首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Over the past four decades, the search for improved platinum drugs based on the classical platinum (II)-diam(m)ine pharmacophore has yielded only a handful of successful candidates. New methodologies centred on platinum (IV) complexes, with better stability and expanded coordination spheres, offer the possibility of overcoming limitations inherent to platinum (II) drugs. In this review, novel strategies of targeting and killing cancer cells using platinum (IV) constructs are discussed. These approaches exploit the unique electrochemical characteristics and structural attributes of platinum (IV) complexes as a means of developing anticancer prodrugs that can target and selectively destroy cancer cells. Anticancer platinum (IV) prodrugs represent promising new strategies as targeted chemotherapeutic agents in the ongoing battle against cancer.  相似文献   

2.
The application of inorganic chemistry to medicine is a rapidly developing field, and novel therapeutic and diagnostic metal complexes are now having an impact on medical practice. Advances in biocoordination chemistry are crucial for improving the design of compounds to reduce toxic side effects and understand their mechanisms of action. Cisplatin, as one of the leading metal-based drugs, is widely used in the treatment of cancer. Significant side effects and drug resistance, however, have limited its clinical applications. Biological carriers conjugated to cisplatin analogs have improved specificity for tumor tissue, thereby reducing side effects and drug resistance. Platinum complexes with distinctively different DNA binding modes from that of cisplatin also exhibit promising pharmacological properties. This review focuses on recent advances in developing platinum anticancer agents with an emphasis on platinum coordination complexes.  相似文献   

3.
Polynuclear compounds are a relatively new and successful approach in metal-based cancer chemotherapy as typified by the trinuclear Pt compound BBR3464 which was evaluated in clinical trials. In this review, we discuss newer developments of polynuclear ruthenium, osmium and gold complexes, focusing on their anticancer activity. The compounds presented are often supposed to exert their anticancer activity by different modes of action as compared to established drugs, including newly proposed mechanisms such as enzyme inhibition, crosslinking of biomacromolecules or through photo-activation, though many of the examples are also capable of binding to DNA nucleobases. Important metabolization and chemical characteristics of such compounds are discussed, and if the appropriate data is available, molecular modes of action are highlighted.  相似文献   

4.
Research in anticancer chemotherapy has produced outstanding results, and mean survival rates have significantly improved over the last ten years. Nevertheless, all approved drugs are still characterized by narrow therapeutic windows that result mainly from their high systemic toxicity combined with their marked lack of tumor selectivity. Medicinal chemistry responds to the resulting demands with new analogues of a lead drug, or by developing prodrugs. Prodrugs are inactive compounds, which are metabolized in the body, either chemically or enzymatically, in a controlled or predictable manner, to the active parent drug. This review describes the results of strategies in prodrug development, subdivided into the principal categories of anticancer agents. The chemical implementation of prodrug approaches is illustrated through selected drug candidates.  相似文献   

5.
The application of inorganic chemistry to medicine is a rapidly developing field, and novel therapeutic and diagnostic metals and metal complexes are now having an impact on medical practice. Advances in biocoordination chemistry are crucial for improving the design of compounds to reduce toxic side effects and understand their mechanisms of action. A lot of metal-based drugs are widely used in the treatment of cancer. The clinical success of cisplatin and other platinum complexes is limited by significant side effects acquired or intrinsic resistance. Therefore, much attention has focused on designing new coordination compounds with improved pharmacological properties and a broader range of antitumor activity. Strategies for developing new anticancer agents include the incorporation of carrier groups that can target tumor cells with high specificity. Also of interest is to develop complexes that bind to DNA in a fundamentally different manner than cisplatin, in an attempt to overcome the resistance pathways that have evolved to eliminate the drug. This review focuses on recent advances in developing lanthanide anticancer agents with an emphasis on lanthanide coordination complexes. These complexes may provide a broader spectrum of antitumor activity. They were compared with classical platinum anticancer drugs. Lanthanides are also of interest because of their therapeutic radioisotopes. The dominant pharmacological applications of lanthanides are as agents in radioimmunotherapy and photodynamic therapy.  相似文献   

6.
The focus of this review is on recently published papers (2000-2005) where NMR spectroscopy has been applied as the principal method in the study of anticancer platinum drugs. The paper gives an overview of the basic NMR techniques particularly relevant for studying interaction between platinum compounds and nucleic acid constituents. The latest NMR studies on the well-known anticancer drug cisplatin, with focus on kinetics and cisplatin-DNA structures are reported. Also cisplatin analogues clinically approved or currently in clinical trials are discussed. In addition two new classes of anticancer platinum drugs are described: trans-oriented Pt iminoether complexes and multinuclear Pt complexes. Reaction kinetics and structural changes induced by these novel Pt drugs are discussed in relation to cisplatin. NMR studies of non-DNA platinum drug targets including peptides, proteins and phospholipid membranes are also treated.  相似文献   

7.
铂类药物因抗癌谱广、疗效显著而在临床中被广泛使用。自1978年顺铂应用于临床以来,卡铂、奥沙利铂相继被美国FDA批准,乐铂、奈达铂和依铂分别在中国、日本以及韩国上市。然而,铂类药物的毒副作用和耐药性大大限制了其应用和开发。为提高铂类药物的疗效以及克服其缺陷,大量的新型铂类配合物被设计合成,并在不同阶段开展疗效试验。除与顺铂类似的铂(Ⅱ)配合物之外,近年来作为前药的铂(Ⅳ)配合物也被广泛研究。从铂(Ⅱ)配合物和铂(Ⅳ)配合物2个方面,总结近年来铂类抗肿瘤配合物取得的研究进展,并对配体的选择与配合物设计、作用机制、抗肿瘤效果以及临床应用前景进行概述,以期对今后的新药开发和临床应用有所裨益。  相似文献   

8.
Skin as a route for drug delivery has been extensively investigated. However, because of the predominant barrier function of stratum corneum in skin, the clinical application is limited. One strategy to solve this problem of drug permeation via skin is the use of prodrugs. Prodrugs are inactive compounds which are metabolized either chemically or enzymatically in a controlled or predictable manner to its parent active drug. Prodrugs can enhance dermal/transdermal drug delivery via different mechanisms, including increased skin partitioning, increased aqueous solubility, and reduced crystallization, etc. Besides the prodrug itself, the optimization of vehicle is important as well. The prodrug partitioning between skin and vehicle as well as prodrug-vehicle interaction may influence the enhancing efficacy on skin permeation. This review explores the synthesis and enhancing mechanisms of prodrugs for topical drug delivery. The prodrugs categorized by the therapeutic use of the parent drugs, including anticancer drugs, analgesics, anti-inflammatory drugs and vitamins, are systemically introduced in this review.  相似文献   

9.
An evaluation of existing and proposed Fe chelators, both synthetic and natural products, for the treatment of Fe-overload disease must address a number of issues. There are fundamental parameters that determine the efficacy of a drug: absorption, distribution, metabolism, clearance and toxicity. However, the administration of chelator for Fe overload aims to generate Fe complexes in vivo that are able to be excreted. Hence, the chemical and pharmacological properties of the complexes formed are equally important as the chelators themselves. The redox properties of the Fe complexes formed is particularly relevant to their toxicity. If both Fe(II) and Fe(III) oxidation states of the complexes are biologically accessible, then there is potential for the auto-catalytic production of deleterious free radicals, by Fenton-type chemistry. In addition, since the burden of Fe overload disease falls predominantly on some of the poorest economies, the cost of a drug must be considered, as well as the mode of delivery. There are also possible issues with the use of naturally occurring ligands, which may form Fe complexes capable of being utilised by opportunistic bacteria. This review will concentrate on recent developments in our chemical understanding of existing chelators approved or proposed for use and will also consider some of the candidates from natural sources that have been recently proposed.  相似文献   

10.
Wen Ma  Shuxiang Song  Jun Li 《中国药学》2020,29(8):577-590
Surface-assisted laser desorption/ionization mass spectrometry (SALDI-MS) uses inorganic nanomaterials as matrixes to facilitate desorption and ionization of analytes. Compared with the traditional matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) technique, SALDI-MS has the advantages of less interference in the low mass range, better reproducibility and higher salt tolerance. It is highly suitable for the analysis of small molecule compounds. In recent years, researchers have developed a range of nanomaterials that are successfully applied to the field of small molecule drug and metaboliteanalysis including drug screening and quantification, drug delivery, metabolite profiling, biomarker discovery and so forth. This review summarizes the latest progress of SALDI-MS matrix materials such as metal-based, carbon-based, silica-based nanomaterials and organic framework nanomaterials and their applications. In addition, our perspective of SALDI-MS technology is also discussed for further advancement.  相似文献   

11.
The study of prodrugs that are chemically modified bioreversible derivatives of active drug compounds to alter their undesired properties has been expanded widely during the last decades. Despite the commercial success the prodrugs have afforded, the concept is still quite unknown among many scientist. Furthermore, many scientists regard prodrugs as a pure interest of academic research groups and not as a feasible solution to improve the delivery or targeting properties of new chemical entities, drug candidates failed in clinical trials, or drugs withdrawn from the market. Although there are still unmet needs that require addressing, prodrugs should be seen as fine-tuning tools for the successful drug research and development. This review represents the potential of prodrugs to improve the drug delivery by enhanced aqueous solubility or permeability as well as describes several targeted prodrug strategies.  相似文献   

12.
Prodrugs continue to attract significant interest in the transdermal drug delivery field. These moieties can confer favorable physicochemical properties on transdermal drug delivery candidates. Alkyl chain lengthening, pegylation are some of the strategies used for prodrug synthesis. It is usually important to optimize partition coefficient, water and oil solubilities of drugs. In this review, progress made in the field of prodrugs for percutaneous penetration is highlighted and the challenges discussed.  相似文献   

13.
Coupling of low molecular weight anticancer drugs to antibodies, serum proteins or polymers through a cleavable linker has been an effective method for improving the therapeutic index of cytotoxic established agents. Modern drug–antibody conjugates that have recently entered clinical trials have primarily used highly potent drugs such as calicheamicin or maytansins. Gemtuzumab ozogamicin, a conjugate of calicheamicin and an anti-CD33 humanized antibody, is the first drug–antibody conjugate to receive market approval. Drug conjugates that have undergone clinical assessment include N-(2-hydroxypropyl)methacrylamide (HPMA) copolymer conjugates with doxorubicin, camptothecin, paclitaxel and Pt(II) complexes, poly(ethylene glycol) conjugates with camptothecin and paclitaxel, polyglutamate conjugates with paclitaxel and camptothecin, a methotrexate–albumin conjugate and an albumin-binding doxorubicin prodrug. This review summarizes the Phase I – III studies that have been performed with these macromolecular prodrugs.  相似文献   

14.
Since the introduction of the monomeric orally bioavailable anti-arthritic gold compound auranofin in 1985, and the success of the platinum-based anti-cancer drugs, there has been a great deal of interest in the use of gold compounds for cancer therapy. However this early promise has not materialized into an approved drug in spite of extensive and innovative efforts in gold chemistry. Therefore, in the light of this lack of success, the strategies for the biological evaluation of potential gold-based anti-cancer drugs are discussed. It is proposed that the biological testing strategy should be multi-faceted incorporating an understanding of the molecular properties of the compounds under investigation related to their behaviour in a biological environment, an evaluation of their comparative in vitro potency against tumor cells, ascertaining the biochemical mechanism of action and target identification to aid in medicinal chemistry design, evaluation of in vivo activity in relevant tumor models, and an understanding of their toxicological and pharmacokinetic properties. This strategy will be exemplified with work on Au(III) cyclometallated complexes in which an integrated approach to the search for new metal-based anticancer drugs was adopted, incorporating in vitro screening, in vivo human tumor xenograft models, and mechanistic studies. The importance of mechanistic studies which have led to the identification of new molecular targets for gold drugs, and in vivo evaluation are emphasized.  相似文献   

15.
This review summarizes clinical and pre-clinical results on platinum anti-cancer drug formulations. A concise summary of the use of oxidation state to modulate cancer pharmacology is given for Pt(IV) complexes, distinct from the clinically used Pt(II) drugs. The chemistry of platinum drug formulation combines aspects of kinetics of active moiety release from nominally weak-binding ligands (bond cleavage from platinum-carboxylate and platinum-phosphate) in polymers and nanoparticles with pharmacological considerations of plasma distribution and cellular accumulation. The action of any molecular entity as a drug is influenced by its ADME profile--absorption, distribution, metabolism and excretion. The purpose of drug formulation is to alter any or all of these parameters with the ultimate goal of improving the efficacy and reducing side effects with the possibility to target drugs directly to the tumor site. The diverse array of approaches includes liposomes, polymers (not limited to peptides, dendrimers, biodegradable polymers, polysaccharides, and metallic nanoparticles). Functionalization of the surfaces of nanoparticles with antibodies or cellular surface recognition motifs may further target specific cancers.  相似文献   

16.
The vast majority of chemical drugs or drug candidates contain stereocenter(s) in their molecular structures. In these molecules, stereochemical properties are vital properties that influence or even determine their drug actions. Therefore, studying the stereochemical issues of drugs (or drug candidates) is necessary for rational drug use. These stereochemical issues are usually involved with the stereoselectivity in pharmacokinetic processes, especially in the metabolism process. Thus, the investigation of the stereochemical issues in drug metabolism process deserves great attention, especially in those chiral/prochiral antineoplastic agents exhibiting pharmacodynamics and toxicologic differences between stereoisomers. Published reviews concerning this certain issue are inspiring, however they were covering all drug types and only limited antineoplastic drugs were discussed. Here in this review, the research on stereochemical issues in pharmacokinetic processes of some representative antineoplastic agents were described, especially focusing on some newly developed compounds. We highlight the chemical transformations in pharmacokinetic processes of these chiral/prochiral compounds and discuss their different behaviors with metabolic enzymes or transporter proteins, to explicate the observed stereoselectivity intrinsically.  相似文献   

17.
In this review, we intend to highlight outstanding concepts of antiviral nucleoside prodrugs which have been developed in recent years, so as to improve the efficacy of a given antiviral drug or to overcome some drug deficiencies. Examples of antiviral carrier-linked nucleoside prodrugs or nucleoside bioprecursors are described, and their active mechanisms discussed. The described nucleoside prodrugs are classified in two structural classes: prodrugs bearing molecular modifications on the sugar moiety and prodrugs bearing molecular modifications on the nucleic base. Despite the important research work accomplished through out the world during the last few years in developing improved antiviral drugs for the treatment of HIV (human immunodeficiency virus), HBV (hepatitis B virus), HCV (hepatitis C virus), HSV (herpes simplex virus), HCMV (human cytomegalovirus), etc infections, only few nucleoside antiviral prodrugs are marketed, while promising prodrugs deriving from original concepts were developed. The most relevant concepts are discussed: (1) - pronucleotide approach allows the design of prodrugs, which by-pass the first kinase phosphorylation step; (2) - drug design based on Bodor's concept for brain delivery improved drugs and (3) - 5'-O-carbonate nucleosides and deaminase approaches, which allow active drug regeneration. Nonetheless, none of these innovative models have reached the market.  相似文献   

18.
The development of photoactivatable prodrugs of platinum-based antitumor agents is aimed at increasing the selectivity and hence lowering toxicity of this important class of antitumor drugs. These drugs could find use in treating localized tumors accessible to laser-based fiber-optic devices. Pt(IV) complexes appeared attractive because these octahedral complexes are usually substitution inert and require reduction to the Pt(II) species to become cytotoxic. Based on the knowledge of Pt(IV) photochemistry, Pt(IV) analogs of cisplatin, [Pt(en)Cl(2)] and transplatin were designed, synthesized and investigated for their ability to be photoreduced to cytotoxic Pt(II) species. Two classes of photoactivatable Pt complexes have been looked at thus far: diiodo-Pt(IV) and diazido-Pt(IV) diam(m)ine complexes. The first generation, diiodo-Pt(IV) complexes, represented by cis, trans-[Pt(en)(I)(2)(OAc)(2)], react to visible light by binding irreversibly to DNA and forming adducts with 5'-GMP in the same manner as [Pt(en)Cl(2)]. Furthermore, the photolysis products are cytotoxic to human cancer cells in vitro. However, these complexes are too reactive towards biological thiols (i.e., glutathione), which rapidly reduced them to cytotoxic Pt(II) species, thus making them unsuitable as drugs. The second generation, diazido-Pt(IV) complexes, represented by cis, trans, cis-[Pt(N(3))(2)(OH)(2)(NH(3))(2)] and cis, trans-[Pt(en)(N(3))(2)(OH)(2)], are also photosensitive, binding irreversibly to DNA and forming similar products with DNA and 5'-GMP in the presence of light as the respective Pt(II) complexes. However, they are stable to glutathione and thus show very low dark cytotoxicity. Light of lambda(irr) = 366 nm activates both complexes to cytotoxic species that effectively kill cancer cells by destroying their nuclei, leaving behind shrunken cell ghosts. Interestingly, the all-trans analog, trans, trans, trans-[Pt(N(3))(2)(OH)(2)(NH(3))(2)] is non-toxic to HaCaT keratinocytes in the dark, but as active as cisplatin in the light. These studies show that photoactivatable Pt(IV) antitumor agents represent a promising area for new drug development.  相似文献   

19.
In recent years, tools for the development of new drugs have been dramatically improved. These include genomic and proteomic research, numerous biophysical methods, combinatorial chemistry and screening technologies. In addition, early ADMET studies are employed in order to significantly reduce the failure rate in the development of drug candidates. As a consequence, the lead finding, lead optimization and development process has gained marked enhancement in speed and efficiency. In parallel to this development, major pharma companies are increasingly outsourcing many components of drug discovery research to biotech companies. All these measures are designed to address the need for a faster time to market. New screening methodologies have contributed significantly to the efficiency of the drug discovery process. The conventional screening of single compounds or compound libraries has been dramatically accelerated by high throughput screening methods. In addition, in silico screening methods allow the evaluation of virtual compounds. A wide range of new lead finding and lead optimization opportunities result from novel screening methods by NMR, which are the topic of this review article.  相似文献   

20.
Platinum complex-based chemotherapy is one of the major treatment options of many malignancies. Although severe side effects occur, and only a limited spectrum of tumors can be cured, Pt compounds are used in every second therapy scheme. Thus, many different drug design strategies have been employed for improving the properties of anticancer drugs including pH or redox activation in the tumor, variation of the metal center and therefore the redox and ligand exchange properties, the application of multinuclear metal complexes, the development of targeted approaches, etc. Application of carbohydrate-metal complexes is an example of a targeted approach exploiting the biochemical and metabolic functions of diverse sugars in living organisms for transport and accumulation. Natural carbohydrates and synthetic derivatives possess a manifold of donors endowing them with the ability to coordinate metal centers and providing some additional advantages over other ligands, e.g., biocompatibility, non-toxicity, enantiomeric purity, water solubility, and well-explored chemistry. In recent years, several examples of carbohydrate compounds have been developed for diverse medicinal applications ranging from compounds with antibiotic, antiviral, or fungicidal activity and anticancer compounds. Herein, metal complexes with carbohydrate ligands are reviewed and the role of the carbohydrate carriers on the antineoplastic activity of these compounds, both in vitro and in vivo, is described.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号