首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Recent attempts to understand the biological bases of depression vulnerability have revealed that both the short allele of the serotonin transporter-linked polymorphic region (5-HTTLPR) and activity in the amygdala are associated with depression. Other studies have reported amygdala hyperactivity associated with the 5-HTTLPR short allele, linking the genetic and neuroimaging lines of research and suggesting a mechanism whereby the short allele confers depression risk. However, fewer investigations have examined the associations among depression, 5-HTTLPR variability, and amygdala activation in a single study. The current study thus investigated whether 5-HTTLPR genotype modulates the association between depressive symptoms and amygdala activity among psychiatrically healthy adults. Regional cerebral blood flow was measured with perfusion fMRI during a task-free scan. We hypothesized differential associations between depressive symptoms and amygdala activity among individuals homozygous for the short allele and individuals homozygous for the long allele. Both whole brain analyses and region-of-interest analyses confirmed this prediction, revealing a significant negative association among the long allele group and a trend of positive association among the short allele group. These results complement existing reports of short allele related amygdala hyperactivity and suggest an additional neurobiological mechanism whereby the 5-HTTLPR is associated with psychiatric outcomes.  相似文献   

2.
BACKGROUND: Perfusion functional magnetic resonance imaging (fMRI) was used to investigate the effect of genetic variation of the human serotonin transporter (5-HTT) gene (5-HTTLPR, SLC6A4) on resting brain function of healthy individuals. METHODS: Twenty-six healthy subjects, half homozygous for the 5-HTTLPR short allele (s/s group) and half homozygous for the long allele (l/l group), underwent perfusion functional and structural magnetic resonance imaging during a resting state. The two genotype groups had no psychiatric illness and were similar in age, gender, and personality scores. RESULTS: Compared with the l/l group, the s/s group showed significantly increased resting cerebral blood flow (CBF) in the amygdala and decreased CBF in the ventromedial prefrontal cortex. The effect of functional modulation in these regions by 5-HTTLPR genotype cannot be accounted for by variations in brain anatomy, personality, or self-reported mood. CONCLUSIONS: The 5-HTTLPR genotype alters resting brain function in emotion-related regions in healthy individuals, including the amygdala and ventromedial prefrontal cortex. Such alterations suggest a broad role of the 5-HTT gene in brain function that may be associated with the genetic susceptibility for mood disorders such as depression.  相似文献   

3.
Background  Functional imaging studies in healthy individuals revealed an association between 5-HTTLPR genotype and neuronal activity in the amygdala. The aim of this study was firstly to investigate a possible overall impact of the 5-HTTLPR on amygdala volume in patients with bipolar disorder and healthy individuals and secondly to test a diagnosis specific influence of the 5-HTTLPR on amygdala volume. Methods  We performed a region of interest analysis of amygdala volume in 37 patients with bipolar I disorder and 37 healthy control subjects. The 5-HTTLPR genotype of each proband was determined and the subjects were separated according to 5-HTTLPR genotype and for statistical analyses the groups SS and SL were combined and compared with the group LL. Results  This study shows that carriers of the short allele (SL or SS) of the 5-HTTLPR polymorphism exhibit a relatively increased volume of the right amygdala compared to homozygous L-allele carriers irrespective of diagnosis status. However, further analyses with the factors genotype and diagnosis were not able to reproduce this result. Conclusions  The present findings are consistent with the view that the 5-HTTLPR polymorphism might modulate neuronal size or number in the amygdala. It would be worthwhile investigating the relationship between serotonin transporter function and amygdala function and volume in further studies.  相似文献   

4.
5.
The serotonin transporter-linked promoter region (5-HTTLPR) polymorphism of the serotonin transporter gene is associated with amygdala response during negative emotion. The aim of this study was to investigate whether this genotype effect on amygdala function is mediated by current serotonin transporter (5-HTT) levels or rather by genetically induced influences during neurodevelopment, shaping brain structure. A total of 54 healthy subjects underwent functional and structural magnetic resonance imaging, [11C]DASB positron emission tomography and 5-HTTLPR genotyping to analyze the interrelationships between amygdala activation during processing of unpleasant stimuli, 5-HTTLPR genotype, amygdala volumes and 5-HTT levels in the midbrain and in other brain regions. In line with previous research, carriers of the short allele (S) showed increased amygdala activation. Path analysis demonstrated that this genotype effect was not procured by current 5-HTT availability but by amygdala structure, with smaller amygdala volumes in the S than in the LL genotype, as well as smaller volumes being associated with increased amygdala activation. Our findings stress the role of genetic effects during neurodevelopment.  相似文献   

6.
The short allele of the serotonin-transporter-linked promoter region (5-HTTLPR) polymorphism is associated with increased amygdala activation in response to emotional stimuli. Although top-down processes may moderate this association, available evidence is conflicting, showing the genotype influence on amygdala reactivity to be either decreased or increased during emotion regulation. Because the effects of the 5-HTTLPR polymorphism on amygdala reactivity are also conditional on self-reported life stress, differences in life stress exposure may account for this apparent discrepancy. Here, we hypothesized that self-reported life stress would moderate the relationships between genotype, cognitive appraisal, and amygdala reactivity. Forty-five healthy never-depressed subjects were presented with emotional stimuli and performed two cognitive tasks: a self-referential task and an emotion-labeling task. Life-stress exposure was measured through a semistructured interview. First, there was a genotype × condition interaction in the right amygdala: short allele carriers displayed increased amygdala activation and decreased functional connectivity with the subgenual anterior cingulate cortex in self-referential processing versus emotion labeling. Second, in line with our hypothesis, there was a genotype × condition × stress interaction in bilateral amygdala the amygdala activation during self-referential processing was negatively correlated with self-reported life stress in short allele carriers and positively in individuals homozygous for the long allele, whereas an opposite pattern was observed during emotion labeling. These results confirm that the influence of the 5-HTTLPR polymorphism on amygdala reactivity is at least partially under cognitive control. Additionally, they suggest that measuring life stress exposure is a critical step when imaging genetics.  相似文献   

7.
8.
A functional polymorphism within the serotonin transporter gene (5-HTTLPR) has been reported to modulate emotionality and risk for affective disorders. The short (S) allele has less functional efficacy than the long (L) allele and has been associated with enhanced emotional reactivity. One possible contributing factor to the high emotionality in S carriers may be inefficient use of cognitive strategies such as reappraisal to regulate emotional responses. The aim of the present study was to test whether the 5-HTTLPR genotype modulates the neural correlates of emotion regulation. To determine neural differences between S and L allele carriers during reappraisal of negative emotions, 15 homozygous S (S′/S′) and 15 homozygous L (L′/L′) carriers underwent functional magnetic resonance imaging (fMRI), while performing an instructed emotion regulation task including downregulation, upregulation and passive viewing of negative emotional pictures. Compared to L′/L′ allele carriers, subjects who carry the S′/S′ allele responded with lower posterior insula and prefrontal brain activation during passive perception of negative emotional information but showed greater prefrontal activation and anterior insula activation during down- and upregulation of negative emotional responses. The current results support and extend previous findings of enhanced emotionality in S carriers by providing additional evidence of 5-HTTLPR modulation of volitional emotion regulation.  相似文献   

9.
5-HTTLPR与卒中后抑郁及单相抑郁病因和疗效的关联分析   总被引:1,自引:0,他引:1  
目的 探讨我国汉族人群卒中后抑郁(post-stroke depression,PSD)及单相抑郁(unipolar depression,UD)患者病因和疗效与5-羟色胺转运蛋白启动子区基因多态性(serotonin transporter gene-linked polymorphic,5-HTTLPR)之间的关系。方法 以4 5例P S D及41例U D患者作为研究对象,以149名正常人作对照,应用聚合酶链式反应(polymerase chain reaction,PCR)扩增技术测定所有研究对象的5-HTTLPR的基因型和等位基因,PSD和UD患者组患者使用氟西汀治疗12周,在基线及12周治疗末时使用汉密尔顿抑郁量表(Hamilton depressive scale,HAMD)-17项评定疾病严重程度及疗效。结果 5-HTTLPR的3种基因型(S/S、S/L和L/L)和等位基因(S和L)在PSD组、UD组和正常对照组之间的分布差异无统计学意义;PSD和UD组S/S纯合子与S/L杂合子及L/L纯合子的基线评分相比差异具有统计学意义;12周治疗后两组患者治愈组和未治愈组之间S/S与S/L和L/L基因型、S和L等位基因分布具有统计学差异。结论 5-HTTLPR与PSD及UD均无显著关联,S/S基因型患者可能抑郁症状较重,12周治疗后携带S/S基因型和S等位基因患者的临床痊愈率较低。  相似文献   

10.
Communication between the amygdala and other brain regions critically regulates sensitivity to threat, which has been associated with risk for mood and affective disorders. The extent to which these neural pathways are genetically determined or correlate with risk-related personality measures is not fully understood. Using functional magnetic resonance imaging, we evaluated independent and interactive effects of the 5-HTTLPR genotype and neuroticism on amygdala functional connectivity during an emotional faces paradigm in 76 healthy individuals. Functional connectivity between left amygdala and medial prefrontal cortex (mPFC) and between both amygdalae and a cluster including posterior cingulate cortex, precuneus and visual cortex was significantly increased in 5-HTTLPR S′ allele carriers relative to LALA individuals. Neuroticism was negatively correlated with functional connectivity between right amygdala and mPFC and visual cortex, and between both amygdalae and left lateral orbitofrontal (lOFC) and ventrolateral prefrontal cortex (vlPFC). Notably, 5-HTTLPR moderated the association between neuroticism and functional connectivity between both amygdalae and left lOFC/vlPFC, such that S′ carriers exhibited a more negative association relative to LALA individuals. These findings provide novel evidence for both independent and interactive effects of 5-HTTLPR genotype and neuroticism on amygdala communication, which may mediate effects on risk for mood and affective disorders.  相似文献   

11.
5-羟色胺基因多态性与抑郁症的相关性研究   总被引:9,自引:1,他引:8  
目的:探讨5-羟色胺转运体(5-HTT)基因启动子区多态性(5-HTTLPR)与抑郁症的相关性及其对抗抑郁药疗效的影响。方法:运用聚合酶链反应技术(PCR)检测51例抑郁症患者(患者组)和60名健康对照者(对照组)5-HTTLPR的分布频率;并予文拉法辛治疗,用汉密尔顿抑郁量表(HAMD)观察疗效。结果:患者组5-HTTLPR的短重复序列/短重复序列(short/short,S/S)基因型和短重复序列(short,S)等位基因频率分别为71%和81%,对照组为45%和69%差异显著。治疗4周后,长重复序列/长重复序列(long/long,L/L)基因型患者的减分率显著高于其他两型。结论:5-HTTLPR的S/S基因型可能是抑郁症的易感基因之一,L/L基因型可能和更好的选择性5-羟色胺受体阻滞剂类(SSRIs)疗效有关。  相似文献   

12.
Complex genetic disorders such as depression likely exhibit epistasis, but neural mechanisms of such gene-gene interactions are incompletely understood. 5-HTTLPR and BDNF VAL66MET, functional polymorphisms of the serotonin (5-HT) transporter (SLC6A4) and brain-derived neurotrophic factor (BDNF) gene, impact on two distinct, but interacting signaling systems, which have been related to depression and to the modulation of neurogenesis and plasticity of circuitries of emotion processing. Recent clinical studies suggest that the BDNF MET allele, which shows abnormal intracellular trafficking and regulated secretion, has a protective effect regarding the development of depression and in mice of social defeat stress. Here we show, using anatomical neuroimaging techniques in a sample of healthy subjects (n=111), that the BDNF MET allele, which is predicted to have reduced responsivity to 5-HT signaling, protects against 5-HTTLPR S allele-induced effects on a brain circuitry encompassing the amygdala and the subgenual portion of the anterior cingulate (rAC). Our analyses revealed no effect of the 5-HTTLPR S allele on rAC volume in the presence of BDNF MET alleles, whereas a significant volume reduction (P<0.001) was seen on BDNF VAL/VAL background. Interacting genotype effects were also found in structural connectivity between amygdala and rAC (P=0.002). These data provide in vivo evidence of biologic epistasis between SLC6A4 and BDNF in the human brain by identifying a neural mechanism linking serotonergic and neurotrophic signaling on the neural systems level, and have implications for personalized treatment planning in depression.  相似文献   

13.
14.
This study assessed the impact of serotonin transporter genotype (5-HTTLPR) on regional responses to emotional faces in the amygdala and subgenual cingulate cortex (sgACC), while subjects performed a gender discrimination task. Although we found no evidence for greater amygdala reactivity or reduced amygdala-sgACC coupling in short variant 5-HTTLPR homozygotes (s/s), we observed an interaction between genotype and emotion in sgACC. Only long variant homozygotes (la/la) exhibited subgenual deactivation to fearful versus neutral faces, whereas the effect in s/s subjects was in the other direction. This absence of subgenual deactivation in s/s subjects parallels a recent finding in depressed subjects [Grimm, S., Boesiger, P., Beck, J., Schuepbach, D., Bermpohl, F., Walter, M., et al. Altered negative BOLD responses in the default-mode network during emotion processing in depressed subjects. Neuropsychopharmacology, 34, 932-943, 2009]. Taken together, the findings suggest that subgenual cingulate activity may play an important role in regulating the impact of aversive stimuli, potentially conferring greater resilience to the effects of aversive stimuli in la/la subjects. Using dynamic causal modeling of functional magnetic resonance imaging data, we explored the effects of genotype on effective connectivity and emotion-specific changes in coupling across a network of regions implicated in social processing. Viewing fearful faces enhanced bidirectional excitatory coupling between the amygdala and the fusiform gyrus, and increased the inhibitory influence of the amygdala over the sgACC, although this modulation of coupling did not differ between the genotype groups. The findings are discussed in relation to the role of sgACC and serotonin in moderating responses to aversive stimuli [Dayan, P., & Huys, Q. J., Serotonin, inhibition, and negative mood. PLoS Comput Biol, 4, e4, 2008; Mayberg, H. S., Liotti, M., Brannan, S. K., McGinnis, S., Mahurin, R. K., Jerabek, P. A., et al. Reciprocal limbic-cortical function and negative mood: Converging PET findings in depression and normal sadness. Am J Psychiatry, 156, 675-682, 1999].  相似文献   

15.
BACKGROUND: Mixed evidence has suggested that homozygous carriers of the short allele (s/s) of the serotonin transporter gene-linked polymorphic region (5-HTTLPR) may be at increased risk for depression, if they have also been exposed to early or current adversity/stress. We address this debate by examining the relation of a stressful early family environment, recent adversity/stress, and the 5-HTTLPR to depressive symptomatology in a normal sample. METHODS: A nonclinical sample of 118 young adult men and women completed assessments of early family environment, recent stressful events, psychosocial resources, and psychological distress, including depressive symptomatology. The 5-HTTLPR was genotyped using a standard protocol with DNA extracted from oral fluid. RESULTS: A stressful early family environment was significantly related to depressive symptomatology. In addition, gene-by-environment (GxE) interactions were observed between the 5-HTTLPR and both early family environment and current adversity/stress. Individuals homozygous for the short allele had greater depressive symptomatology if they had experienced early or recent adversity but significantly less depressive symptomatology if they reported a supportive early environment or recent positive experiences, compared with participants with the s/l or l/l genotype. CONCLUSIONS: Early or current environment, in conjunction with the serotonin transporter polymorphism, predicts depressive symptomatology.  相似文献   

16.
Serotonergic mechanisms are thought to play an important role in the pathogenesis of seasonal affective disorder (SAD). The expression of the serotonin transporter (5-HTT) is regulated in part by an insertion/deletion polymorphism in the serotonin transporter gene promoter region (5-HTTLPR). The 5-HTTLPR short allele (s) has been associated with anxiety-related personality traits and depression, and one study observed an association between the 5-HTTLPR s-allele and SAD and the trait of seasonality. We genotyped 138 SAD patients and 146 healthy volunteers with low seasonality for 5-HTTLPR. No difference between patients and controls was found for genotype distribution and s-allele frequency. However, genotype distribution and allele frequencies were strongly associated with DSM-IV depression subtypes. Melancholic depression was associated with the 5-HTTLPR long (l) allele and atypical depression with the 5-HTTLPR s-allele (two-sided Fisher's exact test: genotype distribution: P=0.0038; allele frequencies: P=0.007). Our data are compatible with the hypothesis of a disease process that is not causally related to 5-HTTLPR, but involves 5-HT neurotransmission and 5-HTTLPR somewhere on its way to phenotypic disease expression.  相似文献   

17.
BACKGROUND: According to cognitive diathesis-stress theories, a latent cognitive vulnerability to depression is activated by negative affect in individuals at risk for depressive relapse. This vulnerability can manifest as mood-congruent memory during sad mood and may involve amygdala response, which is implicated in memory for emotionally arousing stimuli. This study examined whether amygdala modulates memory for negatively valenced words before and after a sad mood induction in healthy individuals with and without a history of recurrent major depression. METHODS: Fourteen unmedicated remitted depressed (RD) and 14 matched never depressed (ND) individuals were scanned using functional magnetic resonance imaging (fMRI) while performing a self-referent encoding/evaluation task (SRET) preceding and following a sad mood challenge. After each SRET, participants' free recall was assessed. RESULTS: Following sad mood induction, bilateral amygdala response during encoding of valenced words predicted increased recall of negative self-referent words for a subset of RD participants. This association was not present before the sad mood induction and was not evident in individuals without a history of depression, regardless of mood state. CONCLUSIONS: These results are consistent with cognitive diathesis-stress theories and suggest a role for the amygdala in modulating mood-congruent memory during transient sad mood in individuals who are vulnerable to depression relapse.  相似文献   

18.
19.
20.
Social deficits in autism spectrum disorder (ASD) are linked to amygdala functioning and functional connection between the amygdala and subgenual anterior cingulate cortex (sACC) is involved in the modulation of amygdala activity. Impairments in behavioral symptoms and amygdala activation and connectivity with the sACC seem to vary by serotonin transporter-linked polymorphic region (5-HTTLPR) variant genotype in diverse populations. The current preliminary investigation examines whether amygdala-sACC connectivity differs by 5-HTTLPR genotype and relates to social functioning in ASD. A sample of 108 children and adolescents (44 ASD) completed an fMRI face-processing task. Youth with ASD and low expressing 5-HTTLPR genotypes showed significantly greater connectivity than youth with ASD and higher expressing genotypes as well as typically developing (TD) individuals with both low and higher expressing genotypes, in the comparison of happy vs. baseline faces and happy vs. neutral faces. Moreover, individuals with ASD and higher expressing genotypes exhibit a negative relationship between amygdala-sACC connectivity and social dysfunction. Altered amygdala-sACC coupling based on 5-HTTLPR genotype may help explain some of the heterogeneity in neural and social function observed in ASD. This is the first ASD study to combine genetic polymorphism analyses and functional connectivity in the context of a social task.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号