首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Infusion of transforming growth factor alpha (TGFalpha) into the adult dopamine (DA)-depleted striatum generates a local population of nestin(+)/proliferating cell nuclear antigen (PCNA)(+) newborn cells. The precise origin and fate of these new striatal cells are unknown, making it difficult to direct them for neural repair in Parkinson's disease. Experiments in rats using 5-bromo-2'-deoxyuridine (BrdU) to label neural progenitor cells showed that during TGFalpha infusion in the DA-depleted striatum, newborn striatal cells formed a homogeneous population of precursors, with the majority coexpressing nestin, Mash1, Olig2, and epidermal growth factor receptor, consistent with the phenotype of multipotent C cells. Upon TGFalpha pump withdrawal, the subventricular zone (SVZ) was repopulated by neuroblasts. Strikingly, during this period, numerous clusters of doublecortin(+)/polysialylated neuronal cell adhesion molecule(+) neuroblasts were also produced in the ipsilateral medial striatum. In parallel, striatal BrdU(+)/glial fibrillary acidic protein(+) astrocytes were generated, but no BrdU(+)/O4(+)/CNPase(+) oligodendrocytes were generated. Infusion of the neuralizing bone morphogenetic protein antagonist noggin after TGFalpha pump withdrawal increased the neuroblast-to-astrocyte ratio among new striatal cells by blocking glial differentiation but did not alter striatal neurogenesis. At no time or treatment condition were differentiated neurons generated, including DA neurons. Using 6-hydroxydopamine-lesioned nestin-CreER(T2)/R26R-YFP mice that allow genetic fate-mapping of SVZ nestin(+) cells, we show that TGFalpha-generated striatal cells originate from SVZ nestin(+) precursors that confirmed data from the rats on the phenotype and fate of striatal nestin(+)/PCNA(+) cells upon TGFalpha withdrawal. This work demonstrates that a large population of multipotent striatal C-like cells can be generated in the DA-depleted striatum that do not spontaneously differentiate into DA neurons.  相似文献   

2.
The presence of ongoing neurogenesis in the adult mammalian brain raises the exciting possibility that endogenous progenitor cells may be able to generate new neurons to replace cells lost through brain injury or neurodegenerative disease. We have recently demonstrated increased cell proliferation and the generation of new neurons in the Huntington's disease human brain. In order to better understand the potential role of endogenous neuronal replacement in neurodegenerative disorders and extend our initial observations in the human Huntington's disease brain, we examined the effect of striatal cell loss on neurogenesis in the subventricular zone (SVZ) of the adult rodent forebrain using the quinolinic acid (QA) lesion rat model of Huntington's disease. Cell proliferation and neurogenesis were assessed with bromodeoxyuridine (BrdU) labeling and immunocytochemistry for cell type-specific markers. BrdU labeling demonstrated increased cell proliferation in the SVZ ipsilateral to the QA-lesioned striatum, resulting in expansion of the SVZ in the lesioned hemisphere. Quantification revealed that QA lesion-induced striatal cell loss produced a significant increase in the area of BrdU-immunoreactivity in the SVZ ipsilateral to the lesioned hemisphere between 1 and 14 days post-lesion compared with sham-lesioned animals, with the greatest increase observed at 7 days post-lesion. These changes were associated with an increase in cells in the anterior SVZ ipsilateral to the lesioned striatum expressing the antigenic marker for SVZ neuroblasts, doublecortin (Dcx). Importantly, we observed Dcx-positive cells extending from the SVZ into the QA-lesioned striatum where a subpopulation of newly generated cells expressed markers for immature and mature neurons. This study demonstrates that loss of GABAergic medium spiny projection neurons following QA striatal lesioning of the adult rat brain increases SVZ neurogenesis, leading to the putative migration of neuroblasts to damaged areas of the striatum and the formation of new neurons.  相似文献   

3.
Nestin is a marker for the neuronal and glial precursor cells and is expressed in reactive astrocytes after brain injury. Following restricted neocortical injury, we found that cells with neuronal morphology in the adult rat striatum became immunoreactive for both nestin and the neuronal marker, microtubule-associated protein 2 (MAP-2), but not for the astroglial marker, glial fibrillary acidic protein (GFAP). The number of nestin-positive cells transiently increased in the striatum. Continuous administration of 5-bromo-2'-deoxyuridine (BrdU) after cortical injury did not reveal any newly generated neurons in the striatum. Double-labeling fluorescent immunocytochemistry revealed that the nestin-positive striatal cells were also substance-P-positive. These findings suggest that some factors released from the injured cortex may induce nestin immunoreactivity in striatal neurons.  相似文献   

4.
Increasing evidence indicates that neural stem/progenitor cells (NSPCs) reside in many regions of the central nervous system (CNS), including the subventricular zone (SVZ) of the lateral ventricle, subgranular zone of the hippocampal dentate gyrus, cortex, striatum, and spinal cord. Using a murine model of cortical infarction, we recently demonstrated that the leptomeninges (pia mater), which cover the entire cortex, also exhibit NSPC activity in response to ischemia. Pial-ischemia-induced NSPCs expressed NSPC markers such as nestin, formed neurosphere-like cell clusters with self-renewal activity, and differentiated into neurons, astrocytes, and oligodendrocytes, although they were not identical to previously reported NSPCs, such as SVZ astrocytes, ependymal cells, oligodendrocyte precursor cells, and reactive astrocytes. In this study, we showed that leptomeningeal cells in the poststroke brain express the immature neuronal marker doublecortin as well as nestin. We also showed that these cells can migrate into the poststroke cortex. Thus, the leptomeninges may participate in CNS repair in response to brain injury.  相似文献   

5.
Neural stem cells in the subventricular zone of adult rodents produce new striatal neurons that may replace those that have died after stroke; however, the neurogenic response has been considered acute and transient, yielding only small numbers of neurons. In contrast, we show herein that striatal neuroblasts are generated without decline at least for 4 months after stroke in adult rats. Neuroblasts formed early or late after stroke either differentiate into mature neurons, which survive for several months, or die through caspase-mediated apoptosis. The directed migration of the new neurons toward the ischemic damage is regulated by stromal cell-derived factor-1alpha and its receptor CXCR4. These results show that endogenous neural stem cells continuously supply the injured adult brain with new neurons, which suggests novel self-repair strategies to improve recovery after stroke.  相似文献   

6.
In the subventricular zone (SVZ) of the adult mammalian brain, neural stem cells continually produce transit-amplifying precursors, which generate neuroblasts migrating into the olfactory bulb. Previous studies have suggested that SVZ cells also have the capacity to generate some striatal neurons after cerebral ischemia. The infusion of epidermal growth factor (EGF) has been demonstrated to increase the number of these regenerated neurons. However, which cell types in the SVZ are stimulated to proliferate or differentiate after EGF infusion remains unknown. In this paper, we demonstrated that cerebral ischemia results in an increase in the number of EGF receptor (EGFR)-positive transit-amplifying cells in the SVZ. EGF infusion into the ischemic brain caused the number of transit-amplifying cells to increase and the number of neuroblasts to decrease. On the other hand, after an interval of 6 days after the discontinuation of EGF infusion, a significant increase in the number of neuroblasts was found, both in the striatum and the SVZ. These results suggest that the replacement of neurons in injured striatum can be enhanced by an EGF-induced expansion of transit-amplifying cells in the SVZ.  相似文献   

7.
8.
Peng J  Xie L  Jin K  Greenberg DA  Andersen JK 《Neuroscience》2008,153(3):664-670
In response to injury, endogenous precursors in the adult brain can proliferate and generate new neurons, which may have the capacity to replace dysfunctional or dead cells. Although injury-induced neurogenesis has been demonstrated in animal models of stroke, Alzheimer's disease (AD) and Huntington's disease (HD), studies of Parkinson's disease (PD) have produced conflicting results. In this study, we investigated the ability of adult mice to generate new neurons in response to the parkinsonian toxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), which causes selective degeneration of nigrostriatal dopamine neurons. MPTP lesions increased the incorporation of 5-bromo-2′-deoxyuridine-5′-monophosphate (BrdU), as well as the number of cells that co-expressed BrdU and the immature neuronal marker doublecortin (DCX), in two neuroproliferative regions—the subgranular zone of the dentate gyrus (DG) and the rostral subventricular zone (SVZ). BrdU-labeled, DCX-expressing cells were not found in the substantia nigra (SN) of MPTP-treated mice, where neuronal cell bodies are destroyed, but were present in increased numbers in the striatum, where SN neurons lost in PD normally project. Fibroblast growth factor-2 (FGF-2), which enhances neurogenesis in a mouse model of HD, also increased the number of BrdU/DCX-immunopositive cells in the SN of MPTP-treated mice. Thus, MPTP-induced brain injury increases striatal neurogenesis and, in combination with FGF-2 treatment, also stimulates neurogenesis in SN.  相似文献   

9.
We recently demonstrated the existence of neurogenesis in the striatum of adult monkeys, but the number of striatal neurons generated under normal conditions was too small to establish their chemical phenotype. We therefore used brain-derived neurotrophic factor (BDNF), which promotes neuronal differentiation and survival and induces striatal neurogenesis in rodents, in an attempt to increase the number of newborn neurons in monkey striatum and facilitate their chemical characterization. An adenoviral vector (AdBDNF), encoding the human BDNF cDNA under the control of a strong promoter, was injected into the lateral ventricles (LVs) of adult squirrel monkeys, which were then treated with bromodeoxyuridine (BrdU). Two weeks after viral injection, numerous BrdU-positive cells were found within the striatum and many expressed microtubule-associated protein 2 (MAP-2) and neuronal nuclear protein (NeuN), two markers of mature neurons. Newborn neurons also expressed glutamic acid decarboxylase (GAD65/67), calbindin (CB) and dopamine- and cAMP-regulated phosphoprotein of 32 kDa (DARPP-32), three markers of striatal projection neurons. We found no BrdU-positive neurons displaying the phenotype of striatal interneurons. Numerous BrdU-positive cells located near the subventricular zone (SVZ) coexpressed the migrating neuroblast markers polysialylated neural cell adhesion (PSA-NCAM) and doublecortin (DCX), suggesting that precursor cells could migrate from LVs to striatal parenchyma and develop a neuronal phenotype once they reach the striatum. However, many pairs of BrdU-positive nuclei were observed in the striatal parenchyma, suggesting that newborn neurons could also arise from resident progenitor cells. The present study demonstrates that a single injection of AdBDNF increases the number of newborn neurons into adult primate striatum and that newborn striatal neurons exhibit the chemical phenotype of medium-spiny projection neurons, which are specifically targeted in Huntington’s disease.  相似文献   

10.
A number of studies have demonstrated directed migration of neural progenitor cells to sites of brain injury and disease, however a detailed examination of when a cell is "born" in relation to injury induction and the migratory response of that cell has not previously been determined. This study therefore examined the temporal correlation between progenitor cell proliferation ("birth") and neuroblast migratory response into the damaged striatum following quinolinic acid (QA) lesioning of the adult rat striatum. Retroviral labeling of subventricular zone (SVZ)-derived progenitor cells demonstrated that cell loss in the QA-lesioned striatum increased progenitor cell migration through the rostral migratory stream (RMS) for up to 30 days. In addition, a population of dividing cells originating from the SVZ generated doublecortin positive neuroblasts that migrated into the damaged striatum in response to cell loss invoked by the QA lesion. Quantification of bromodeoxyuridine (BrdU)-labeled cells co-expressing doublecortin revealed that the majority of cells present in the damaged striatum were generated from progenitor cells dividing within 2 days either prior to or following the QA lesion. In contrast, cells dividing 2 or more days following QA lesioning, migrated into the striatum and exhibited a glial phenotype. These results demonstrate that directed migration of SVZ-derived cells and neuroblast differentiation in response to QA lesioning of the striatum is acute and transient. We propose this is predominantly due to a reduced capacity over time for newly generated neuroblasts to respond to the lesioned environment due to a loss or inhibition of migratory cues.  相似文献   

11.
Aponso PM  Faull RL  Connor B 《Neuroscience》2008,151(4):1142-1153
The existence of endogenous progenitor cells in the adult mammalian brain presents an exciting and attractive alternative to existing therapeutic options for treating neurodegenerative diseases such as Parkinson's disease (PD). However, prior to designing endogenous cell therapies, the effect of PD neuropathology on endogenous progenitor cell proliferation and their neurogenic potential must be investigated. This study examined the effect of dopaminergic cell loss on the proliferation and differentiation of subventricular zone- (SVZ) and midbrain-derived progenitor cells in the adult rodent brain, using the partial progressive 6-hydroxydopamine (6-OHDA) lesion model of PD. Cell proliferation and differentiation were assessed with 5-bromo-2'-deoxyuridine (BrdU) labeling and immunohistochemistry for cell type-specific markers. Tyrosine hydroxylase immunohistochemistry demonstrated a complete loss of nigrostriatal projections in the striatum and a subsequent progressive loss of dopamine (DA) cells in the SN. Quantification indicated that 6-OHDA lesion-induced cell degeneration produced a significant increase in BrdU immunoreactivity in the SVZ, ipsilateral to the lesioned hemisphere from 3 to 21 days post-lesion, compared with sham-lesioned animals. Similarly, in the striatum we observed a significant increase in the total number of BrdU positive cells in 6-OHDA-lesioned animals at all time points examined. More importantly, a significant increase in midbrain-derived BrdU positive cells was demonstrated in 6-OHDA-lesioned animals 28 days post-lesion. While we did not detect neurogenesis, BrdU labeled cells co-expressing the astrocytic marker glial fibrillary acidic protein (GFAP) were widely distributed throughout the 6-OHDA-lesioned striatum at all time points. In contrast, BrdU-labeled cells in the SN of 6-OHDA-lesioned animals did not co-express neural markers. These results demonstrate that DA-ergic neurodegeneration in the partial progressive 6-OHDA-lesioned rat brain increases SVZ- and midbrain-derived progenitor cell proliferation. While, newborn striatal progenitors undergo robust astrogenesis, newborn midbrain-derived progenitors remain in an undifferentiated state suggesting local environments differentially regulate endogenous progenitor cell populations in PD.  相似文献   

12.
The subventricular zone (SVZ) is a neurogenic region that continually gives rise to olfactory bulb (OB) GABAergic interneurons in mammals. The newly generated neuroblasts already express GABA while migrating to this structure along the rostral migratory stream (RMS). Here, we investigate in early postnatal rat if SVZ/RMS cells undertake the same synthetic pathway by which GABA is produced in differentiated neurons, i.e. the decarboxylation of glutamate by the glutamic acid decarboxylase (GAD), or, if an alternative pathway, the conversion of putrescine into GABA, also contributes to GABA synthesis. We show here that GAD immunoreactivity is not significantly detectable within the SVZ/RMS. However, strong immunolabeling is found within the OB. Nevertheless, low GAD enzymatic activity (as compared with OB) is detected in the SVZ/RMS. SVZ/RMS explants convert approximately 30% of all captured radiolabeled putrescine into GABA in vitro, showing that this pathway is important for GABA synthesis in the SVZ. We also show that SVZ/RMS, OB and choroid plexus explants are able to synthesize putrescine, as analyzed by ornithine decarboxylase (ODC) activity, providing neuroblasts with different sources of putrescine for GABA production. During early stages of neuroblast differentiation, in which neurotransmitter choice may still be undefined, an alternative pathway for GABA synthesis guarantees the production of GABA, necessary for neuroblast proliferation and migration in the SVZ/RMS.  相似文献   

13.
14.
Vascular endothelial growth factor receptor (VEGFR)-3, a receptor for VEGF-C and VEGF-D, has recently been proposed to be involved in adult hippocampal neurogenesis in response to cerebral ischemia. To identify whether VEGFR-3 is involved in poststroke neurogenesis, we investigated the temporal regulation of VEGFR-3 mRNA expression in the subventricular zone (SVZ) of rats with transient focal cerebral ischemia by in situ hybridization analysis, and identified the phenotypes of cells expressing VEGFR-3 by double- and triple-labeling techniques. In sham-operated rats, hybridization signals for VEGFR-3 mRNA were evident at a weaker intensity in the SVZ of the lateral ventricle. VEGFR-3 was transiently increased in the dorsolateral SVZ of the infarcted hemisphere on days 3–7 after reperfusion. Almost all VEGFR-3-expressing cells in the ipsilateral SVZ were colabeled with glial fibrillary acidic protein and the neural progenitor marker nestin, and were highly proliferative. In addition, a subset of VEGFR-3-labeled cells in the ipsilateral SVZ expressed the immature neuronal marker, polysialic acid-neural cell adhesion molecule. These data indicate that VEGFR-3 is upregulated in SVZ astrocytes and immature neurons after focal ischemia, suggesting that VEGFR-3 might mediate the adult neurogenesis after ischemic stroke.  相似文献   

15.
The ventral striatum is more closely related to limbic brain regions than the dorsal striatum in spite of the remarkable similarities in the structural organization between these two brain regions. The present study is focused on the comparison of ventral striatopallidal territories and the dorsal striatopallidal system regarding the GABAA-receptor α1-subunit and parvalbumin immunoreactivity, as these markers showed specific distribution patterns and coexpression sites in the more intensely studied dorsal regions. Our investigations revealed that: (1) Parvalbumin single-labeled cells and a moderate number of neurons single-labeled with the GABAA-receptor α1-subunit exist not only in the dorsal but also in the ventral striatum, including the striatal cell bridges. In addition, morphologically similar neurons positive for the α1-subunit were also found in the corpus callosum and anterior commissure. (2) A small number of double-labeled neurons was seen not only in dorsal but also in ventral striatal regions. Such cells were mainly located near the border with the globus pallidus and ventral pallidum. They are likely to represent a further type of striatal neuron. (3) The vast majority of neurons in the entopeduncular nucleus, the homologue of the primate internal globus pallidus segment, coexpressed α1-subunit and parvalbumin immunoreactivity, as reported previously for the other pallidal compartments. (4) The islands of Calleja adjoining the ventral pallidal extensions in the olfactory tubercle exhibited a strong α1-subunit immunoreactivity in the neuropil as well as somata single- or double-labeled for both markers. Our findings indicate that the dorsal and ventral striatopallidal compartments are similarly organized in general with respect to the occurrence and distribution of single- and double-labeled parvalbumin-immunoreactive and GABAA-receptor α1-subunit-immunoreactive neurons.  相似文献   

16.
17.
研究成年大鼠脑室下区 (SVZ)神经前体细胞 (neural precursors)在黑质 -纹状体通路损伤后的反应 ,本研究用 6-羟多巴胺单侧纹状体注射以损毁黑质 -纹状体通路 ,损毁 10 d后腹腔注射 Brd U ,连续 4d,每日两次 ;在 SVZ、纹状体和黑质部位用免疫组化方法检测 Brd U、nestin以及 GFAP阳性细胞。结果显示 :(1) 6-羟多巴胺损毁黑质 -纹状体通路后 ,伤侧 SVZ的 Brd U阳性细胞数明显增多 ,并成簇分布 ;nestin和 GFAP阳性细胞数也增多 ,但以 GF AP阳性细胞增多明显 ;(2 )伤侧纹状体可见大量 Br-d U、GFAP以及少量 nestin阳性细胞分布 ,而健侧只有少量 GFAP阳性细胞 ;(3 )伤侧可见 Brd U阳性细胞在 SVZ和纹状体之间呈条带样分布 ;(4 )伤侧黑质除酪氨酸羟化酶阳性神经元减少外 ,未见 Brd U、GFAP和 nestin阳性细胞表达。上述结果表明 ,6-羟多巴胺损毁黑质 -纹状体通路后 ,SVZ神经前体细胞活动增强 ,有向纹状体迁移的趋势。  相似文献   

18.
Tumor necrosis factor (TNF)-alpha has been reported to modulate brain injury, but remarkably, little is known about its effects on neurogenesis. We report that TNF-alpha strongly influences survival, proliferation, and neuronal differentiation in cultured subventricular zone (SVZ) neural stem/progenitor cells derived from the neonatal P1-3 C57BL/6 mice. By using single-cell calcium imaging, we developed a method, based on cellular response to KCl and/or histamine, that allows the functional evaluation of neuronal differentiation. Exposure of SVZ cultures to 1 and 10 ng/ml mouse or 1 ng/ml human recombinant TNF-alpha resulted in increased differentiation of cells displaying a neuronal-like profile of [Ca2+](i) responses, compared with the predominant profile of immature cells observed in control, nontreated cultures. Moreover, by using neutralizing antibodies for each TNF-alpha receptor, we found that the proneurogenic effect of 1 ng/ml TNF-alpha is mediated via tumor necrosis factor receptor 1 activation. Accordingly, the percentage of neuronal nuclear protein-positive neurons was increased following exposure to mouse TNF-alpha. Interestingly, exposure of SVZ cultures to 1 ng/ml TNF-alpha induced cell proliferation, whereas 10 and 100 ng/ml TNF-alpha induced apoptotic cell death. Moreover, we found that exposure of SVZ cells to TNF-alpha for 15 minutes or 6 hours caused an increase in the phospho-stress-activated protein kinase/c-Jun N-terminal kinase immunoreactivity initially in the nucleus and then in growing axons, colocalizing with tau, consistent with axonogenesis. Taken together, these results show that TNF-alpha induces neurogenesis in neonatal SVZ cell cultures of mice. TNF-alpha, a proinflammatory cytokine and a proneurogenic factor, may play a central role in promoting neurogenesis and brain repair in response to brain injury and infection.  相似文献   

19.
Since reports that precursor cells in the adult subventricular zone (SVZ) contribute to regenerative neuro- and gliogenesis in CA1, we wondered whether a similar route of migration might also exist under physiological conditions. Permanent labeling of SVZ precursor cells with a lentiviral vector for green fluorescent protein did not reveal any migration from the SVZ into CA1 in the intact murine brain. However, in a nestin-GFP reporter mouse we found proliferating cells within the corpus callosum/alveus region expressing nestin and glial fibrillary acidic protein similar to precursor cells in the neighboring neurogenic region of the adult dentate gyrus. Within 3 weeks of BrdU administration, BrdU-positive nestin-GFP-expressing protoplasmic astrocytes emerged in CA1. Similar to precursor cells isolated from the dentate gyrus and the SVZ, nestin-GFP-expressing cells from corpus callosum/alveus were self-renewing and multipotent in vitro, whereas cells isolated from CA1 were not. Nestin-GFP-expressing cells in CA1 differentiated into postmitotic astrocytes characterized by S100β expression. No new neurons were found in CA1. The number of nestin-GFP-expressing astrocytes in CA1 was increased by environmental enrichment. We conclude that astrogenesis in CA1 is influenced by environmental conditions. However, SVZ precursor cells do not contribute to physiological cellular plasticity in CA1.  相似文献   

20.
Precursor cells have been shown to be affected by oxidative stress, in vivo and vitro, but little is known about the expression of antioxidant mechanisms in neuronal/glial differentiation. We have characterized the expression of Cu/Zn superoxide dismutase (Cu/Zn SOD), one of the main antioxidant proteins involved in the breakdown of superoxide, in the immature rat dorsolateral subventricular zone (SVZ), rostral migratory stream (RMS) and hippocampal subgranular zone (SGZ). Progenitor cells were identified immunohistochemically on cryostat sections by 5'Bromodeoxyuridine (BrdU) incorporation and expressing cells were further characterized using double labeling for progenitor markers. In the SVZ, only a subpopulation of BrdU+ cells, mostly found in the medial SVZ, expressed Cu/Zn SOD. These cells were mostly nestin+ and some were also vimentin+. In contrast, in the lateral SVZ few Cu/Zn SOD+/BrdU+ cells were found. These were primarily nestin+, vimentin-, showed some PSA-NCAM expression, but only a few were NG2+. In the RMS and SGZ virtually all BrdU+ progenitors were Cu/Zn SOD+ and expressed nestin and vimentin. Some RMS cells were also PSA-NCAM+. These findings show a heterogeneous expression of Cu/Zn SOD in restricted cell types in the germinative zones and suggest a role for antioxidant Cu/Zn SOD in progenitor cells of the immature rat brain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号