首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
OBJECTIVE: The aim of this study was to examine the structural characterization of erythroid and megakaryocytic cell differentiation in Friend erythroleukemic cells using spectral imaging and electron microscopy. MATERIALS AND METHODS: Two variants of Friend erythroleukemia cells were treated with hexamethylene bisacetamide (HMBA) to induce differentiation: 1) MEL, which exhibit the normal phenotype and are susceptible to differentiation; and 2) the resistant R1 cells. The cells were analyzed by spectral imaging along with transmission and scanning electron microscopy. The expression of cell cycle regulatory proteins was analyzed by Western blotting. RESULTS: Spectral imaging of HMBA-treated MEL and R1 cells stained by May-Grünwald-Giemsa and subjected to spectral similarity mapping revealed five morphologic cell types: proerythroblast-like cells, normoblast-like cells, reticulocyte-like cells, megakaryocytes, and apoptotic cells. In MEL cells, both megakaryocytic differentiation characterized by nuclear lobes and erythroid differentiation characterized by accumulation of hemoglobin were detected; R1 cells were not committed to terminal differentiation. HMBA-induced cell cycle arrest at G(1) affected the expression of regulatory proteins in a similar manner in both types of cells. Expression of cyclin-dependent kinase 4 decreased and expression of p21(WAF1) increased. The level of the underphosphorylated form of phosphorylated retinoblastoma protein increased, inducing a decrease in the level of c-myc. In addition, we detected a decrease in the expression of the anti-apoptotic regulator, Bcl-2, and an increased expression of the pro-apoptotic regulator, Bax. CONCLUSIONS: Spectral imaging provides new insight for the morphologic characterization of erythroid and megakaryocytic cell differentiation as well as apoptosis. Image analysis was well correlated to cell cycle arrest and the expression of regulatory proteins.  相似文献   

2.
The mechanism of in vitro erythroid differentiation in mouse Friend cells was studied by employing cell fusion between two genetically marked Friend cells and other nonerythroid cells, including BHK (baby hamster kidney) and FM3A (mouse mammary gland) cells. We were able to induce erythroid differentiation indirectly by fusing Friend cells that had been exposed briefly to dimethyl sulfoxide prior to fusion with nonerythroid cells that had been treated with ultraviolet light (or other DNA-damaging agents). The results suggest that two distinct reactions are involved in erythroid differentiation in Friend cells in vitro. One reaction, originating from the damaged DNA (or inhibition of DNA replication as a consequence), exhibits an inducible nature, is nonspecific to Friend cells, and is trans-acting. The other reaction is specific to Friend cells and most likely is cis-acting. We also present evidence from the cell fusion experiments that a typical tumor promoter, 12-O-tetradecanoylphorbol 13-acetate, inhibits erythroid differentiation by affecting the latter reaction. The biological significance of these findings is discussed.  相似文献   

3.
In vitro models of human erythropoiesis are useful in studying the mechanisms of erythroid differentiation from BFU-E to mature erythrocytes both in normal and pathological conditions. Most of the available in vitro liquid cultures are from cell lines or are limited by the production of few erythroid cells mixed with myeloid cells. Here we describe an erythroid liquid culture system starting from CD34(+)-enriched cells obtained from peripheral blood. CD34(+) cells were cultured for 21 days in different conditions. Precisely stem cell factor (SCF, 20 ng/mL) and IL-3 (10 ng/mL) were added at starting point plus Epo (3 U/mL) at day 0 or 7 of culture with or without cyclosporine A (Cy; 1 mg/mL). In all the conditions, the highest recovery was obtained at day 14 of culture. Epo and Cy added at day 0 produced the highest cell expansion (170-fold mean amplification of the initial cell input by day 14) and recovery of erythroid cell. Sixty seven percent of the cells were GP(+) at day 7 and 97% by day 14 respectively. Most of the cells were proerythroblasts at day 7 and mature erythroblasts at day 14 (>90% were benzidine(pos)). The presence of Cy favoured erythroid differentiation and maturation and reduced the percentage of non-erythroid CD45(+) cells (2% with Cy versus 5% without Cy). Cells cultured with Epo and Cy reproduced erythropoiesis also at the molecular level. The results suggest that in 14 days different steps of human erythropoiesis from peripheral CD34(+) cells could be reproduced, with high recovery of highly purified erythroid cells. The high number and purity of erythroid cells produced from a small amount of peripheral blood make this method useful for studying either normal or pathological erythropoiesis.  相似文献   

4.
Iron and copper homeostasis share common proteins and are therefore closely linked to each other. For example, copper-containing proteins like ceruloplasmin and hephaestin oxidize Fe(2+) during cellular export processes for transport in the circulation bound to transferrin. Indeed, copper deficiency provokes iron metabolism disorders leading to anemia and liver iron accumulation. The aim of the present work was to understand the cross-talk between copper status and iron metabolism. For this purpose we have established dietary copper deficiency in C57BL6 male mice during twelve weeks. Hematological parameters, copper and iron status were evaluated. cDNA microarray studies were performed to investigate gene expression profiles of proteins involved in iron metabolism in the liver, duodenum and spleen. Our results showed that copper deficiency induces microcytic and hypochromic anemia as well as liver iron overload. Gene expression profiles, however, indicate that hepatic and intestinal mRNA expression neither compensates for hepatic iron overload nor the anemia observed in this mouse model. Instead, major modifications of gene expression occurred in the spleen. We observed increased mRNA levels of the transferrin receptors 1 and 2 and of several proteins involved in the heme biosynthesis pathway (ferrochelatase, UroD, UroS,...). These results suggest that copper-deficient mice respond to the deficiency induced anemia by an adaptation leading to an increase in erythrocyte synthesis.  相似文献   

5.
K562 cells demonstrate commitment, defined as the clonal expression of a differentiated phenotype coupled with a limitation in proliferation. Upon exposure to certain agents, K562 cells are induced to synthesize hemoglobin, detectable by benzidine staining. If plated in semisolid medium, they produce benzidine-positive colonies, benzidine-negative colonies, and mixed colonies, the latter containing both positive and negative cells. To test whether or not mixed colonies represent a delay in the expression of commitment, we conducted two types of experiments. The first type showed that, following inducer removal, a delay in plating causes not only a decline in the number of mixed colonies, but also a rise in the proportion of negative colonies, with no change in the proportion of positive colonies. To explain this result, we propose that a plating delay can conceal a negative cell producing a positive cell if that cell division has occurred before plating. Instead of one mixed colony, one observes one positive colony and one other colony, either negative or mixed (depending on subsequent negative-to-positive events). Thus delay does not change the proportion of positive colonies, presumably because they breed true. But delay causes an increase in negative colonies to balance the decrease in mixed colonies due to concealment of negative-to-positive events and provides evidence that the converse, positive-to-negative events, do not occur. The second type of experiment utilized cordycepin, which inhibits commitment. We predicted that, if mixed colonies represent a delay in the expression of commitment, the addition of cordycepin to cells already exposed to thymidine should increase the percentage of mixed colonies. We found that cordycepin does indeed preferentially increase the proportion of mixed colonies. These two types of experiments provide evidence that mixed colonies represent a delay in expression of commitment. Such an inducible system, in which the commitment event and its expression can be separated in time by a generation or more, may provide an opportunity to more fully characterize the commitment process.  相似文献   

6.
A small RNA, RyhB, was found as part of a genomewide search for novel small RNAs in Escherichia coli. The RyhB 90-nt RNA down-regulates a set of iron-storage and iron-using proteins when iron is limiting; it is itself negatively regulated by the ferric uptake repressor protein, Fur (Ferric uptake regulator). RyhB RNA levels are inversely correlated with mRNA levels for the sdhCDAB operon, encoding succinate dehydrogenase, as well as five other genes previously shown to be positively regulated by Fur by an unknown mechanism. These include two other genes encoding enzymes in the tricarboxylic acid cycle, acnA and fumA, two ferritin genes, ftnA and bfr, and a gene for superoxide dismutase, sodB. Fur positive regulation of all these genes is fully reversed in an ryhB mutant. Our results explain the previously observed inability of fur mutants to grow on succinate. RyhB requires the RNA-binding protein, Hfq, for activity. Sequences within RyhB are complementary to regions within each of the target genes, suggesting that RyhB acts as an antisense RNA. In sdhCDAB, the complementary region is at the end of the first gene of the sdhCDAB operon; full-length sdhCDAB message disappears and a truncated message, equivalent in size to the region upstream of the complementarity, is detected when RyhB is expressed. RyhB provides a mechanism for the cell to down-regulate iron-storage proteins and nonessential iron-containing proteins when iron is limiting, thus modulating intracellular iron usage to supplement mechanisms for iron uptake directly regulated by Fur.  相似文献   

7.
This study was performed to compare the expression of key proteins [lipoprotein lipase (LPL), hormone-sensitive lipase (HSL), complement 3 (C3), and peroxisome proliferator-stimulated receptor-gamma (PPAR gamma)] involved in sc abdominal adipose tissue (AT) metabolism of young (n = 13) vs. middle-aged (n = 16) men. The sc abdominal AT-LPL activity as well as fat cell lipolysis were also measured in both groups of men. Young and middle-aged men displayed similar body weight and sc abdominal fat accumulation, measured by computed tomography. However, middle-aged men were characterized by a higher percent body fat (28 +/- 5% vs. 22 +/- 7%; P < 0.05) than young subjects. No difference between groups was observed in sc abdominal adipose tissue LPL activity. On the other hand, maximal lipolytic responses of sc abdominal adipocytes to isoproterenol (beta-adrenergic agonist) or to postadrenoceptor agents such as dibutyryl cAMP, forskolin, and theophylline were lower in middle-aged than in young men (P < 0.05). AT-LPL messenger ribonucleic acid (mRNA) levels were similar regardless of the subject's age. However, HSL, C3, and PPAR gamma mRNA levels were higher in middle-aged than in young individuals (P < 0.01-0.05). After correction for percent body fat, only HSL and C3 mRNA levels remained significantly different between groups (P < 0.05). Taken together, these results suggest that aging has an effect on the up-regulation of HSL and C3 mRNA levels, whereas PPAR gamma expression seems to be related mainly to increased adiposity.  相似文献   

8.
Ticks are among the most important vectors of a wide range of human and animal diseases. During blood feeding, ticks are exposed to an enormous amount of free iron that must be appropriately used and detoxified. However, the mechanism of iron metabolism in ticks is poorly understood. Here, we show that ticks possess a complex system that efficiently utilizes, stores and transports non-heme iron within the tick body. We have characterized a new secreted ferritin (FER2) and an iron regulatory protein (IRP1) from the sheep tick, Ixodes ricinus, and have demonstrated their relationship to a previously described tick intracellular ferritin (FER1). By using RNA interference-mediated gene silencing in the tick, we show that synthesis of FER1, but not of FER2, is subject to IRP1-mediated translational control. Further, we find that depletion of FER2 from the tick plasma leads to a loss of FER1 expression in the salivary glands and ovaries that normally follows blood ingestion. We therefore suggest that secreted FER2 functions as the primary transporter of non-heme iron between the tick gut and the peripheral tissues. Silencing of the fer1, fer2, and irp1 genes by RNAi has an adverse impact on hatching rate and decreases postbloodmeal weight in tick females. Importantly, knockdown of fer2 dramatically impairs the ability of ticks to feed, thus making FER2 a promising candidate for development of an efficient anti-tick vaccine.  相似文献   

9.
10.
Chida D  Miura O  Yoshimura A  Miyajima A 《Blood》1999,93(5):1567-1578
Erythropoietin (EPO) and its cell surface receptor (EPOR) play a central role in proliferation, differentiation, and survival of erythroid progenitors. Signals induced by EPO have been studied extensively by using erythroid as well as nonerythroid cell lines, and various controversial results have been reported as to the role of signaling molecules in erythroid differentiation. Here we describe a novel approach to analyze the EPO signaling by using primary mouse fetal liver hematopoietic cells to avoid possible artifacts due to established cell lines. Our strategy is based on high-titer retrovirus vectors with a bicistronic expression system consisting of an internal ribosome entry site (IRES) and green fluorescent protein (GFP). By placing the cDNA for a signaling molecule in front of IRES-GFP, virus-infected cells can be viably sorted by fluorescence-activated cell sorter, and the effect of expression of the signaling molecule can be assessed. By using this system, expression of cell-survival genes such as Bcl-2 and Bcl-XL was found to enhance erythroid colony formation from colony-forming unit-erythroid (CFU-E) in response to EPO. However, their expression was not sufficient for erythroid colony formation from CFU-E alone, indicating that EPO induces signals for erythroid differentiation. To examine the role of EPOR tyrosine residues in erythroid differentiation, we introduced a chimeric EGFR-EPOR receptor, which has the extracellular domain of the EGF receptor and the intracellular domain of the EPOR, as well as a mutant EGFR-EPOR in which all the cytoplasmic tyrosine residues are replaced with phenylalanine, and found that tyrosine residues of EPOR are essential for erythroid colony formation from CFU-E. We further analyzed the function of the downstream signaling molecules by expressing modified signaling molecules and found that both JAK2/STAT5 and Ras, two major signaling pathways activated by EPOR, are involved in full erythroid differentiation.  相似文献   

11.
Abstract: In a retrospective study the diagnostic value of erythrocyte zinc protoporphyrin (ZPP) measurement as a means of distinguishing iron deficiency anemia from thalassemia syndromes in patients with microcytosis was explored. ZPP values were increased in all patients with iron deficiency and in part of the patients with thalassemia. The combined measurement of erythrocyte mean corpuscular volume (MCV) and ZPP resulted in a correct classification of patients with iron deficiency and with thalassemia in more than 95%. The predictive value of this method is better than the results obtained by using formulae derived from red cell indices. In population screening programs for thalassemia syndromes, in which MCV determination is used as the initial test, the ZPP test is recommended as a second test, in order to discriminate between patients with microcytosis due to iron deficiency and patients with microcytosis due to thalassemia syndromes.  相似文献   

12.
13.
Ponka  P; Schulman  HM 《Blood》1985,65(4):850-857
The inhibition of delta-aminolevulinic acid (ALA) synthase activity by heme is commonly thought to regulate the overall rate of heme synthesis in erythroid cells. However, since heme inhibits erythroid cell uptake of iron from transferrin, we have tested the hypothesis that in reticulocytes heme regulates its own synthesis by controlling the cellular acquisition of iron from transferrin rather than by controlling the synthesis of ALA. We found that hemin added to reticulocytes in vitro inhibits not only the total cell incorporation of 59Fe from transferrin but also the incorporation of [2-14C]-glycine and transferrin-bound 59Fe into heme. However, hemin did not inhibit [2- 14C]-glycine incorporation into protoporphyrin. Furthermore, cycloheximide, which increases the level of non-hemoglobin heme in reticulocytes, also inhibited [2-14C]-glycine into heme but not into protoporphyrin. With high concentrations of ferric pyridoxal benzoylhydrazone (Fe-PBH), which, independent of transferrin and transferrin receptors, can be used as a source of iron for heme synthesis in reticulocytes, significantly more iron is incorporated into heme than from saturating concentrations of Fe-transferrin. This suggests that some step (or steps) in the pathway of iron from extracellular transferrin to protoporphyrin limits the overall rate of heme synthesis in reticulocytes. In addition, hemin in concentrations that inhibit the utilization of transferrin-bound iron for heme synthesis has no effect on the incorporation of iron from Fe-PBH into heme. Our results indicate that in reticulocytes heme inhibits and controls the utilization of iron from transferrin but has no effect on the enzymes of porphyrin biosynthesis and ferrochelatase. This mode of regulation of heme synthesis may be a specific characteristic of the hemoglobin biosynthetic pathway.  相似文献   

14.
Richardson  DR; Ponka  P; Vyoral  D 《Blood》1996,87(8):3477-3488
Succinylacetone (SA) is an inhibitor of heme synthesis that acts on the enzyme delta-aminolevulinic acid dehydratase. When reticulocytes are incubated with 59Fe-transferrin (59Fe-Tf) in the presence of SA, there is an accumulation of 59Fe in the mitochondrion and in a cytosolic non- heme intermediate that has been described as a putative Fe transporter (Adams et al, Biochim Biophys Acta 1012:243, 1989). Considering these observations, the present study was designed to examine the intermediates of Fe metabolism in control and SA-treated reticulocytes. This investigation showed that in the cytosol of control cells, most 59Fe was incorporated into hemoglobin (Hb) with a minor amount entering ferritin. In addition, a previously unrecognized cytosolic intermediate was identified (band X) that was absent when heme synthesis was inhibited with SA. Upon reincubation of SA-treated reticulocytes with protoporphyrin IX, band X initially increased in intensity and then decreased later in the incubation. In contrast, when 59Fe-labeled control cells were reincubated in the presence of SA and unlabeled diferric Tf, there was a marked decrease in the intensity of band X. These experiments suggest that component X may be an intermediate involved in the transfer of heme in the cytosol. Alternatively, these data could also be interpreted as indicating that band X may be a short- lived hemoprotein. We have confirmed the presence of an 59Fe-containing molecule in the cytosol of SA-treated reticulocytes (band Y) that is not present in control cells. However, when cells were incubated with 59Fe-Tf plus SA and then chased in the presence of SA and unlabeled diferric Tf, there was no decrease in this cytosolic pool of Fe, suggesting that it was not a intermediate supplying Fe for either ferritin or heme synthesis. Finally, there is little low molecular weight (Mr) Fe in reticulocytes, and our studies suggest that the low- Mr Fe present does not behave as an intermediate. Moreover, after inhibition of heme synthesis with SA, 59Fe in the low-Mr compartment was markedly decreased, suggesting that this component may be heme or a low-Mr heme-containing molecule. Considering the apparent lack of a cytosolic Fe transporter in rabbit reticulocytes, an alternative model of intracellular Fe transport is proposed that does not implicate a potentially toxic intermediate pool of low-Mr Fe complexes.  相似文献   

15.
Friend murine erythroleukemia cells (MELCs) have been reevaluated in terms of their nature and potential pathways of differentiation. MELC induced with 5 mmol/L hexamethylene bisacetamide (HMBA), in addition to expression of known markers of the erythroid phenotype, were also found to exhibit traits of the megakaryocytic lineage. Erythroid differentiation was shown by the typical synthesis and accumulation of hemoglobin (Hb); megakaryoblastoid differentiation of MELCs upon induction was shown by increased specific activity of acetylcholinesterase (AChE). Incubation of MELCs with 5 mmol/L HMBA in RPMI supplemented with 1% fetal calf serum (FCS) (instead of the usual 5%), induced cells to selectively express high levels of AChE (up to approximately 170 mU/mg protein) with little activation of Hb synthesis (less than 5% B+ cells). The increase in AChE levels was a general phenomenon affecting the whole cell population and approached its maximum within 3 days of incubation with the inducer. Subsequently, MELCs become committed to terminal division, undergoing growth arrest and expression of the megakaryocytic phenotype even after the removal of HMBA. There were no appreciable changes of basal AChE levels in MELCs that were either made resistant to HMBA or treated with 0.1 mmol/L hemin that activated differentiated erythroid function without commitment. Phorbol 12-myristate 13-acetate (PMA), known to repress induced Hb synthesis in these cells, did not prevent the full increase in AChE when incubated with MELCs 2 days before HMBA addition. HMBA- induced MELCs always underwent AChE increase that was more or less pronounced depending on the low or high serum content in culture, respectively. Conversely, Hb expression was permitted only when MELCs were transferred in the late phase or at the end of commitment from low to high serum media. Variations of FCS content in culture media proved to be a simple and reliable approach to change the MELC response to inducers and to modulate expression of either megakaryocytic or mixed erythromegakaryocytic phenotype. These findings suggested that MELC might be considered, at least, as a bipotential model of differentiation to be used for studies on regulation of either megakaryocytic or erythroid markers and on competition between the two hematopoietic lineages. In this regard, it was intriguing that AChE levels attained under selective induction (low serum) were always higher than under conditions allowing coexpression of both AChE and Hb (high serum). Moreover, MELCs were also found to bind the specific rat- antimouse platelet monoclonal antibody 4A5.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

16.
The antiinflammatory action of glucocorticoids is mediated partly by the inhibition of the expression of several cytokines and adhesion molecules. Some activators for nuclear receptors other than the GR have also been shown to inhibit the expression of these inflammatory molecules, although their molecular mechanisms remain unidentified. We therefore examined the effects of the PPARalpha activator fenofibrate and the GR activator dexamethasone on TNFalpha-stimulated expression of IL-6 and vascular cell adhesion molecule-1 in vascular endothelial cells. Both fenofibrate and dexamethasone reduced TNFalpha-induced IL-6 production in human vascular endothelial cells, but only fenofibrate reduced TNFalpha-stimulated vascular cell adhesion molecule-1 expression in these cells. Transient transfection of bovine aortic endothelial cells with an IL-6 promoter construct or a vascular cell adhesion molecule-1 promoter construct revealed that fenofibrate inhibited TNFalpha-induced IL-6 promoter as well as vascular cell adhesion molecule-1 promoter activities, whereas dexamethasone inhibited only the former. EMSA demonstrated that both fenofibrate and dexamethasone reduced nuclear factor-kappaB binding to its recognition site on the IL-6 promoter, but only fenofibrate reduced such binding to the vascular cell adhesion molecule-1 promoter. Thus, down-regulation of nuclear factor-kappaB activity by PPARalpha occurs in both the IL-6 and vascular cell adhesion molecule-1 genes, whereas that by GR occurs only in the IL-6 gene in vascular endothelial cells. These results strongly suggest the existence of a target gene-specific mechanism for the nuclear receptor-mediated down-regulation of nuclear factor-kappaB activity.  相似文献   

17.

Background

Zinc protoporphyrin (ZPP) has been used to screen and manage iron deficiency in individual children, but it has also been recommended to assess population iron status. The diagnostic utility of ZPP used in combination with haemoglobin concentration has not been evaluated in pre-school children. We aimed to a) identify factors associated with ZPP in children aged 12–36 months; b) assess the diagnostic performance and utility of ZPP, either alone or in combination with haemoglobin, to detect iron deficiency.

Methods

We used baseline data from 338 Kenyan children enrolled in a community-based randomised trial. To identify factors related to ZZP measured in whole blood or erythrocytes, we used bivariate and multiple linear regression analysis. To assess diagnostic performance, we excluded children with elevated plasma concentrations of C-reactive protein or α 1-acid glycoprotein, and with Plasmodium infection, and we analysed receiver operating characteristics (ROC) curves, with iron deficiency defined as plasma ferritin concentration < 12 μg/L. We also developed models to assess the diagnostic utility of ZPP and haemoglobin concentration when used to screen for iron deficiency.

Results

Whole blood ZPP and erythrocyte ZPP were independently associated with haemoglobin concentration, Plasmodium infection and plasma concentrations of soluble transferrin receptor, ferritin, and C-reactive protein. In children without inflammation or Plasmodium infection, the prevalence of true iron deficiency was 32.1%, compared to prevalence of 97.5% and 95.1% when assessed by whole blood ZPP and erythrocyte ZPP with conventional cut-off points (70 μmol/mol and 40 μmol/mol haem, respectively). Addition of whole blood ZPP or erythrocyte ZPP to haemoglobin concentration increased the area-under-the-ROC-curve (84.0%, p = 0.003, and 84.2%, p = 0.001, respectively, versus 62.7%). A diagnostic rule (0.038689 [haemoglobin concentration, g/L] + 0.00694 [whole blood ZPP, μmol/mol haem] >5.93120) correctly ruled out iron deficiency in 37.4%–53.7% of children screened, depending on the true prevalence, with both specificity and negative predictive value ≥90%.

Conclusions

In young children, whole blood ZPP and erythrocyte ZPP have added diagnostic value in detecting iron deficiency compared to haemoglobin concentration alone. A single diagnostic score based on haemoglobin concentration and whole blood ZPP can rule out iron deficiency in a substantial proportion of children screened.

Trial registration

ClinicalTrials.gov NCT02073149 (25 February 2014).
  相似文献   

18.
19.
In a search for key molecules that prevent murine M1 leukemia cells from undergoing interleukin (IL)-6-induced differentiation into macrophages, we isolated an antisense complementary DNA (cDNA) that encodes full-length mouse MgcRac-GTPase-activating protein (GAP) through functional cloning. Forced expression of this antisense cDNA profoundly inhibited IL-6-induced differentiation of M1 cells into macrophage lineages. We also isolated a full-length human MgcRacGAP cDNA, which encodes an additional N-terminal polypeptide of 105 amino acid residues compared with the previously published human MgcRacGAP. In human HL-60 leukemic cells, overexpression of the full-length form of human MgcRacGAP alone induced growth suppression and macrophage differentiation associated with hypervacuolization and de novo expression of the myelomonocytic marker CD14. Analyses using a GAP-inactive mutant and 2 deletion mutants of MgcRacGAP indicated that the GAP activity was dispensable, but the myosin-like domain and the cysteine-rich domain were indispensable for growth suppression and macrophage differentiation. The present results indicated that MgcRacGAP plays key roles in controlling growth and differentiation of hematopoietic cells through mechanisms other than regulating Rac GTPase activity.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号