共查询到20条相似文献,搜索用时 15 毫秒
1.
It is known that singlet oxygen ((1)O(2)) is the main factor mediating cytotoxicity in photodynamic therapy (PDT). The effectiveness of a PDT treatment is directly linked to the (1)O(2) produced in the target. Although the luminescence from (1)O(2) is suggested as an indicator for evaluating photodynamic therapy, the inherent disadvantages limit its potential for in vivo applications. We have previously reported that chemiluminescence can be used to detect (1)O(2) production in PDT and have linked the signal to the cytotoxicity. We further our investigation for monitoring (1)O(2) production during PDT. The lifetime of 3,7-dihydro-6-{4-[2-(N(')-(5-fluoresceinyl)thioureido)ethoxy]phenyl}-2-methylimidazo {1,2-a} pyrazin-3-one-chemiluminescence (FCLA-CL) is evaluated, and the results show that it is much longer than that of direct luminescence of (1)O(2). A gated measurement algorithm is developed to fully utilize the longer lifetime for a clean measurement of the CL without the interference from the irradiation light. The results show that it is practically feasible to use the technique to monitor the (1)O(2). Compared to the direct (1)O(2) luminescence measurement, our new technique is sensitive and can be realized with a conventional optical detector with excellent signal-to-noise ratio. It thus provides a means for real-time in vivo monitoring of (1)O(2) production during PDT. 相似文献
2.
Characterization of Photofrin photobleaching for singlet oxygen dose estimation during photodynamic therapy of MLL cells in vitro 总被引:3,自引:0,他引:3
A singlet oxygen dose model is developed for PDT with Photofrin. The model is based on photosensitizer photobleaching kinetics, and incorporates both singlet oxygen and non-singlet oxygen mediated bleaching mechanisms. To test our model, in vitro experiments were performed in which MatLyLu (MLL) cells were incubated in Photofrin and then irradiated with 532 nm light. Photofrin fluorescence was monitored during treatment and, at selected fluence levels, cell viability was determined using a colony formation assay. Cell survival correlated well to calculated singlet oxygen dose, independent of initial Photofrin concentration or oxygenation. About 2 x 10(8) molecules of singlet oxygen per cell were required to reduce the surviving fraction by 1/e. Analysis of the photobleaching kinetics suggests that the lifetime of singlet oxygen in cells is 0.048 +/- 0.005 micros. The generation of fluorescent photoproducts was not a result of singlet oxygen reactions exclusively, and therefore did not yield additional information to aid in quantifying singlet oxygen dose. 相似文献
3.
Singlet oxygen ((1)O(2)) is an important factor mediating cell killing in photodynamic therapy (PDT). We previously reported that chemiluminescence (CL) can be used to detect (1)O(2) production in PDT and linked the signal to the PDT-induced cytotoxicity in vitro. We develop a new CL detection apparatus to achieve in vivo measurements. The system utilizes a time-delayed CL signal to overcome the interference from scattered excitation light, thus greatly improving the accuracy of the detection. The system is tested on healthy skin of BALB/ca mouse for its feasibility and reliability. The CL measurement is made during a synchronized gating period of the irradiation light. After each PDT treatment and in situ CL measurement, the skin response is scored over a period of 2 weeks. A remarkable relationship is observed between the score and the CL, regardless of the PDT treatment protocol. Although there are many issues yet to be addressed, our results clearly demonstrate the feasibility of CL measurement during PDT and its potential for in vivo PDT dosimetry. This requires further investigations. 相似文献
4.
Aleksandra Lesiak Malgorzata Slowik-Rylska Michal Rogowski-Tylman Anna Sysa-Jedrzejowska Mary Norval Joanna Narbutt 《Archives of Medical Science》2010,6(2):270-275
Introduction
In the last decades the number of skin carcinomas has dramatically increased, which is mainly connected with changes in lifestyle, especially with common use of artificial light sources such as sunbeds. Basal cell carcinoma (BCC) is the most common form of skin cancer in white populations. Basal cell carcinomas are divided into subtypes, depending on their clinical picture and histology. The main groups are nodular (nBCC) and superficial (sBCC) ones. The major recognized risk factors for basal cell carcinoma (BCC) are exposure to chronic and intermittent burning doses of sunlight. Other risk factors leading to the development of the nBCC and sBCC subtypes of BCC are not well established.Material and methods
An analysis of 123 patients with either nBCC or sBCC, living in Lodz, Poland, regarding various intrinsic and environmental parameters was undertaken following the histological diagnosis of BCC.Results
No statistical differences were observed between the BCC subtype and sex, age, hair colour, eye colour, smoking, family history of skin cancer, occupation, or past episodes of sunburn. While sBCCs tended to occur on unexposed body sites in phototype I/II subjects who mainly avoided direct sunlight, nBCCs tended to occur on sun-exposed body sites in phototype III subjects who were frequently in direct sunlight.Conclusions
Thus the development of particular BCC subtypes is partially dependent on phototype and personal sun behaviour. 相似文献5.
Fluorescent probes are frequently employed for the detection of different reactive oxygen and nitrogen species formed during the irradiation of photosensitized cells and tissues. Investigators often interpret the results in terms of information provided with the different probes without examining specificity or determinants of fluorogenic reactions. We examine five fluorescent probes in a cell-free system: reduced 2',7'-dichlorofluorescein, dihydroethidine, dihydrorhodamine, 3'-(p aminophenyl) fluorescein (APF), and 4',5'-diaminofluorescein. Of these, only APF demonstrates a high degree of specificity for a single reactive species. There is a substantial influence of peroxidase activity on all fluorogenic interactions. The fluorescence of the photosensitizing agent also must be taken into account in evaluating results. 相似文献
6.
Warren CB Lohser S Wene LC Pogue BW Bailin PL Maytin EV 《Journal of biomedical optics》2010,15(5):051607
Topical 5-aminolevulinic acid (ALA) is widely used in photodynamic therapy (PDT) of actinic keratoses (AK), a type of premalignant skin lesion. However, the optimal time between ALA application and exposure to light has not been carefully investigated. Our objective is to study the kinetics of protoporphyrin IX (PpIX) accumulation in AK after short contact ALA and relate this to erythemal responses. Using a noninvasive dosimeter, PpIX fluorescence measurements (5 replicates) were taken at 20-min intervals for 2 h following ALA application, in 63 AK in 20 patients. Data were analyzed for maximal fluorescent signal obtained, kinetic slope, and changes in erythema. Our results show that PpIX accumulation was linear over time, becoming statistically higher than background in 48% of all lesions by 20 min, 92% of lesions by 1 h, and 100% of lesions by 2 h. PpIX accumulation was roughly correlated with changes in lesional erythema post-PDT. We conclude that significant amounts of PpIX are produced in all AK lesions by 2 h. The linear kinetics of accumulation suggest that shorter ALA application times may be efficacious in many patients. Noninvasive fluorescence monitoring of PpIX may be useful to delineate areas of high PpIX accumulation within precancerous areas of the skin. 相似文献
7.
van Veen RL Nyst H Rai Indrasari S Adham Yudharto M Robinson DJ Tan IB Meewis C Peters R Spaniol S Stewart FA Levendag PC Sterenborg HJ 《Journal of biomedical optics》2006,11(4):041107
The objective of this study was to evaluate the performance of a dedicated light applicator for light delivery and fluence rate monitoring during Foscan-mediated photodynamic therapy of nasopharyngeal carcinoma in a clinical phase I/II study. We have developed a flexible silicone applicator that can be inserted through the mouth and fixed in the nasopharyngeal cavity. Three isotropic fibers, for measuring of the fluence (rate) during therapy, were located within the nasopharyngeal tumor target area and one was manually positioned to monitor structures at risk in the shielded area. A flexible black silicon patch tailored to the patient's anatomy is attached to the applicator to shield the soft palate and oral cavity from the 652-nm laser light. Fourteen patients were included in the study, resulting in 26 fluence rate measurements in the risk volume (two failures). We observed a systematic reduction in fluence rate during therapy in 20 out of 26 illuminations, which may be related to photodynamic therapy-induced increased blood content, decreased oxygenation, or reduced scattering. Our findings demonstrate that the applicator was easily inserted into the nasopharynx. The average light distribution in the target area was reasonably uniform over the length of the applicator, thus giving an acceptably homogeneous illumination throughout the cavity. Shielding of the risk area was adequate. Large interpatient variations in fluence rate stress the need for in vivo dosimetry. This enables corrections to be made for differences in optical properties and geometry resulting in comparable amounts of light available for Foscan absorption. 相似文献
8.
Pudroma X Juzeniene A Ma LW Iani V Moan J 《Journal of environmental pathology, toxicology and oncology》2011,30(3):235-240
This study investigated photobleaching of protoporphyrin IX (PpIX) induced by 5-aminolevulinic acid (ALA) and ALA-heptyl ester during superficial photodynamic therapy (PDT) in normal skin of the female BALB/c-nu/nu athymic mouse. We examined the effects of two light sources (laser and broadband lamp) and two different illumination schemes (fractionated light and continuous irradiation) on the kinetics of photobleaching. Our results show that light exposure (0-30 minutes, 10 mW/cm2) of wavelengths of approximately 420 nm (blue light) and 635 nm (red light) induced time-dependent PpIX photobleaching for mouse skin of 2% ALA and ALA-heptyl ester. Blue light (10 mW/cm2) caused more rapid PpIX photobleaching than did red light (100 mW/cm2), which is attributed to stronger absorption at 407 nm than at 632 nm for PpIX. In the case of light fractionation, fractionated light induced faster photobleaching compared with continuous light exposure after topical application of 2% ALA and ALA-heptyl ester in vivo. These have been suggested to allow reoxygenation of the irradiated tissue, with a consequent enhancement of singlet oxygen production in the second and subsequent fractions. 相似文献
9.
10.
Photodynamic therapy (PDT) efficacy depends on the amount of light distribution within the tissue. However, conventional PDT does not consider the laser irradiation dose during PDT. The optical properties of biological tissues (absorption coefficient μ(a), reduced scattering coefficient μ's), anisotropy factor g, refractive index, etc.) help us to recognize light propagation through the tissue. The goal of this paper is to acquire the knowledge of the light propagation within tissue during and after PDT with the optical property of PDT-performed mouse tumor tissue. The optical properties of mouse tumor tissues were evaluated using a double integrating sphere setup and the algorithm based on the inverse Monte Carlo method in the wavelength range from 350 to 1000 nm. During PDT, the μ(a) and μ's were not changed after 1 and 5 min of irradiation. After PDT, the μ's in the wavelength range from 600 to 1000 nm increased with the passage of time. For seven days after PDT, the μ's increased by 1.7 to 2.0 times, which results in the optical penetration depth decreased by 1.4 to 1.8 times. To ensure an effective procedure, the adjustment of laser parameters for the decreasing penetration depth is recommended for the re-irradiation of PDT. 相似文献
11.
12.
13.
Aslak Godal Nils O Nilsen Jo Klaveness Jon Erik Branden Jahn M Nesland Qian Peng 《Journal of environmental pathology, toxicology and oncology》2006,25(1-2):109-126
Photodynamic therapy (PDT) has become a new treatment for several oncological and nononcological disorders. This procedure involves systemic or topical administration of a lesion-localizing photosensitizer or prodrug, followed by irradiation with visible light to cause singlet oxygen-induced damage to the target tissue. 5-aminolevulinic acid (ALA) is an endogenous precursor for several photosensitizing porphyrins formed by heme biosynthesis, and has been studied for PDT with promising results for some superficial diseases of the skin and hollow internal organs. Hydrophilic ALA has a limited ability to penetrate certain biological barriers and has a relatively low selectivity for lesions. In addition, its ability to induce intracellular porphyrins has been shown to be low compared to most esters of ALA. This stimulated a search for lipophilic derivatives of ALA to overcome the shortcomings of ALA. Thirty-two new esters of ALA were prepared and their ability to induce porphyrin formation was assessed in the WiDr human carcinoma cell line in vitro and in the normal skin of Balb/c nude mice in vivo. Branched-chain alkyl esters and substituted benzyl esters were found to be the most efficient porphyrin precursors of the compounds studied. 相似文献
14.
The purpose of the present work was to investigate how haematopoietic stem cell survival is affected by the differences in the dose distribution that arise from different radionuclides contained in bone-seeking radiopharmaceuticals. This was carried out in three steps: (a) calculations of representative dose distributions in individual bone marrow cavities that are irradiated by sources of 89Sr, 186Re, 117mSn or 153Sm, uniformly distributed on the bone surfaces; (b) assessment of the corresponding haematopoietic stem cell survival and (c) a comparison of these results with results obtained using the assumption of a uniform dose distribution. Two different idealized models of the geometry of trabecular bone were formulated, each consisting of an infinite array of identical elements. Monte Carlo simulations were used to generate dose-volume histograms that were used to assess haematopoietic stem cell survival with two different assumptions about spatial cell distributions. Compared with a homogeneous dose distribution, the estimated cell survival was markedly higher for 117mSn and 153Sm, and only slightly different for 89Sr and 186Re. The quantitative results differed between the two geometric models and the assumptions about spatial cell distribution, but the trends were the same. The results imply that it is necessary to include dose distributions for individual bone marrow cavities in considerations concerning bone marrow toxicity. 相似文献
15.
Contrasting properties of gold nanoparticles for optical coherence tomography: phantom, in vivo studies and Monte Carlo simulation 总被引:1,自引:0,他引:1
Zagaynova EV Shirmanova MV Kirillin MY Khlebtsov BN Orlova AG Balalaeva IV Sirotkina MA Bugrova ML Agrba PD Kamensky VA 《Physics in medicine and biology》2008,53(18):4995-5009
The possibility of using silica-gold nanoshells with 150 nm silica core size and 25 nm thick gold shell as contrasting agents for optical coherence tomography (OCT) is analyzed. Experiments on agar biotissue phantoms showed that the penetration of nanoshells into the phantoms increases the intensity of the optical coherence tomography (OCT) signal and the brightness of the corresponding areas of the OCT image. In vivo experiments on rabbit skin demonstrated that the application of nanoshells onto the skin provides significant contrasting of the borders between the areas containing nanoshells and those without. This effect of nanoshells on skin in vivo is manifested by the increase in intensity of the OCT signal in superficial parts of the skin, boundary contrast between superficial and deep dermis and contrast of hair follicles and glands. The presence of nanoshells in the skin was confirmed by electron microscopy. Monte Carlo simulations of OCT images confirmed the possibility of contrasting skin-layer borders and structures by the application of gold nanoshells. The Monte Carlo simulations were performed for two skin models and exhibit effects of nanoparticles similar to those obtained in the experimental part of the study, thus proving that the effects originate exactly from the presence of nanoparticles. 相似文献
16.
Ericson MB Uhre J Strandeberg C Stenquist B Larkö O Wennberg AM Rosén A 《Journal of biomedical optics》2005,10(3):034009
Fluorescence imaging has been shown to be a potential complement to visual inspection for demarcation of basal cell carcinoma (BCC), which is the most common type of skin cancer. Earlier studies have shown promising results when combining autofluorescence with protoporphyrin IX (Pp IX) fluorescence, induced by application of delta-5-aminolaevulinic acid (ALA). In this work, we have tried to further improve the ability of this technique to discriminate between areas of tumor and normal skin by implementing texture analysis and Fisher linear discrimination (FLD) on bispectral fluorescence data of BCCs located on the face. Classification maps of the lesions have been obtained from histopathologic mapping of the excised tumors. The contrast feature obtained from co-occurrence matrices was found to provide useful information, particularly for the ALA-induced Pp IX fluorescence data. Moreover, the neighborhood average features of both autofluorescence and Pp IX fluorescence were preferentially included in the analysis. The algorithm was trained by using a training set of images with good agreement with histopathology, which improved the discriminability of the validation set. In addition, cross validation of the training set showed good discriminability. Our results imply that FLD and texture analysis are preferential for correlation between bispectral fluorescence images and the histopathologic extension of the tumors. 相似文献
17.
Koch N Newhauser WD Titt U Gombos D Coombes K Starkschall G 《Physics in medicine and biology》2008,53(6):1581-1594
The treatment of uveal melanoma with proton radiotherapy has provided excellent clinical outcomes. However, contemporary treatment planning systems use simplistic dose algorithms that limit the accuracy of relative dose distributions. Further, absolute predictions of absorbed dose per monitor unit are not yet available in these systems. The purpose of this study was to determine if Monte Carlo methods could predict dose per monitor unit (D/MU) value at the center of a proton spread-out Bragg peak (SOBP) to within 1% on measured values for a variety of treatment fields relevant to ocular proton therapy. The MCNPX Monte Carlo transport code, in combination with realistic models for the ocular beam delivery apparatus and a water phantom, was used to calculate dose distributions and D/MU values, which were verified by the measurements. Measured proton beam data included central-axis depth dose profiles, relative cross-field profiles and absolute D/MU measurements under several combinations of beam penetration ranges and range-modulation widths. The Monte Carlo method predicted D/MU values that agreed with measurement to within 1% and dose profiles that agreed with measurement to within 3% of peak dose or within 0.5 mm distance-to-agreement. Lastly, a demonstration of the clinical utility of this technique included calculations of dose distributions and D/MU values in a realistic model of the human eye. It is possible to predict D/MU values accurately for clinical relevant range-modulated proton beams for ocular therapy using the Monte Carlo method. It is thus feasible to use the Monte Carlo method as a routine absolute dose algorithm for ocular proton therapy. 相似文献
18.
Boyd S Tolvanen K Virolainen S Kuivanen T Kyllönen L Saarialho-Kere U 《Virchows Archiv : an international journal of pathology》2008,452(1):83-90
Matrix metalloproteinases (MMPs) have an important role in the initiation, growth, and invasion of malignant tumors. Basal
cell cancer (BCC) is the most common human malignancy. The risk of BCC is 10–16 times higher among organ transplant recipients
compared with the nontransplanted population. The aim of this study was to compare the expression of several MMPs and their
tissue inhibitors (TIMPs) in BCCs from kidney transplant recipients and controls. Expression of MMPs-1, -7, -8, -9, -10, -13,
-26, and TIMPs-1 and -3 was evaluated by immunohistochemistry in 25 samples of BCC of kidney transplant recipients and 25
matched controls representing superficial and nodular subtypes. No significant differences were detected in MMP expression
of BCC tumor cells between immunocompetent and immunodeficient patients. However, MMPs-1 and -9 and TIMP-1 were expressed
more frequently in stromal macrophages in the BCCs of immunocompetent patients. When tumor subtypes were compared irrespective
of the patient group, more MMP-1-positive fibroblasts and MMP-9-positive neutrophils were detected in the superficial subtype,
while stromal MMP-10 expression was more abundant in nodular tumors. Our results suggest that abundant peritumoral expression
of TIMP-1 in non-immunocompromised patients limits ECM degradation permissive for cancer cell migration. 相似文献
19.
Lange N Vaucher L Marti A Etter AL Gerber P van Den Bergh H Jichlinski P Kucera P 《Journal of biomedical optics》2001,6(2):151-159
A common method to induce enhanced short-term endogenous porphyrin synthesis and accumulation in cell is the topical, systemic application of 5-aminolevulinic acid or one of its derivatives. This circumvents the intravenous administration of photosensitizers normally used for photodynamic therapy (PDT) of fluorescence photodetection. However, in the majority of potential medical indications, optimal conditions with respect to the porphyrin precursor or its pharmaceutical formulation have not yet been found. Due to ethical restrictions and animal right directives, the number of available test objects is limited. Hence, definition and use of nonanimal test methods are needed. Tissue and organ cultures are a promising approach in replacing cost intensive animal models in early stages of drug development. In this paper, we present a tissue culture, which can among others be used routinely to answer specific questions emerging in the field of photodynamic therapy and fluorescence photodetection. This technique uses mucosae excised from sheep paranasal sinuses or pig bladder, which is cultured under controlled conditions. It allows quasiquantitative testing of different protoporphyrin IX precursors with respect to dose-response curves and pharmacokinetics, as well as the evaluation of different incubation conditions and/or different drug formulations. Furthermore, this approach, when combined with the use of electron microscopy and fluorescence-based methods, can be used to quantitatively determine the therapeutic outcome following protoporphyrin IX-mediated PDT. 相似文献