首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
MRI is routinely used for diagnosis, treatment planning and assessment of response to therapy for patients with glioma. Gliomas are spatially heterogeneous and infiltrative lesions that are quite variable in terms of their response to therapy. Patients classified as having low-grade histology have a median overall survival of 7 years or more, but need to be monitored carefully to make sure that their tumor does not upgrade to a more malignant phenotype. Patients with the most aggressive grade IV histology have a median overall survival of 12-15 months and often undergo multiple surgeries and adjuvant therapies in an attempt to control their disease. Despite improvements in the spatial resolution and sensitivity of anatomic images, there remain considerable ambiguities in the interpretation of changes in the size of the gadolinium-enhancing lesion on T(1) -weighted images as a measure of treatment response, and in differentiating between treatment effects and infiltrating tumor within the larger T(2) lesion. The planning of focal therapies, such as surgery, radiation and targeted drug delivery, as well as a more reliable assessment of the response to therapy, would benefit considerably from the integration of metabolic and physiological imaging techniques into routine clinical MR examinations. Advanced methods that have been shown to provide valuable data for patients with glioma are diffusion, perfusion and spectroscopic imaging. Multiparametric examinations that include the acquisition of such data are able to assess tumor cellularity, hypoxia, disruption of normal tissue architecture, changes in vascular density and vessel permeability, in addition to the standard measures of changes in the volume of enhancing and nonenhancing anatomic lesions. This is particularly critical for the interpretation of the results of Phase I and Phase II clinical trials of novel therapies, which are increasingly including agents that are designed to have anti-angiogenic and anti-proliferative properties as opposed to having a direct effect on tumor cell viability.  相似文献   

2.
Although anti-angiogenic agents have shown promise as cancer therapeutics, their efficacy varies between tumor types and individual patients. Providing patient-specific metrics through rapid noninvasive imaging can help tailor drug treatment by optimizing dosages, timing of drug cycles, and duration of therapy-thereby reducing toxicity and cost and improving patient outcome. Diffuse optical tomography (DOT) is a noninvasive three-dimensional imaging modality that has been shown to capture physiologic changes in tumors through visualization of oxygenated, deoxygenated, and total hemoglobin concentrations, using non-ionizing radiation with near-infrared light. We employed a small animal model to ascertain if tumor response to bevacizumab (BV), an anti-angiogenic agent that targets vascular endothelial growth factor (VEGF), could be detected at early time points using DOT. We detected a significant decrease in total hemoglobin levels as soon as one day after BV treatment in responder xenograft tumors (SK-NEP-1), but not in SK-NEP-1 control tumors or in non-responder control or BV-treated NGP tumors. These results are confirmed by magnetic resonance imaging T2 relaxometry and lectin perfusion studies. Noninvasive DOT imaging may allow for earlier and more effective control of anti-angiogenic therapy.  相似文献   

3.
Pharmacological approaches to treat breast cancer metastases in the brain have been met with limited success. In part, the impermeability of the blood brain barrier (BBB) has hindered delivery of chemotherapeutic agents to metastatic tumors in the brain. BBB-permeable chemotherapeutic drugs are being developed, and noninvasively assessing the efficacy of these agents will be important in both preclinical and clinical settings. In this regard, dynamic contrast enhanced (DCE) and diffusion weighted imaging (DWI) are magnetic resonance imaging (MRI) techniques to monitor tumor vascular permeability and cellularity, respectively. In a rat model of metastatic breast cancer, we demonstrate that brain and bone metastases develop with distinct physiological characteristics as measured with MRI. Specifically, brain metastases have limited permeability of the BBB as assessed with DCE and an increased apparent diffusion coefficient (ADC) measured with DWI compared to the surrounding brain. Microscopically, brain metastases were highly infiltrative, grew through vessel co-option, and caused extensive edema and injury to the surrounding neurons and their dendrites. By comparison, metastases situated in the leptomenengies or in the bone had high vascular permeability and significantly lower ADC values suggestive of hypercellularity. On histological examination, tumors in the bone and leptomenengies were solid masses with distinct tumor margins. The different characteristics of these tissue sites highlight the influence of the microenvironment on metastatic tumor growth. In light of these results, the suitability of DWI and DCE to evaluate the response of chemotherapeutic and anti-angiogenic agents used to treat co-opted brain metastases, respectively, remains a formidable challenge.  相似文献   

4.
5.
Accurate and reliable diagnosis of functional insufficiency of peripheral vasculature is essential since Raynaud phenomenon (RP), most common form of peripheral vascular insufficiency, is commonly associated with systemic vascular disorders. We have previously demonstrated that dynamic imaging of near-infrared fluorophore indocyanine green (ICG) can be a noninvasive and sensitive tool to measure tissue perfusion. In the present study, we demonstrated that combined analysis of multiple parameters, especially onset time and modified T(max) which means the time from onset of ICG fluorescence to T(max), can be used as a reliable diagnostic tool for RP. To validate the method, we performed the conventional thermographic analysis combined with cold challenge and rewarming along with ICG dynamic imaging and segmental analysis. A case-control analysis demonstrated that segmental pattern of ICG dynamics in both hands was significantly different between normal and RP case, suggesting the possibility of clinical application of this novel method for the convenient and reliable diagnosis of RP.  相似文献   

6.
目的:构建小鼠背脊皮翼视窗(DSFC)模型,对肿瘤微环境进行持续动态监测,研究肿瘤增殖、扩散以及提供一种评估 抗肿瘤药物的技术手段。方法:利用转染绿色荧光蛋白的小鼠乳腺癌4T1细胞构建小鼠DSFC肿瘤模型,对肿瘤微环境内 肿瘤尺寸、血管形变、血流灌注量等参数进行实时动态连续监测,获得肿瘤微环境内的精确信息。同时评估纳米基因治疗药 物PCL-PDEM-siRNA的治疗效果。结果:在裸鼠DSFC模型接种4T1乳腺癌细胞的成瘤率可达90%以上。肿瘤接种后2 d即 可见接种区域毛细血管增多,4 d后可观察到边界清晰的肿瘤形态,第4~8天可见肿瘤区域血流灌注量显著提高。纳米药物 注射4 d后肿瘤区域增长速度减缓,出现明显的肿瘤抑制效应,8 d后肿瘤内部新生血管减少,血流灌注量趋于稳定。结论: 本研究为肿瘤微环境的精细化成像提供了新的策略,对肿瘤生物学的基础研究和抗肿瘤药物研发具有重要意义。  相似文献   

7.
Atherosclerotic plaques that cause stroke and myocardial infarction are characterized by increased microvascular permeability and inflammation. Dynamic contrast‐enhanced MRI (DCE‐MRI) has been proposed as a method to quantify vessel wall microvascular permeability in vivo. Until now, most DCE‐MRI studies of atherosclerosis have been limited to two‐dimensional (2D) multi‐slice imaging. Although providing the high spatial resolution required to image the arterial vessel wall, these approaches do not allow the quantification of plaque permeability with extensive anatomical coverage, an essential feature when imaging heterogeneous diseases, such as atherosclerosis. To our knowledge, we present the first systematic evaluation of three‐dimensional (3D), high‐resolution, DCE‐MRI for the extensive quantification of plaque permeability along an entire vascular bed, with validation in atherosclerotic rabbits. We compare two acquisitions: 3D turbo field echo (TFE) with motion‐sensitized‐driven equilibrium (MSDE) preparation and 3D turbo spin echo (TSE). We find 3D TFE DCE‐MRI to be superior to 3D TSE DCE‐MRI in terms of temporal stability metrics. Both sequences show good intra‐ and inter‐observer reliability, and significant correlation with ex vivo permeability measurements by Evans Blue near‐infrared fluorescence (NIRF). In addition, we explore the feasibility of using compressed sensing to accelerate 3D DCE‐MRI of atherosclerosis, to improve its temporal resolution and therefore the accuracy of permeability quantification. Using retrospective under‐sampling and reconstructions, we show that compressed sensing alone may allow the acceleration of 3D DCE‐MRI by up to four‐fold. We anticipate that the development of high‐spatial‐resolution 3D DCE‐MRI with prospective compressed sensing acceleration may allow for the more accurate and extensive quantification of atherosclerotic plaque permeability along an entire vascular bed. We foresee that this approach may allow for the comprehensive and accurate evaluation of plaque permeability in patients, and may be a useful tool to assess the therapeutic response to approved and novel drugs for cardiovascular disease. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

8.
背景:目前临床上应用的超声对比剂均是含有不同包膜材料和气体成分的微泡对比剂,微泡对比剂的出现使超声诊断技术得到了较大的发展。 目的:探讨超声对比剂的材料学研究特点,及超声对比剂在临床疾病治疗中的应用。 方法:超声对比剂是由气体微泡和外部包裹的膜物质组成,包膜材料主要分为白蛋白、大分子脂质体、多聚体和各种表面活性剂等。超声造影是通过增强背向散射信号来成像。超声对比剂研究的发展大致分为3个阶段,造影相关技术包括二次谐波、组织特异性显像、反相脉冲谐波成像、相干造影成像技术、对比脉冲序列、能量多普勒谐波成像、间歇谐波成像技术、编码谐波成像和超声造影三维成像。 结果与结论:超声对比剂形式的不同主要是通过改变微泡包膜和气体的性质和设计来实现的。微气泡能够实现超声对比剂的显影作用,还可在药物传输上发挥功能。新型的微泡超声对比剂不仅可以提供血流灌注学信息,还可以通过靶向作用于病变组织,分析病变的发生机制,使微泡对比剂的诊断更准确。随着微泡对比剂材料学研究以及制备工艺完善,使超声对比剂具有良好的生物相容性。不仅可以用于各种状态下的特异性超声造影,还可以利用空化效应携带药物或治疗基因向目标组织转移释放。微泡造影技术具有治疗、诊断和超声成像的功能,是一种安全、高效、无创的诊断和靶向传输治疗手段。  相似文献   

9.
The use of a novel all-optical photoacoustic scanner for imaging the development of tumor vasculature and its response to a therapeutic vascular disrupting agent is described. The scanner employs a Fabry-Perot polymer film ultrasound sensor for mapping the photoacoustic waves and an image reconstruction algorithm based upon attenuation-compensated acoustic time reversal. The system was used to noninvasively image human colorectal tumor xenografts implanted subcutaneously in mice. Label-free three-dimensional in vivo images of whole tumors to depths of almost 10 mm with sub-100-micron spatial resolution were acquired in a longitudinal manner. This enabled the development of tumor-related vascular features, such as vessel tortuosity, feeding vessel recruitment, and necrosis to be visualized over time. The system was also used to study the temporal evolution of the response of the tumor vasculature following the administration of a therapeutic vascular disrupting agent (OXi4503). This revealed the well-known destruction and recovery phases associated with this agent. These studies illustrate the broader potential of this technology as an imaging tool for the preclinical and clinical study of tumors and other pathologies characterized by changes in the vasculature.  相似文献   

10.
We investigated the feasibility of using optical coherence tomography (OCT) for noninvasive real-time visualization of the vascular effects of photodynamic therapy (PDT) in normal and tumor tissue in mice. Perfusion control measurements were initially performed after administrating vaso-active drugs or clamping of the subcutaneous tumors. Subsequent measurements were made on tumor-bearing mice before and after PDT using the photosensitizer meta-tetrahydroxyphenylchlorin (mTHPC). Tumors were illuminated using either a short drug light interval (D-L, 3 h), when mTHPC is primarily located in the tumor vasculature or a long D-L interval (48 h), when the drug is distributed throughout the whole tumor. OCT enabled visualization of the different layers of tumor, and overlying skin with a maximal penetration of < or =0.5-1 mm. PDT with a short D-L interval resulted in a significant decrease of perfusion in the tumor periphery, to 20% of pre-treatment values at 160 min, whereas perfusion in the skin initially increased by 10% (at 25 min) and subsequently decreased to 60% of pre-treatment values (at 200 min). PDT with a long D-L interval did not induce significant changes in perfusion. The concept of using noninvasive OCT measurements for monitoring early, treatment-related changes in morphology and perfusion may have applications in evaluating effects of anti-angiogenic or antivascular (cancer) therapy.  相似文献   

11.
Hepatocellular carcinomas are highly vascular tumors, showing progressive hypervascularity by the process of neoangiogenesis. Tumor angiogenesis is critical for tumor growth as well as metastatic spread therefore, imaging and quantification of tumor neo-angiogenesis is essential for monitoring response to targeted therapies and predicting disease progression. Sorafenib is a molecular targeting agent used for treating hypervascular tumors. This drug is now the standard of care in treatment of patients with advanced hepatocellular carcinoma. Due to its anti-angiogenic and anti-proliferative actions, imaging findings following treatment with Sorafenib are quite distinct when compared to conventional chemotherapeutic agents. Liver MRI is a widely adopted imaging modality for assessing treatment response in hepatocellular carcinoma and imaging features may reflect pathophysiological changes within the tumor. In this mini-review, we will discuss MRI findings after Sorafenib treatment in hepatocellular carcinoma and review the feasibility of MRI as an early biomarker in differentiating responders from non-responders after treatment with molecular targeting agents.  相似文献   

12.
Retinal neovascularization occurs in a variety of diseases including diabetic retinopathy, the most common cause of blindness in the developed world. There is accordingly considerable incentive to develop drugs that target the aberrant angiogenesis associated with these conditions. Previous studies have shown that a number of anti-angiogenic agents can inhibit retinal neovascularization in a well-characterized murine model of ischemia-induced proliferative retinopathy. Combretastatin-A4 (CA-4) is an anti-vascular tubulin-binding agent currently undergoing clinical evaluation for the treatment of solid tumors. We have recently shown that CA-4 is not tumor-specific but elicits anti-vascular effects in nonneoplastic angiogenic vessels. In this study we have examined the capacity of CA-4 to inhibit retinal neovascularization in vivo. CA-4 caused a dose-dependent inhibition of neovascularization with no apparent side effects. The absence of vascular abnormalities or remnants of disrupted neovessels in retinas of CA-4-treated mice suggests an anti-angiogenic mechanism in this model, in contrast to the anti-vascular effects observed against established tumor vessels. Importantly, histological and immunohistochemical analyses indicated that CA-4 permitted the development of normal retinal vasculature while inhibiting aberrant neovascularization. These data are consistent with CA-4 eliciting tissue-dependent anti-angiogenic effects and suggest that CA-4 has potential in the treatment of nonneoplastic diseases with an angiogenic component.  相似文献   

13.
14.
Improving the tissue penetration depth and spatial resolution of fluorescence-based optical nanoprobes remains a grand challenge for their practical applications in in vivo imaging, due to the scattering and absorption and endogenous autofluorescence of living tissues. Here, we present that Ag2S quantum dots (QDs), containing no toxic ions, exhibiting long circulation time and high stability, act as a new kind of fluorescent probes in the second near-infrared window (NIR-II, 1000–1350 nm) which enable in vivo monitoring of lymphatic drainage and vascular networks with deep tissue penetration and high spatial and temporal resolution. In addition, NIR-II fluorescence imaging with Ag2S QDs provide ultrahigh spatial resolution (∼40 μm) that permits us to track angiogenesis mediated by a tiny tumor (2–3 mm in diameter) in vivo. Our results indicate that Ag2S QDs are promising NIR-II fluorescent nanoprobes that could be useful in surgical treatments such as sentinel lymph node (SLN) dissection as well in assessment of blood supply in tissues and organs and screening of anti-angiogenic drugs.  相似文献   

15.
Vessel leakiness is a hallmark of inflammation and cancer. In inflammation, plasma extravasation and leukocyte adhesion occur in a coordinated manner to enable the immune response, but also to maintain tissue perfusion. In tumors, similar mechanisms operate, but they are not well regulated. Therefore, blood perfusion in tumors is non-uniform, and delivery of blood-borne therapeutics is difficult. In order to analyze the interplay among plasma leakage, blood viscosity, and vessel geometry, we developed a mathematical model that explicitly includes blood cells, vessel branching, and focal leakage. The results show that local hemoconcentration due to plasma leakage can greatly increase the flow resistance in individual vascular segments, diverting flow to other regions. Similarly, leukocyte rolling can increase flow resistance by partially blocking flow. Vessel dilation can counter these effects, and likely occurs in inflammation to maintain blood flow. These results suggest that potential strategies for improving perfusion through tumor networks include (i) eliminating non-uniform plasma leakage, (ii) inhibiting leukocyte interactions, and (iii) preventing RBC aggregation in sluggish vessels. Normalization of tumor vessels by anti-angiogenic therapy may improve tumor perfusion via the first two mechanisms.  相似文献   

16.
Glioblastoma multiforme (GBM) is the most malignant brain tumor and highly resistant to intensive combination therapies. GBM is one of the most vascularized tumors and vascular endothelial growth factor (VEGF) produced by tumor cells is a major factor regulating angiogenesis. Successful results of preclinical studies of anti-angiogenic therapies using xenograft mouse models of human GBM cell lines encouraged clinical studies of anti-angiogenic drugs, such as bevacizumab (Avastin), an anti-VEGF antibody. However, these clinical studies have shown that most patients become resistant to anti-VEGF therapy after an initial response. Recent studies have revealed some resistance mechanisms against anti-VEGF therapies involved in several types of cancer. In this review, we address mechanisms of angiogenesis, including unique features in GBMs, and resistance to anti-VEGF therapies frequently observed in GBM. Enhanced invasiveness is one such resistance mechanism and recent works report the contribution of activated MET signaling induced by inhibition of VEGF signaling. On the other hand, tumor cell-originated neovascularization including tumor-derived endothelial cell-induced angiogenesis and vasculogenic mimicry has been suggested to be involved in the resistance to anti-VEGF therapy. Therefore, these mechanisms should be targeted in addition to anti-angiogenic therapies to achieve better results for patients with GBM.  相似文献   

17.
The evolution in our understanding of tumor angiogenesis has been the result of pioneering imaging and computational modeling studies spanning the endothelial cell, microvasculature and tissue levels. Many of these primary data on the tumor vasculature are in the form of images from pre-clinical tumor models that provide a wealth of qualitative and quantitative information in many dimensions and across different spatial scales. However, until recently, the visualization of changes in the tumor vasculature across spatial scales remained a challenge due to a lack of techniques for integrating micro- and macroscopic imaging data. Furthermore, the paucity of three-dimensional (3-D) tumor vascular data in conjunction with the challenges in obtaining such data from patients presents a serious hurdle for the development and validation of predictive, multiscale computational models of tumor angiogenesis. In this review, we discuss the development of multiscale models of tumor angiogenesis, new imaging techniques capable of reproducing the 3-D tumor vascular architecture with high fidelity, and the emergence of “image-based models” of tumor blood flow and molecular transport. Collectively, these developments are helping us gain a fundamental understanding of the cellular and molecular regulation of tumor angiogenesis that will benefit the development of new cancer therapies. Eventually, we expect this exciting integration of multiscale imaging and mathematical modeling to have widespread application beyond the tumor vasculature to other diseases involving a pathological vasculature, such as stroke and spinal cord injury.  相似文献   

18.
Combined vascular and extracellular pH imaging of solid tumors   总被引:7,自引:0,他引:7  
The unique physiological environment of solid tumors, frequently characterized by areas of poor flow, hypoxia, high lactate and low extracellular pH (pHe), influences vascularization, invasion and metastasis. Thus, vascularization and the physiological and metabolic environment play permissive (and conversely preventive) roles in invasion and metastasis. By using a multi-parametric approach of combined vascular and spectroscopic imaging, we can begin to evaluate which combinations of vascular, metabolic and physiological regions in a solid tumor represent the highest 'metastatic threat'. Here, we present measurements of pHe, vascular volume and permeability from co-localized regions within a solid tumor. These studies were performed for a group of metastatic (MDA-MB-231) and non-metastatic (MCF-7) human breast cancer xenografts. In this study, we have demonstrated the feasibility of such an approach, and presented methods of analyses to detect differences in patterns of combined parameters obtained from spatially co-registered regions in a solid tumor.  相似文献   

19.
目的:在研究CT脑肿瘤灌注成像过程中,肿瘤相关特征参数的定量分析为临床诊断提供重要依据。方法:介绍了CT脑灌注的相关参数,包括脑血流量(CBF)、脑血容量(CBV)、平均通过时间(MTT)和表面通透性等(PS),根据CT扫描所获得的一系列时间影像序列,利用VisualC++编程实现了脑肿瘤区域的时间密度曲线的显示,在基于去卷积方法基础之上,提出改进的算法,结合CT灌注图像上肿瘤区域的长度,角度,面积等参数的测量方法,计算出更精确地血流动力学参数。结论:脑肿瘤CT灌注图像相关特征参数的定量分析可用于脑瘤的及时诊断和治疗。  相似文献   

20.

Background

Angptl4 is a secreted protein involved in the regulation of vascular permeability, angiogenesis, and inflammatory responses in different kinds of tissues. Increases of vascular permeability and abnormality changes in angiogenesis contribute to the pathogenesis of tumor metastasis, ischemic-reperfusion injury. Inflammatory response associated with Angptl4 also leads to minimal change glomerulonephritis, wound healing. However, the role of Angptl4 in vascular permeability, angiogenesis, and inflammation is controversy. Hence, an underlying mechanism of Angptl4 in different kind of tissues needs to be further clarified.

Methods

Keywords such as angptl4, vascular permeability, angiogenesis, inflammation, and endothelial cells were used in search tool of PUBMED, and then the literatures associated with Angptl4 were founded and read.

Results

Data have established Angptl4 as the key modulator of both vascular permeability and angiogenesis; furthermore, it may also be related to the progression of metastatic tumors, cardiovascular events, and inflammatory diseases. This view focuses on the recent advances in our understanding of the role of Angptl4 in vascular permeability, angiogenesis, inflammatory signaling and the link between Angptl4 and multiple diseases such as cancer, cardiovascular diseases, diabetic retinopathy, and kidney diseases.

Conclusions

Taken together, Angptl4 modulates vascular permeability, angiogenesis, inflammatory signaling, and associated diseases. The use of Angptl4-modulating agents such as certain drugs, food constituents (such as fatty acids), nuclear factor (such as PPARα), and bacteria may treat associated diseases such as tumor metastasis, ischemic-reperfusion injury, inflammation, and chronic low-grade inflammation. However, the diverse physiological functions of Angptl4 in different tissues can lead to potentially deleterious side effects when used as a therapeutic target. In this regard, a better understanding of the underlying mechanisms for Angptl4 in different tissues is necessary.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号