipitate in vitro translation products from B. equi merozoite mRNA. Five discrepant results were clearly resolved in favor of the CI ELISA, and the remaining five discrepancies were not definitively resolved.  相似文献   

12.
Equi merozoite antigens 1 and 2 (EMA-1 and EMA-2) are Babesia equi proteins expressed on the parasite surface during infection in horses and are orthologues of proteins in Theileria spp., which are also tick-transmitted protozoal pathogens. We determined in this study whether EMA-1 and EMA-2 were expressed within the vector tick Boophilus microplus. B. equi transitions through multiple, morphologically distinct stages, including sexual stages, and these transitions culminate in the formation of infectious sporozoites in the tick salivary gland. EMA-2-positive B. equi stages in the midgut lumen and midgut epithelial cells of Boophilus microplus nymphs were identified by reactivity with monoclonal antibody 36/253.21. This monoclonal antibody also recognized B. equi in salivary glands of adult Boophilus microplus. In addition, quantification of B. equi in the mammalian host and vector tick indicated that the duration of tick feeding and parasitemia levels affected the percentage of nymphs that contained morphologically distinct B. equi organisms in the midgut. In contrast, there was no conclusive evidence that B. equi EMA-1 was expressed in either the Boophilus microplus midgut or salivary gland when monoclonal antibody 36/18.57 was used. The expression of B. equi EMA-2 in Boophilus microplus provides a marker for detecting the various development stages and facilitates the identification of novel stage-specific Babesia proteins for testing transmission-blocking immunity.  相似文献   

13.
Equi merozoite antigen 1 (EMA-1) is an immunodominant Babesia equi erythrocyte-stage surface protein. A competitive enzyme-linked immunosorbent assay (ELISA), based on inhibition of monoclonal antibody (MAb) 36/133.97 binding to recombinant EMA-1 by equine anti-B. equi antibodies, detects horses infected with strains present throughout the world. The objectives of this study were to define the epitope bound by MAb 36/133.97 and quantify the amino acid conservation of EMA-1, including the region containing the epitope bound by MAb 36/133.97. The alignment of the deduced amino acid sequence of full-length EMA-1 (Florida isolate) with 15 EMA-1 sequences from geographically distinct isolates showed 82.8 to 99.6% identities (median, 98.5%) and 90.5 to 99.6% similarities (median, 98.9%) between sequences. Full-length and truncated recombinant EMA-1 proteins were expressed and tested for their reactivities with MAb 36/133.97. Binding required the presence of amino acids on both N- and C-terminal regions of a truncated peptide (EMA-1.2) containing amino acids 1 to 98 of EMA-1. This result indicated that the epitope defined by MAb 36/133.97 is dependent on conformation. Sera from persistently infected horses inhibited the binding of MAb 36/133.97 to EMA-1.2 in a competitive ELISA, indicating that equine antibodies which inhibit binding of MAb 36/133.97 also recognize epitopes in the same region (the first 98 residues). Within this region, the deduced amino acid sequences had 85.7 to 100% identities (median, 99.0%), with similarities of 94.9 to 100% (median, 100%). Therefore, the region which binds to both MAb 36/133.97 and inhibiting equine antibodies has a median amino acid identity of 99.0% and a similarity of 100%. These data provide a molecular basis for the use of both EMA-1 and MAb 36/133.97 for the detection of antibodies against B. equi.  相似文献   

14.
The efficacy of the Be82 gene product fused with glutathione S-transferase (GST/Be82) in an enzyme-linked immunosorbent assay (ELISA) for the diagnosis of Babesia equi infection was reported previously (H. Hirata et al., J. Clin. Microbiol. 40:1470-1474, 2002). However, the ELISA with the GST/Be82 antigen cross-reacted with Babesia caballi-infected horse sera, despite the high rate of detection of B. equi. These results suggested that GST/Be82 has an antigen in common with B. caballi or antigenicity similar to that of B. caballi. In the present study, we constructed a series of five clones with deletions in the Be82 gene product, each of which was fused with GST, and used them in ELISAs in order to overcome the cross-reactivity seen with B. caballi. One of the deletion clones, a clone with a deletion of the Be82 gene from positions 236 to 381 (Be82/236-381), specifically and sensitively detected B. equi-infected horse sera without cross-reactivity with B. caballi-infected horse sera. Assays with clones from which other gene products were deleted showed decreased sensitivities or remained nonspecific for the detection of B. equi-infected horse sera. These results suggest that the Be82/236-381 gene product is a novel antigen for the diagnosis of B. equi infection in horses.  相似文献   

15.
In the present study, we investigated the cellular localizations and expression patterns of equi merozoite antigens (EMA) -1 and -2 of Babesia equi during its asexual erythrocytic-developmental cycle using anti-EMA-1t or -2t mono-specific mouse serum. Indirect fluorescent antibody tests demonstrated that EMA-1 and EMA-2 were not expressed in all the erythrocytic-developmental stages of the merozoites and that these two antigens were co-expressed during the early developmental stages. Additionally, it was shown that EMA-1 and EMA-2 were mutually expressed on the surface of extra-erythrocytic merozoites and also that the intra-erythrocytic merozoites shed only EMA-2 antigen in the infected erythrocytic cytoplasm or inside the membrane surface. The specific binding of EMA-2 to a Triton X-100-insoluble horse erythrocyte membrane fraction was also demonstrated. These findings facilitate our understanding of the biological roles of merozoite surface proteins of B. equi and our investigation for new drug targets.  相似文献   

16.
This is a molecular epidemiological investigation on Theileria equi, a causative agent of equine piroplasmosis. Blood samples were collected from 127 horses from different geographical locations in Sudan. The small subunit of rRNA gene (18S; ~1,600 bp) was amplified from 20 positive field samples and subsequently subjected to direct sequencing and analysis to reveal possible strain differences and the presence of a novel species or genotypes. Sequences were compared with published sequences mainly from South African and Spanish isolates. Eleven distinct T. equi sequences within 18S rRNA gene were identified to have occurred, and three genotypes were lying within the three previously identified groups. Alignments demonstrated extensive sequence variation in the hypervariable region of the 18S rRNA gene and many SNPs within the Sudanese T. equi isolates.  相似文献   

17.
To isolate Babesia equi genes encoding immunodominant proteins, a cDNA expression library prepared from B. equi mRNA was immunoscreened with B. equi-infected horse serum. Eighteen positive cDNA clones were obtained, and the clone that showed the strongest immunoreactivity, designated Be82, was further characterized. The Be82 gene consisted of 1,953 bp and contained a partial open reading frame lacking the 5'-terminal sequence. As shown by Western blot analyses, immune sera from mice intraperitoneally injected with the Be82 gene product recognized the 82- and 52-kDa proteins of B. equi but not those of Babesia caballi. The glutathione S-transferase fusion protein expressed in Escherichia coli that was purified and used as the antigen in the enzyme-linked immunosorbent assay reacted specifically with B. equi-infected horse sera. These results suggest that the Be82 gene product is a potential diagnostic antigen candidate in the detection of B. equi infection in horses that will be useful both in the performance of epidemiological studies and in the granting of quarantine passes.  相似文献   

18.
A latex agglutination test (LAT) using recombinant equi merozoite antigen 1 (EMA-1) for the detection of antibodies to Babesia equi was developed. The LAT was able to differentiate very clearly between sera from B. equi-infected horses and sera from Babesia caballi-infected horses or from normal horses. The LAT results were identical to those of a previously developed enzyme-linked immunosorbent assay. These results indicate that LAT using recombinant EMA-1 might be very useful as a routine screening method for the diagnosis of B. equi infection.  相似文献   

19.
The gene encoding a truncated merozoite antigen-2 (EMA-2t) of Babesia equi was cloned and highly expressed in Escherichia coli as a glutathione S-transferase fusion protein (G-rEMA-2t). Both G-rEMA-2t and rEMA-2t (after the removal of glutathione S-transferase) had good antigenicity. Either Western blot analysis with rEMA-2t or enzyme-linked immunosorbent assay (ELISA) with G-rEMA-2t clearly discriminated the sera of horses experimentally infected with B. equi from sera of horses infected with Babesia caballi and healthy horses, although rEMA-2t was not suitable for ELISA, probably owing to its poor absorbability to the plates. The specific antibodies in B. equi-infected horses were detectable during both acute and latent infection (6 to 244 days postinfection). Horse sera from Jilin Province, China, were examined by the two tests. The seroprevalence of B. equi was 49.2% (31 of 63 sera) by Western blot analysis with rEMA-2t and 47.6% (30 of 63 sera) by ELISA with G-rEMA-2t. The correspondence was 98.4% (62 of 63 sera) between the two tests. The results indicate that G-rEMA-2t and rEMA-2t proteins should be suitable antigens for the development of an effective immunodiagnostic assay due to their high sensitivity, specificity, and great yield.  相似文献   

20.
A Babesia caballi gene encoding the 134-kDa (BC134) protein was immunoscreened with B. caballi-infected horse serum. An enzyme-linked immunosorbent assay (ELISA) using recombinant BC134 protein could effectively differentiate B. caballi-infected horse sera from Babesia equi-infected or noninfected control horse sera. These results suggest that the recombinant BC134 protein is a potential diagnostic antigen in the detection of B. caballi infection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号