首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We investigated the unusual susceptibility to meropenem observed for seven imipenem-resistant clinical isolates of Pseudomonas aeruginosa. These strains were genetically closely related, expressed OprD, as determined by Western blot analyses, and were resistant to imipenem (>5 microg/ml) but susceptible to meropenem (<1 microg/ml). The oprD genes from two isolates were entirely sequenced, and their deduced protein sequences showed 93% identity with that of OprD of strain PAO1. The major alteration consisted of the replacement of a stretch of 12 amino acids, located in putative external loop L7 of OprD, by a divergent sequence of 10 amino acid residues. The oprD gene variants and the wild-type oprD gene were cloned and expressed in a defined oprD mutant. The meropenem MICs for strains carrying the oprD genes from clinical isolates were four times lower than that for the strain carrying the wild-type oprD gene. Imipenem activities, however, were comparable for all strains. Furthermore, meropenem hypersusceptibility was obtained with a hybrid OprD porin that consisted of the PAO1 oprD gene containing loop L7 from a clinical isolate. These results show that the C-terminal portion of OprD, in particular, loop L7, was responsible for the unusual meropenem hypersusceptibility. Competition experiments suggested that the observed OprD modifications in the clinical isolates did not affect antagonism between imipenem and the basic amino acid L-lysine. We further propose that shortening of putative loop L7 of the OprD porin by 2 amino acid residues sufficiently opens the porin channel to allow optimal penetration of meropenem and increase its activity. In contrast, this alteration would not affect susceptibility to a smaller carbapenem molecule, such as imipenem.  相似文献   

2.
Tomopenem (formerly CS-023) is a novel 1β-methylcarbapenem with broad-spectrum coverage of gram-positive and gram-negative pathogens. Its antibacterial activity against European clinical isolates of methicillin-resistant Staphylococcus aureus (MRSA) and Pseudomonas aeruginosa was compared with those of imipenem and meropenem. The MICs of tomopenem against MRSA and P. aeruginosa at which 90% of the isolates tested were inhibited were 8 and 4 μg/ml, respectively, and were equal to or more than fourfold lower than those of imipenem and meropenem. The antibacterial activity of tomopenem against MRSA was correlated with a higher affinity for the penicillin-binding protein (PBP) 2a. Its activity against laboratory mutants of P. aeruginosa with (i) overproduction of chromosomally coded AmpC β-lactamase; (ii) overproduction of the multidrug efflux pumps MexAB-OprM, MexCD-OprJ, and MexEF-OprN; (iii) deficiency in OprD; and (iv) various combinations of AmpC overproduction, MexAB-OprM overproduction, and OprD deficiency were tested. The increases in the MIC of tomopenem against each single mutant compared with that against its parent strain were within a fourfold range. Tomopenem exhibited antibacterial activity against all mutants, with an observed MIC range of 0.5 to 8 μg/ml. These results suggest that the antibacterial activity of tomopenem against the clinical isolates of MRSA and P. aeruginosa should be ascribed to its high affinity for PBP 2a and its activity against the mutants of P. aeruginosa, respectively.  相似文献   

3.
Recent reports have revealed the existence of widespread extensively drug-resistant (XDR) P. aeruginosa high-risk clones in health care settings, but there is still scarce information on their specific chromosomal (mutational) and acquired resistance mechanisms. Up to 20 (10.5%) of 190 bloodstream isolates collected from 10 Spanish hospitals met the XDR criteria. A representative number (15 per group) of isolates classified as multidrug-resistant (MDR) (22.6%), resistant to 1 to 2 classes (moderately resistant [modR]) (23.7%), or susceptible to all antibiotics (multiS) (43.2%) were investigated in parallel. Multilocus sequence typing (MLST) analysis revealed that all XDR isolates belonged to sequence type 175 (ST175) (n = 19) or ST111 (n = 1), both recognized as international high-risk clones. Clonal diversity was higher among the 15 MDR isolates (4 ST175, 2 ST111, and 8 additional STs) and especially high among the 15 modR (13 different STs) and multiS (14 STs) isolates. The XDR/MDR pattern in ST111 isolates correlated with the production of VIM-2, but none of the ST175 isolates produced acquired β-lactamases. In contrast, the analysis of resistance markers in 12 representative isolates (from 7 hospitals) of ST175 revealed that the XDR pattern was driven by the combination of AmpC hyperproduction, OprD inactivation (Q142X), 3 mutations conferring high-level fluoroquinolone resistance (GyrA T83I and D87N and ParC S87W), a G195E mutation in MexZ (involved in MexXY-OprM overexpression), and the production of a class 1 integron harboring the aadB gene (gentamicin and tobramycin resistance). Of particular interest, in nearly all the ST175 isolates, AmpC hyperproduction was driven by a novel AmpR-activating mutation (G154R), as demonstrated by complementation studies using an ampR mutant of PAO1. This work is the first to describe the specific resistance markers of widespread P. aeruginosa XDR high-risk clones producing invasive infections.  相似文献   

4.
Doripenem, a 1β-methylcarbapenem, is a broad-spectrum antibiotic approved for the treatment of complicated urinary tract and complicated intra-abdominal infections. An indication for hospital-acquired pneumonia including ventilator-associated pneumonia is pending. The current study examined the activity of doripenem against recent clinical isolates for the purposes of its ongoing clinical development and future longitudinal analysis. Doripenem and comparators were tested against 12,581 U.S. clinical isolates collected between 2005 and 2006 including isolates of Staphylococcus aureus, coagulase-negative staphylococci, Streptococcus pneumoniae, Enterobacteriaceae, Pseudomonas aeruginosa, and Acinetobacter spp. MICs (μg/ml) were established by broth microdilution. By MIC90, doripenem was comparable to imipenem and meropenem in activity against S. aureus (methicillin susceptible, 0.06; resistant, 8) and S. pneumoniae (penicillin susceptible, ≤0.015; resistant, 1). Against ceftazidime-susceptible Enterobacteriaceae, the MIC90 of doripenem (0.12) was comparable to that of meropenem (0.12) and superior to that of imipenem (2), though susceptibility of isolates exceeded 99% for all evaluated carbapenems. The activity of doripenem was not notably altered against ceftazidime-nonsusceptible or extended-spectrum β-lactamase screen-positive Enterobacteriaceae. Doripenem was the most potent carbapenem tested against P. aeruginosa (MIC90/% susceptibility [%S]: ceftazidime susceptible = 2/92%S, nonsusceptible = 16/61%S; imipenem susceptible = 1/98.5%S, nonsusceptible = 8/56%S). Against imipenem-susceptible Acinetobacter spp., doripenem (MIC90 = 2, 89.1%S) was twice as active by MIC90 as were imipenem and meropenem. Overall, doripenem potency was comparable to those of meropenem and imipenem against gram-positive cocci and doripenem was equal or superior in activity to meropenem and imipenem against Enterobacteriaceae, including β-lactam-nonsusceptible isolates. Doripenem was the most active carbapenem tested against P. aeruginosa regardless of β-lactam resistance.  相似文献   

5.
We compared drugs (imipenem and doripenem), doses (500 mg and 1 g), and infusion times (0.5 and 1.0 [imipenem], 1.0 and 4.0 h [doripenem]) in our hollow-fiber model, examining cell kill and resistance suppression for three isogenic strains of Pseudomonas aeruginosa PAO1. The experiments ran for 10 days. Serial samples were taken for total organism and resistant subpopulation counts. Drug concentrations were determined by high-pressure liquid chromatography-tandem mass spectrometry (LC/MS/MS). Free time above the MIC (time > MIC) was calculated using ADAPT II. Time to resistance emergence was examined with Cox modeling. Cell kill and resistance emergence differences were explained, in the main, by differences in potency (MIC) between doripenem and imipenem. Prolonged infusion increased free drug time > MIC and improved cell kill. For resistance suppression, the 1-g, 4-h infusion was able to completely suppress resistance for the full period of observation for the wild-type isolate. For the mutants, control was ultimately lost, but in all cases, this was the best regimen. Doripenem gave longer free time > MIC than imipenem and, therefore, better cell kill and resistance suppression. For the wild-type organism, the 1-g, 4-h infusion regimen is preferred. For organisms with resistance mutations, larger doses or addition of a second drug should be studied.Pseudomonas aeruginosa continues to be a major problem in the nosocomial setting. Increasing rates of resistance make the development of effective therapeutic regimens problematic.Doripenem is a new carbapenem antibiotic with potent activity against Pseudomonas aeruginosa. Preclinical studies have indicated that it is highly stable to the AmpC enzyme seen in this pathogen and that it interacts differently with the pathogen regarding oprD downregulation, resulting in lower MIC shifts, in at least 50% of instances (6). Clinically, the use of the prolonged infusion has been shown to have a salutary impact on Pseudomonas resistance emergence during therapy, relative to the impact of imipenem (1). We chose to study imipenem because the doripenem clinical trial program employed imipenem as a comparator, as meropenem does not have the breadth of FDA indications present for imipenem (e.g., nosocomial pneumonia).Previous work from our group has shown that the use of prolonged infusion optimizes time above the MIC (time > MIC) target attainment and may have an impact on resistance emergence (3, 10). This leads to four major factors requiring exploration: (i) drug (potency), (ii) dose, (iii) infusion schedule, and (iv) differences in mechanism of resistance between drugs.In order to ascertain the contribution of each, we decided to study three different isogenic isolates: a wild-type isolate (PAO1), an isolate with a stably derepressed chromosomal AmpC enzyme (AmpC β-lactamase production is markedly increased when a mutation in the repressor system occurs, and the increase is stable and not dependent upon the presence or absence of drug), and an isolate with a defined downregulation of OprD (OprD is a carbapenem-specific transport porin; when it is downregulated, less drug is available per unit time in the periplasmic space). In addition, we decided to examine both doripenem and imipenem to ascertain the impact of differing potencies and interactions with OprD downregulation. Finally, we hypothesized that infusion time would have an impact. Therefore, we studied doripenem at a 500-mg dose with a 1-h infusion, a 500-mg dose with a 4-h infusion, and a 1-g dose with a 4-h infusion. Imipenem''s stability is such that a 4-h infusion cannot be recommended clinically. We therefore decided to examine two regimens: 500 mg every 6 h with a half-hour infusion and 1 g every 8 h with a 1-h infusion. Both regimens are consistent with the package insert for imipenem. The endpoints were cell kill at 24 h (before emergence of resistant clones would obfuscate the endpoint) and emergence of resistance (both the initial time when the number of resistant clones exceeded that at baseline and the time to near-maximal number of resistant clones). “Near maximal” is defined as being within 1 standard deviation of true maximal. This is approximately 0.3 log10 CFU/ml.  相似文献   

6.
Risk factors for imipenem (IMP)-resistant Pseudomonas aeruginosa (IRPA) digestive carriage were analyzed, and genetic events contributing to select resistant isolates in patients exposed to IMP were investigated. Among the 150 patients with hospital-acquired P. aeruginosa digestive carriage, 38 isolates were IRPA. DNA pulsotypes revealed 16 distinct clones. In 4 patients, a second P. aeruginosa isolate showed resistance to IMP compared with the initial susceptible isolate. By comparing the different oprD sequences between IMP-susceptible P. aeruginosa and IRPA strains, a genetic event was systematically found for each resistant isolate, leading to either the absence of OprD or a truncated porin. The multivariate analysis demonstrated that prior IMP exposure was associated with IRPA carriage. In summary, we confirmed that IMP use selects for IRPA in the gut flora. Cross-transmission, however, was frequently observed in intensive care units. Combining epidemiologic approach and molecular analysis is a powerful tool to delineate mechanisms of emerging resistance.  相似文献   

7.
The in vitro activities of ceftaroline and comparative agents were determined for a collection of the most frequently isolated bacterial pathogens from hospital-associated patients across Canada in 2009 as part of the ongoing CANWARD surveillance study. In total, 4,546 isolates from 15 sentinel Canadian hospital laboratories were tested using the Clinical and Laboratory Standards Institute (CLSI) broth microdilution method. Compared with other cephalosporins, including ceftobiprole, cefepime, and ceftriaxone, ceftaroline exhibited the greatest potency against methicillin-susceptible Staphylococcus aureus (MSSA), with a MIC90 of 0.25 μg/ml. Ceftaroline also demonstrated greater potency than ceftobiprole against community-associated methicillin-resistant S. aureus (MRSA) (MIC90, 0.5 μg/ml) and health care-associated MRSA (MIC90, 1 μg/ml) and was at least 4-fold more active than other cephalosporins against Staphylococcus epidermidis; all isolates of MSSA and MRSA tested were susceptible to ceftaroline (MIC, ≤1 μg/ml). Against streptococci, including Streptococcus pneumoniae, ceftaroline MICs (MIC90, ≤0.03 μg/ml) were comparable to those of ceftobiprole; however, against penicillin-nonsusceptible, macrolide-nonsusceptible, and multidrug-nonsusceptible isolates of S. pneumoniae, ceftaroline demonstrated 2- to 4-fold and 4- to 16-fold more potent activities than those of ceftobiprole and ceftriaxone, respectively. All isolates of S. pneumoniae tested were susceptible to ceftaroline (MIC, ≤0.25 μg/ml). Among Gram-negative isolates, ceftaroline demonstrated potent activity (MIC90, ≤0.5 μg/ml) against Escherichia coli (92.2% of isolates were susceptible), Klebsiella pneumoniae (94.1% of isolates were susceptible), Proteus mirabilis (97.7% of isolates were susceptible), and Haemophilus influenzae (100% of isolates were susceptible). Ceftaroline demonstrated less potent activity (MIC90, ≥4 μg/ml) against Enterobacter spp., Acinetobacter baumannii, Pseudomonas aeruginosa, Klebsiella oxytoca, Serratia marcescens, and Stenotrophomonas maltophilia. Overall, ceftaroline demonstrated potent in vitro activity against a recent collection of the most frequently encountered Gram-positive and Gram-negative isolates from patients attending hospitals across Canada in 2009.  相似文献   

8.
Pseudomonas aeruginosa isolates (n = 3,902) from 75 U.S. medical centers were tested against ceftazidime-avibactam and comparator agents by the reference broth microdilution method. Overall, 96.9% of the strains were susceptible (MIC, ≤8 μg/ml) to ceftazidime-avibactam, while the rates of susceptibility for ceftazidime, meropenem, and piperacillin-tazobactam were 83.8, 81.9, and 78.5%, respectively. Multidrug-resistant and extensively drug-resistant phenotypes were observed in 14.9 and 8.7% of the strains, respectively, and 81.0 and 73.7% of the strains were susceptible to ceftazidime-avibactam, respectively.  相似文献   

9.
The therapeutic crisis produced by emerging antimicrobial resistances has compromised the chemotherapy of hospitalized patients with serious infections. For the most prevalent resistance problems, meropenem, a new carbapenem, appears to provide a potency and spectrum for: 1) extended-spectrum β-lactamase-producing Enterobacteriaceae; 2) Bush-Jacoby-Merdeiros group 1 enzyme-producing ceftazidime-resistant Enterobacter spp., Citrobacter freundii, and some Serratia spp.; 3) ceftazidime- and imipenem-resistant Pseudomonas aeruginosa; and 4) some Streptococcus spp. with elevated penicillin MICs. Documented in vitro study results using 1997 Gram-negative blood stream infection isolates indicate a wider spectrum and a two- to fourfold greater potency for meropenem compared with imipenem. This was especially true for P. aeruginosa where 93.4% of strains were susceptible to meropenem (84.1% for imipenem). Also among over 30,000 reported in vitro meropenem results from the United States and Europe, 90.6% of Gram-positive cocci and 99.1% of anaerobes were inhibited at ≤4 μg/ml. Over 90% of ceftazidime-resistant blood stream infection strains were meropenem susceptible, a rate greater than those of imipenem, ciprofloxacin, and gentamicin. As the clinical utility of many contemporary antimicrobial agents is challenged by emerging resistance, the carbapenems (meropenem, imipenem) appear positioned for a greater role in the treatment of infections in hospitalized patients.  相似文献   

10.
The susceptibilities of 59 Campylobacter fetus subsp. fetus isolates to eight antibiotics were studied by the agar dilution, E-test, and disk diffusion methods. None of the isolates were β-lactamase producers. All were susceptible to ampicillin, gentamicin, imipenem, and meropenem as determined by the three methods, with MICs at which 90% of the isolates are inhibited (MIC90s) (determined by agar dilution) of 2, 1, ≤0.06, and 0.12 μg/ml, respectively. Twenty-seven percent of the isolates were resistant to tetracycline, with complete agreement between the agar dilution and disk diffusion results. The MIC90s determined by agar dilution were 2 μg/ml for erythromycin, 1 μg/ml for ciprofloxacin, and 8 μg/ml for cefotaxime.  相似文献   

11.
The reevaluation of “forgotten” antibiotics can identify new therapeutic options against extensively drug-resistant Gram-negative pathogens. We sought to investigate isepamicin in this regard. We retrospectively evaluated the antimicrobial susceptibility to isepamicin of Enterobacteriaceae sp. isolates from unique patients, collected at the microbiological laboratory of the University Hospital of Heraklion, Crete, Greece, from 2004 to 2009. Susceptibility testing was done with the automated Vitek 2 system. The breakpoints for susceptibility to isepamicin, tigecycline, and other antibiotics were those proposed by the Comité de l''Antibiogramme de la Société Française de Microbiologie (CA-SFM), the FDA, and the CLSI, respectively. A total of 6,296 isolates were studied, including primarily 3,401 (54.0%) Escherichia coli, 1,040 (16.5%) Klebsiella pneumoniae, 590 (9.4%) Proteus mirabilis, and 460 (7.3%) Enterobacter sp. isolates. Excluding the species with intrinsic resistance to each antibiotic, antimicrobial susceptibility was highest for colistin (5,275/5,441 isolates [96.9%]) and isepamicin (6,103/6,296 [96.9%]), followed by meropenem (5,890/6,296 [93.6%]), imipenem (5,874/6,296 [93.3%]), and amikacin (5,492/6,296 [87.2%]). The antimicrobial susceptibility of the 1,040 K. pneumoniae isolates was highest for isepamicin (95.3%), followed by colistin (89.3%) and meropenem (63.0%). Regarding resistant K. pneumoniae isolates, susceptibility to isepamicin was observed for 91.1% of the 392, 87.7% of the 375, and 85.6% of the 111 isolates that were nonsusceptible to the carbapenems, all other aminoglycosides, and colistin, respectively. Isepamicin exhibited high in vitro activity against almost all of the Enterobacteriaceae species. It could particularly serve as a last-resort therapeutic option for carbapenem-resistant K. pneumoniae in our region, where it is endemic, as it does not show considerable cross-resistance with other aminoglycosides.  相似文献   

12.
Only limited data exist on Pseudomonas aeruginosa ventilator-associated pneumonia (VAP) treated with imipenem, meropenem, or doripenem. Therefore, we conducted a prospective observational study in 169 patients who developed Pseudomonas aeruginosa VAP. Imipenem, meropenem, and doripenem MICs for Pseudomonas aeruginosa isolates were determined using Etests and compared according to the carbapenem received. Among the 169 isolates responsible for the first VAP episode, doripenem MICs were lower (P < 0.0001) than those of imipenem and meropenem (MIC50s, 0.25, 2, and 0.38, respectively); 61%, 64%, and 70% were susceptible to imipenem, meropenem, and doripenem, respectively (P was not statistically significant). Factors independently associated with carbapenem resistance were previous carbapenem use (within 15 days) and mechanical ventilation duration before VAP onset. Fifty-six (33%) patients had at least one VAP recurrence, and 56 (33%) died. Factors independently associated with an unfavorable outcome (recurrence or death) were a high day 7 sequential organ failure assessment score and mechanical ventilation dependency on day 7. Physicians freely prescribed a carbapenem to 88 patients: imipenem for 32, meropenem for 24, and doripenem for 32. The remaining 81 patients were treated with various antibiotics. Imipenem-, meropenem-, and doripenem-treated patients had similar VAP recurrence rates (41%, 25%, and 22%, respectively; P = 0.15) and mortality rates (47%, 25%, and 22%, respectively; P = 0.07). Carbapenem resistance emerged similarly among patients treated with any carbapenem. No carbapenem was superior to another for preventing carbapenem resistance emergence.  相似文献   

13.
Clinical isolates were consecutively collected from 70 United States medical centers in 2017–2018 and susceptibility tested by reference broth microdilution methods at a central laboratory. The most active agents against Enterobacterales (n = 3269) were ceftazidime-avibactam (99.9% susceptible), amikacin (98.7% susceptible), meropenem (97.4% susceptible), and tigecycline (94.6% susceptible), but only ceftazidime-avibactam and tigecycline retained good activity (≥90% susceptible) against carbapenem-resistant Enterobacterales (97.5% and 92.4% susceptible, respectively). The most active agents against multidrug-resistant (MDR) Enterobacterales were ceftazidime-avibactam (99.2% susceptible) and amikacin (90.9% susceptible), whereas ceftolozane-tazobactam and meropenem were active against only 53.8% and 78.1% of these organisms, respectively. Among ESBL-producing Enterobacterales (excluding carbapenemase-producing), susceptibility rates for ceftazidime-avibactam, ceftolozane-tazobactam, and meropenem were 100.0%, 84.1%, and 98.9%, respectively. Ceftazidime-avibactam and ceftolozane-tazobactam were very active against P. aeruginosa (n = 2215) and exhibited similar susceptibility rates (96.0% and 95.9% susceptible, respectively), including against meropenem-nonsusceptible (87.2% and 87.3% susceptible, respectively) and MDR (83.5% and 83.7% susceptible, respectively) isolates.  相似文献   

14.
In this study we investigated the interplay of antibiotic pharmacokinetic profiles and the development of mutation-mediated resistance in wild-type and hypermutable Pseudomonas aeruginosa strains. We used in vitro models simulating profiles of the commonly used therapeutic drugs meropenem and ceftazidime, two agents with high levels of antipseudomonal activity said to have different potentials for stimulating resistance development. During ceftazidime treatment of the wild-type strain (PAO1), fully resistant mutants overproducing AmpC were selected rapidly and they completely replaced wild-type cells in the population. During treatment with meropenem, mutants of PAO1 were not selected as rapidly and showed only intermediate resistance due to the loss of OprD. These mutants also replaced the parent strain in the population. During the treatment of the mutator P. aeruginosa strain with meropenem, the slowly selected mutants did not accumulate several resistance mechanisms but only lost OprD and did not completely replace the parent strain in the population. Our results indicate that the commonly used dosing regimens for meropenem and ceftazidime cannot avoid the selection of mutants of wild-type and hypermutable P. aeruginosa strains. For the treatment outcome, including the prevention of resistance development, it would be beneficial for the antibiotic concentration to remain above the mutant prevention concentration for a longer period of time than it does in present regimens.  相似文献   

15.
Previous studies reported decreased mortality in patients with carbapenemase-producing Klebsiella pneumoniae bloodstream infections (BSIs) treated with combination therapy but included carbapenem-susceptible and -intermediate isolates, as per revised CLSI breakpoints. Here, we assessed outcomes in patients with BSIs caused by phenotypically carbapenem-resistant K. pneumoniae (CRKP) according to the number of in vitro active agents received and whether an extended-spectrum beta-lactam (BL) antibiotic, including meropenem, or an extended-spectrum cephalosporin was administered. We retrospectively reviewed CRKP BSIs at two New York City hospitals from 2006 to 2013, where all isolates had meropenem or imipenem MICs of ≥4 μg/ml. Univariate and multivariable models were created to identify factors associated with mortality. Of 141 CRKP BSI episodes, 23% were treated with a single active agent (SAA), 26% were treated with an SAA plus BL, 28% were treated with multiple active agents (MAA), and 23% were treated with MAA plus BL. Ninety percent of isolates had meropenem MICs of ≥16 μg/ml. Thirty-day mortality was 33% overall and did not significantly differ across the four treatment groups in a multivariable model (P = 0.4); mortality was significantly associated with a Pitt bacteremia score of ≥4 (odds ratio [OR], 7.7; 95% confidence interval [CI], 3.2 to 18.1; P = 0.1), and immunosuppression was protective (OR, 0.4; 95% CI, 0.2 to 1.0; P = 0.04). Individual treatment characteristics were also not significantly associated with outcome, including use of SAAs versus MAA (26% versus 38%, P = 0.1) or BL versus no BL (26% versus 39%, P = 0.1). In summary, in patients with CRKP BSIs caused by isolates with high carbapenem MICs, the role of combination therapy remains unclear, highlighting the need for prospective studies to identify optimal treatment regimens.  相似文献   

16.
Evidence of permeation of panipenem through the OprD (D2) channel of Pseudomonas aeruginosa outer membrane was shown by using OprD protein-producing and -nonproducing strains which contained plasmid pHN4, which codes for L-1 beta-lactamase of Xanthomonas maltophilia. Permeation by panipenem was determined by measuring hydrolysis of the carbapenem by beta-lactamase in the periplasmic space. Permeation by panipenem was also determined by counting uptake of [14C]panipenem into P. aeruginosa PAO1 and its OprD protein-deficient mutant, and this permeation of PAO1 was inhibited by L-lysine. These results indicate that panipenem, as well as imipenem, uses the OprD channel, which functions as a specific channel for diffusion of basic amino acids. Panipenem and imipenem showed stronger activities against PAO1 and clinical isolates in human serum than in Mueller-Hinton broth, which contains more amino acids than human serum does. The activities of the carbapenems were reduced by addition of L-lysine to human serum. Similar results were obtained with mouse serum and ascitic fluid. In contrast, such a change in the activities of carbapenems was not observed with an OprD protein-deficient mutant, suggesting that the main reason for the strong activities of carbapenems in biological fluids is a decrease in competition between the antibiotics and basic amino acids for permeation through the OprD channel. Panipenem and imipenem showed much stronger therapeutic efficacies against experimental infections with P. aeruginosa in mice than did the reference antibiotics. Their in vivo activities were more consistent with their MICs in biological fluids than with those in Mueller-Hinton broth.  相似文献   

17.
Constitutive AmpC hyperproduction is the most frequent mechanism of resistance to the weak AmpC inducers antipseudomonal penicillins and cephalosporins. Previously, we demonstrated that inhibition of the β-N-acetylglucosaminidase NagZ prevents and reverts this mechanism of resistance, which is caused by ampD and/or dacB (PBP4) mutations in Pseudomonas aeruginosa. In this work, we compared NagZ with a second candidate target, the AmpG permease for GlcNAc-1,6-anhydromuropeptides, for their ability to block AmpC expression pathways. Inactivation of nagZ or ampG fully restored the susceptibility and basal ampC expression of ampD or dacB laboratory mutants and impaired the emergence of one-step ceftazidime-resistant mutants in population analysis experiments. Nevertheless, only ampG inactivation fully blocked ampC induction, reducing the MICs of the potent AmpC inducer imipenem from 2 to 0.38 μg/ml. Moreover, through population analysis and characterization of laboratory mutants, we showed that ampG inactivation minimized the impact on resistance of the carbapenem porin OprD, reducing the MIC of imipenem for a PAO1 OprD mutant from >32 to 0.5 μg/ml. AmpG and NagZ targets were additionally evaluated in three clinical isolates that are pan-β-lactam resistant due to AmpC hyperproduction, OprD inactivation, and overexpression of several efflux pumps. A marked increase in susceptibility to ceftazidime and piperacillin-tazobactam was observed in both cases, while only ampG inactivation fully restored wild-type imipenem susceptibility. Susceptibility to meropenem, cefepime, and aztreonam was also enhanced, although to a lower extent due to the high impact of efflux pumps on the activity of these antibiotics. Thus, our results suggest that development of small-molecule inhibitors of AmpG could provide an excellent strategy to overcome the relevant mechanisms of resistance (OprD inactivation plus AmpC induction) to imipenem, the only currently available β-lactam not significantly affected by P. aeruginosa major efflux pumps.  相似文献   

18.
Klebsiella pneumoniae carbapenemase (KPC)-producing K. pneumoniae may appear susceptible to imipenem or meropenem by routine susceptibility testing. We report a series of patients with infections caused by K. pneumoniae isolates, which yielded imipenem-susceptible results but were subsequently KPC-positive by polymerase chain reaction. When these infections were treated with imipenem or meropenem, frequent clinical and microbiologic failures were observed.  相似文献   

19.
Pseudomonas aeruginosa PAO1 showed increased phenotypic resistance to imipenem, panipenem, and biapenem specifically in the presence of salicylate. The antipseudomonal activity of carbapenems was reduced in proportion to the concentration of salicylate. This resistance was transient and nonheritable. The synthesis of the outer membrane protein D2 (OprD or OprD2) in P. aeruginosa PAO1 was inhibited by 4 to 32 mM salicylate in the bacterial growth medium, whereas no changes in any other outer membrane proteins were observed. These results indicate that salicylate suppresses the synthesis of OprD and therefore reduces the antipseudomonal activity of carbapenems. Under these conditions, one carbapenem--meropenem--is still active against P. aeruginosa, which indicates that meropenem can pass through the outer membrane via both the D2 channel and another undefined route(s).  相似文献   

20.
Biapenem is a carbapenem being developed in combination with RPX7009, a new inhibitor of serine β-lactamases. Biapenem was tested alone and in combination with fixed concentrations of RPX7009 by agar dilution against 377 recent isolates of anaerobes. A separate panel of 27 isolates of Bacteroides spp. with decreased susceptibility or resistance to imipenem was also tested. Comparator drugs included meropenem, piperacillin-tazobactam, ampicillin-sulbactam, cefoxitin, ceftazidime, metronidazole, clindamycin, and tigecycline plus imipenem, doripenem, and ertapenem for the 27 selected strains. For recent consecutive strains of Bacteroides species, the MIC90 for biapenem-RPX7009 was 1 μg/ml, with a MIC90 of 4 μg/ml for meropenem. Other Bacteroides fragilis group species showed a MIC90 of 0.5 μg/ml for both agents. The MIC90s for biapenem-RPX7009 were 0.25 μg/ml for Prevotella spp., 0.125 μg/ml for Fusobacterium nucleatum and Fusobacterium necrophorum, 2 μg/ml for Fusobacterium mortiferum, 0.5 μg/ml for Fusobacterium varium, ≤0.5 μg/ml for Gram-positive cocci and rods, and 0.03 to 8 μg/ml for clostridia. Against 5 B. fragilis strains harboring a known metallo-beta-lactamase, biapenem-RPX7009 MICs were comparable to those of other carbapenems (≥32 μg/ml). Against Bacteroides strains with an imipenem MIC of 2 μg/ml, biapenem-RPX7009 had MICs of 0.5 to 2 μg/ml, with MICs of 0.5 to 32 μg/ml for meropenem, doripenem, and ertapenem. For strains with an imipenem MIC of 4 μg/ml, the MICs for biapenem-RPX7009 were 4 to 16 μg/ml, with MICs of 8 to >32 μg/ml for meropenem, doripenem, and ertapenem. The inhibitor RPX7009 had no antimicrobial activity when tested alone, and it showed little or no potentiation of biapenem versus anaerobes. Biapenem-RPX7009 showed activity comparable to that of imipenem and was superior to meropenem, doripenem, and ertapenem against imipenem-nonsusceptible Bacteroides spp.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号