首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The proton NMR transverse relaxation time T(2) of glutamate (Glu) in human brain was measured by means of spectrally selective refocusing at 3.0 T in vivo. An 81.4-ms-long dual-band Gaussian 180 degrees RF pulse, designed for refocusing at 2.35 and 3.03 ppm, was employed within point-resolved spectroscopy (PRESS) to generate the Glu C4-proton target multiplet and the total creatine (tCr) singlet. Six optimal echo times (TEs) between 128 and 380 ms were selected from numerical analysis of the filtering performance for effective detection of the Glu signal with minimal contamination from glutamine (Gln), N-acetylaspartate (NAA), and glutathione (GSH). The magnetization of Glu and tCr was extracted from spectral fitting of experimental and calculated spectra. Apparent T(2) values of Glu and tCr were estimated as 201 +/- 18 and 164 +/- 12 ms for the medial prefrontal (PF) cortex, and 198 +/- 22 and 169 +/- 15 ms (mean +/- SD, N = 5) for the left frontal (LF) cortex, respectively. With water segmentation data, the magnetization values of Glu and tCr of the two adjacent voxels, calculated from the T(2) values and spectra following the thermal equilibrium magnetization, were combined to give the Glu and tCr concentrations as 10.37 +/- 1.06 and 8.87 +/- 0.56 mM for gray matter (GM), and 5.06 +/- 0.57 and 5.16 +/- 0.45 mM (mean +/- SD, N = 5) for white matter (WM), respectively.  相似文献   

2.
A new (1)H-MRS filtering strategy for selective measurement of glycine (Gly) in human brain in vivo at 3.0T is proposed. Investigation of multiple refocusing following a 90 degrees excitation pulse indicated that triple refocusing is most effective for suppression of the strongly coupled resonances of myo-inositol (mI) at the Gly 3.55-ppm resonance. The echo times of the triple refocusing were optimized, with numerical analysis of the filtering performance, as {TE(1), TE(2), TE(3)} = {67, 62, 69} ms. Compared with the 90 degrees -acquired mI signal the mI suppression ratios of the filter were 170 and 1000, in terms of peak amplitude and area, respectively, between 3.51 and 3.59 ppm. From LCModel analyses, using density-matrix calculated spectra as basis functions, the concentration of Gly in parieto-occipital cortex of healthy adults was estimated to be 0.5 +/- 0.1 mM (mean +/- SD, n = 6), with reference to creatine at 8 mM.  相似文献   

3.
This work demonstrates, in solution and in human brain at 3 tesla, that the X(2)-multiplet of the A(2)M(2)X(2) proton spin system of GABA at 2.315 ppm can be readily resolved from that of the overlapping background, particularly the glutamate multiplet, i.e., the PQ multiplet of the glutamate AMNPQ spin system. Prior to experiment, the values of the stimulated echo acquisition mode (STEAM) sequence parameters TE and TM that maximized the GABA-X(2) discrimination from its background (i.e., 168 ms and 28 ms, respectively) were determined numerically. The determination was made by calculating the spectral response of all contributing metabolites to the STEAM sequence throughout TE/TM space. A baseline GABA concentration (mean +/- standard deviation (SD) of the mean) of 0.78 +/- 0.04 mM was estimated from spectra acquired from a 3 x 3 x 3 cm(3) volume in the parieto-occipital cortex of eight normal control subjects. Five of the eight control subjects were also studied 24 hr post-administration of a single dose of 50 mg.kg(-1) vigabatrin. Four of the five showed increases in GABA in the range of 15-120% of their baseline level.  相似文献   

4.
Human brain proton localized NMR spectroscopy in multiple sclerosis   总被引:3,自引:0,他引:3  
Localized proton spectroscopy of the brain was performed on MS patients (n = 18) and the results are compared with those of a control group (n = 17). The experiments were performed in a 1.5-T Siemens Magnetom using the stimulated echo method and selective water suppression. Acquisition parameters were TR/TE/TM = 3000/270/30 ms, NA = 256, and Acq = 13 min. Localized volumes ranged from 8 to about 80 cc. The patients (ages 25 to 66) were at various stages of the disease. Three of the eighteen patients did not show any plaques on the MR images. VOIs were chosen to contain as much plaque volume as possible in the cerebrum white matter. In the controls and in the patients with no plaques, the VOI were localized in similar white matter regions. All spectra were characterized by the presence of Cho (3.2 ppm), PCr + Cr (3.0 ppm), and NAA (2.0 ppm). The ratios NAA/Cho and NAA/(PCr + Cr) were calculated for both the MS and the control group. The results for the three MS patients with no detectable plaques did not differ significantly from the results of the control group. The former group is, however, too limited to draw any conclusion for the moment. For the MRI positive patients, the following values were found (means +/- 1 SD); NAA/Cho = 1.98 +/- 0.33 and NAA/(PCr + Cr) = 2.16 +/- 0.14. In the normals, these values were NAA/Cho = 2.54 +/- 0.39 and NAA/(PCr + Cr) = 2.76 +/- 0.25. The results quoted are TR and TE dependent.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
Glutathione has major roles in removing free radicals and toxins from normal tissues, but its presence in tumor cells hinders the effectiveness of many anticancer therapies. Analysis of short echo time brain tumor (1)H spectra at 1.5 T using a linear combination of metabolite spectra (LCModel) suggested a significant contribution of glutathione to meningioma spectra. By in vivo MRS (TE = 30 ms, TR = 2020 ms), reduced glutathione was found to be significantly elevated in meningiomas (3.3 +/- 1.5 mM, Mann Whitney, P < 0.005) compared to normal white matter (1.2 +/- 0.15 mM) and low-grade gliomas (1.0 +/- 0.26 mM), in agreement with published histofluorescence studies of tumor biopsies. Glx concentrations were also found to be elevated in meningiomas compared to astrocytomas or normal white matter, indicative of metabolic differences. The ability to noninvasively quantify reduced glutathione in vivo may aid selection of treatment therapies and also provide an indication of tumor aggressiveness.  相似文献   

6.
Spectral editing of the GABA spin system is hampered by coediting of macromolecule (MM) coherences. To reduce contamination arising from MMs in spectra edited for GABA, the highest field strength currently available for human experimentation (7 Tesla) and MEGA-based editing were used. Despite judicious choice of experimental parameters, MM contamination was found to arise from field drifts. When the MM contribution was accounted for, [GABA] = 0.75 +/- 0.14 micromol/g (mean +/- SD, N = 16) relative to 8 micromol/g creatine (Cr), whereas without accounting for the MM signal [GABA*] = 0.88 +/- 0.23 micromol/g (mean +/- SD, N = 16). Incorporating the direct experimental assessment of MM contamination to the edited GABA signal substantially reduced the variance of the measurement, resulting in concentrations that were in excellent agreement with previous (13)C labeling experiments.  相似文献   

7.
The transverse relaxation times, T(2), of N-acetylaspartate (NAA), total choline (Cho), and creatine (Cr) obtained at 3T in several human brain regions of eight healthy volunteers are reported. They were obtained simultaneously in 320 voxels with three-dimensional (3D) proton MR spectroscopy ((1)H-MRS) at 1 cm(3) spatial resolution. A two-point protocol, optimized for the least error per given time by adjusting both the echo delay (TE(i)) and number of averages, N(i), at each point, was used. Eight healthy subjects (four males and four females, age = 26 +/- 2 years) underwent the hour-long procedure of four 15-min, 3D acquisitions (TE(1) = 35 ms, N(1) = 1; and TE(2) = 285 ms, N(2) = 3). The results reveal that across all subjects the NAA and Cr T(2)s in gray matter (GM) structures (226 +/- 17 and 137 +/- 12 ms, respectively) were 13-17% shorter than the corresponding T(2)s in white matter (WM; 264 +/- 10 and 155 +/- 7 ms, respectively). The T(2)s of Cho did not differ between GM and WM (207 +/- 17 and 202 +/- 8, respectively). For the purpose of metabolic quantification, these values justify to within +/-10% the previous use of one T(2) per metabolite for 1) the entire brain and 2) all subjects. These T(2) values (which to our knowledge were obtained for the first time at this field, spatial resolution, coverage, and precision) are essential for reliable absolute metabolic quantification.  相似文献   

8.
This contribution reports the first direct and noninvasive observation of cerebral glucose in normal anesthetized rats (n = 16) using short-echo-time localized proton NMR spectroscopy (2.35 T, STEAM, TR = 6000 ms, TE = 20 ms, 125 microliters). In addition to resonances from N-acetyl aspartate (NAA), glutamate, total creatine, cholines, taurine, and myoinositol, all spectra exhibit strongly coupled resonances from glucose (3.43, 3.80 ppm) that are readily identifiable using model solutions. The observed level of cerebral glucose in fasted rats covered a range of 15-40% of that of NAA giving absolute concentrations of 1.1-2.8 mM when NAA is taken to be 7 mM. The arterial blood glucose concentration was 7.7 +/- 0.8 mM in the same group of animals.  相似文献   

9.
A localized proton 2D double-quantum (DQ) spin-echo spectroscopy technique was implemented on 1.5 T clinical MRI scanners for the detection of gamma-aminobutyrate (GABA) in the brain. The 2D approach facilitates separation of peaks overlapping with GABA in 1D DQ-filtered (DQF) spectra. This technique was applied to four normal adult volunteers and four children with intractable epilepsy. The coefficient of variation of the level of GABA and overlapping macromolecules at F2 = 3.0 ppm and F1 = 4.8 ppm was 0.08 in normal subjects. Three patients received 2D MRS scans before and after initiation of the ketogenic diet (KD): one patient showed a trend of decreasing GABA throughout the study, and two patients showed low initial GABA levels that increased over time. In addition to major metabolites and GABA, low-level metabolites (valine, leucine, and glutathione) were also identified in the 2D spectra.  相似文献   

10.
A modified ISIS method, for image-selected localized proton magnetic resonance spectroscopy (1H MRS), was used to determine the ratios and T2 relaxation times of proton metabolites in normal subjects and in patients with chronic infarction and MRI white matter signal hyperintensities (WMSH). First, in patients with cerebral infarctions, increased concentrations of lactate were found in the majority of patients, and N-acetyl aspartate (NAA) was reduced to a significantly greater extent than choline (Cho) or creatine (Cre). For TE = 270 ms, the raw ratios of Cho/NAA, Cre/NAA, and Lac/NAA were significantly (P less than 0.05) increased from 0.23 +/- 0.02 (mean +/- SE), 0.20 +/- 0.01, and 0.05 +/- 0.01, respectively in the normal group to 0.39 +/- 0.08, 0.37 +/- 0.05, and 0.48 +/- 0.15 in the stroke group. Also, the T2 relaxation time of creatine was significantly (P = 0.007) increased from 136 ms in normal white matter to 171 ms in cerebral infarcts. Second, in patients with WMSH, no significant change of the proton metabolite concentrations could be detected with the exception of the choline which was significantly (P = 0.003) altered. The Cho/NAA ratio, after T2 and excitation profile correction, increased from 0.47 +/- 0.02 in the normal group to 0.64 +/- 0.05 in the WMSH group. Third, in normal white matter, the concentration of N-acetyl aspartate, choline, and lactate was estimated to 11.5, 2.0, and 0.6 mM, respectively, by assuming a total creatine concentration of 10 mM.  相似文献   

11.
A point-resolved spectroscopy (PRESS)-localized double quantum filter was implemented on a 1.5T clinical scanner for the estimation of gamma-amino butyric acid (GABA) concentrations in vivo. Several calibrations were found to be necessary for consistent results to be obtained. The apparent filter yield was approximately 38%; filter strength was sufficient to reduce the singlet metabolite peaks in vivo to below the level of the noise. Metabolite-nulled experiments were performed, which confirmed that significant overlap occurred between macromolecule signals and the GABA resonance at 3.1 ppm. Although the multiplet arm at 2.9 ppm was confirmed to be relatively free of contamination with macromolecules, some contribution from these and from peptides is likely to remain; therefore, the term GABA+ is used. GABA+ concentrations were estimated relative to creatine (Cr) at the same echo time (TE) in a group of controls, studied on two occasions. The GABA+ concentration in 35-ml regions of interest (ROIs) in the occipital lobe was found to be 1.4 +/- 0.2 mM, with scan-rescan repeatability of 38%.  相似文献   

12.
A method for measuring brain gamma-amino butyric acid (GABA) levels is presented that combines 2D J-resolved magnetic resonance spectroscopy (J-MRS) techniques with chemical-shift imaging (2D-JMRSI) at 4 Tesla (T). The results of phantom and in vivo experiments agree well in demonstrating that the (2)CH(2) GABA resonance situated at 2.97 ppm can be resolved from the neighboring creatine (Cr) resonance at 3.03 ppm and quantified. Single-voxel, J-resolved standard and metabolite-nulled in vivo experiments on six healthy subjects reveal a broad component from the underlying macromolecules (MM) that resonates at and around 3.00 ppm, which is estimated to contribute approximately 15% to the J-resolved GABA resonance in this large voxel at a repetition time (TR) of 4.5 s. With our 2D-JMSRI at 1.25 s TR, the macromolecule resonance contribution to our GABA measurements is approximated to be 12%. Six healthy human subjects underwent scanning at 4T with this sequence, yielding a global brain GABA concentration of 0.76 +/- 0.20 mM after correction for 12% macromolecule contribution.  相似文献   

13.
Magnetic resonance images were obtained from 32 patients with acute myocardial infarction, using a four-echo technique (echo time (TE) = 30, 60, 90, and 120 ms) pregadolinium(Gd)-DTPA injection and a TE = 30 ms sequence pre- and post-Gd-DTPA. Intensity ratios of infarcted and normal myocardium were calculated, as were contrast-to-noise and signal-to-noise ratios. The four intensity ratios pre-Gd-DTPA were 1.20 +/- 0.15, 1.42 +/- 0.22, 1.78 +/- 0.38, and 1.99 +/- 0.60 for TE = 30, 60, 90, and 120 ms, respectively, and 1.42 +/- 0.19 post-Gd-DTPA (p = NS for post-Gd-DTPA vs TE = 60, p = 0.007 for TE = 90 vs TE = 120, p less than 0.0001 for all other comparisons). The four contrast-to-noise ratios pre-Gd-DTPA were 1.69 +/- 0.97, 2.69 +/- 1.13, 3.17 +/- 1.15, and 2.90 +/- 1.09 for TE = 30, 60, 90, and 120 ms, respectively, and 2.71 +/- 1.26 post-Gd-DTPA (p = NS for post-Gd-DTPA vs TE = 60, 90, and 120, p = NS for TE = 120 vs TE = 60 and 90, p less than 0.01 for all other comparisons). The four signal-to-noise ratios pre-Gd-DTPA were 8.67 +/- 1.47, 6.52 +/- 0.76, 5.20 +/- 0.64, 4.17 +/- 0.53 for TE = 30, 60, 90, and 120 ms, respectively, and 9.17 +/- 1.92 post-Gd-DTPA (p = 0.03 for post-Gd-DTPA vs TE = 30, p less than 0.0001 for all other comparisons). In conclusion, the detectabilities of acute myocardial infarction were similar at TE = 60 ms and at Gd-DTPA enhanced short-TE MR imaging. However, image quality proved to be superior using the Gd-DTPA enhanced short-TE technique.  相似文献   

14.
A proton MR spectral editing technique employing a spatially localized, double-quantum filter (DQF) was used to measure γ-aminobutyric acid (GABA) in the human brain at 1.5 T. The double-quantum method provided robust, single-shot suppression of uncoupled resonances from choline, creatine, and NAA and allowed detection of the γCH2 GABA (3.0 ppm) resonance with 30% efficiency. Spatial localization of the GABA measurement was achieved by incorporating PRESS localization within the double-quantum excitation and detection sequence. A calibration technique was developed to adjust the relative phases of the RF pulses to maximize the in vivo double-quantum detection efficiency for an arbitrary voxel location. The sequence efficiency, degree of suppression of uncoupled resonances, and characterization of the in vivo DQF technique was examined in phantom experiments and in a study of the occipital lobe of 10 normal subjects. The ratio of the 3.0-ppm GABA resonance to the 3.0-ppm creatine resonance was found to be 0.20 ± 0.05 (SD).  相似文献   

15.
PURPOSE: To determine relaxation times of metabolite signals in proton magnetic resonance (MR) spectra of immature brain, which allow a correction of relaxation that is necessary for a quantitative evaluation of spectra acquired with long TE. Proton MR spectra acquired with long TE allow a better definition of metabolites as N-acetyl aspartate (NAA) and lactate especially in children. MATERIALS AND METHODS: Relaxation times were determined in the basal ganglia of 84 prematurely born infants at a postconceptional age of 37.8 +/- 2.2 (mean +/- SD) weeks. Metabolite resonances were investigated using the double-spin-echo volume selection method (PRESS) at 1.5 T. T1 was determined from intensity ratios of signals obtained with TRs of 1884 and 6000 msec, measured at 3 TEs (25 msec, 136 msec, 272 msec). T2 was determined from signal intensity ratios obtained with TEs of 136 msec and 272 msec, measured at 2 TR. Taking only long TEs reduced baseline distortions by macromolecules and lipids. For myo-inositol (MI), an apparent T2 for short TE was determined from the ratio of signals obtained with TE = 25 msec and 136 msec. Intensities were determined by fitting a Lorentzian to the resonance, and by integration. RESULTS: Relaxation times were as follows: trimethylamine-containing compounds (Cho): T1 = 1217 msec/T2 = 273 msec; total creatine (Cr) at 3.9 ppm: 1010 msec/111 msec; Cr at 3.0 ppm: 1388 msec/224 msec; NAA: 1171 msec/499 msec; Lac: 1820 msec/1022 msec; MI: 1336 msec/173 msec; apparent T2 at short TE: 68 msec. CONCLUSION: T1 and T2 in the basal ganglia of premature infants do not differ much from previously published data from basal ganglia of older children and adults. T2 of Cho was lower than previous values. T2 of Cr at 3.9 ppm and Lac have been measured under different conditions before, and present values differ from these data.  相似文献   

16.
目的:探讨头颈部良性神经源性肿瘤在单体素^1H MRS上的表现特点。材料和方法:共收集经单体素。HMRS检查,并经手术病理证实的头颈部神经源性肿瘤14例(神经鞘瘤11例,神经纤维瘤2例,颈动脉体瘤1例)。采用点分析波谱法(PRESS:TE=144ms,14例)和激励回波法(STEAM:TE=30ms,11例)进行。HMRS空间定位,以胆碱和脂质代谢物为标准评价所有肿瘤。波谱图上,胆碱和脂质分别在3.2ppm和0.9—1.4ppm区域识别。结果:采用PRESS后,14例神经源性肿瘤中检测出胆碱代谢物者11例,检出脂质代谢物者6例。胆碱和脂质代谢物同时检出者5例,仅检出胆碱者6例,仅检出脂质者1例,胆碱和脂质均未检出者2例。采用STEAM后,11例肿瘤中检出胆碱代谢物和脂质者分别为3例和8例。结论:头颈部良性神经源性肿瘤的单体素。HMRS表现具有多样性,多数肿瘤以长TEPRESS上胆碱峰的显示为特点,长TEPRESS能较STEAM更好地检出良性神经源性肿瘤内的胆碱代谢物。  相似文献   

17.
A single-voxel proton NMR J-difference editing method for discriminating between the 1.31 ppm resonances of lactate (Lac) and threonine (Thr) in human brain in vivo at 3 T is reported. One double-band and two triple-band Gaussian 180 degrees RF pulses, all with a bandwidth of 15 Hz, were employed within an adiabatic-refocused double-echo localization sequence to induce the target signals of Lac and Thr and simultaneously acquire a creatine singlet in each subscan. The optimum echo time and the editing efficiency were obtained by numerical analysis of the filtering performance. The Lac and Thr signals were extracted, without lipid contamination, from three subspectra. Using the calculated yields, the concentrations of Lac and Thr in the human occipital cortex were estimated to be 0.47+/-0.07 and 0.56+/-0.06 mM (mean+/-SD, N=7), respectively, with reference to Cr at 8 mM.  相似文献   

18.
RATIONALE AND OBJECTIVES: The magnitude of iron-induced susceptibility changes in gradient echo T2*-weighted magnet resonance imaging (T2* MRI) increases with the field strength and should increase the sensitivity for detection of cerebral microbleeds (CMBs) at 3.0 T. To test these hypotheses, we prospectively examined individuals with documented CMBs at 1.5 and 3.0 T. MATERIALS AND METHODS: Five hundred fifty elderly individuals, who participated in an interdisciplinary study of healthy aging, were examined at 3.0 T using T2* MRI sequences (repetition time [TR]/echo time [TE]/flip angle [FA] = 573 ms/16 ms/18 degrees ). Individuals positive for CMBs were asked to undergo an additional examination at 1.5 T (TR/TE/FA = 663 ms/23 ms/18 degrees ). Images were analyzed independently by two observers. CMBs were counted throughout the brain and were qualitatively analyzed comparing the degree of visible hypointensity on a 5-point scale from 1 (complete signal loss) to 5 (no detection) for both field strengths. Contrast-to-noise ratio of CMBs to surrounding brain tissue was calculated. RESULTS: At 3.0 T, CMBs were detected in 45 of 550 individuals; 25 agreed to an additional examination at 1.5 T. In this group (n = 25), a total of 53 CMBs were detected at 3.0 T, compared to 41 CMBs at 1.5 T. The mean contrast-to-noise ratio of CMBs was significantly increased at 3.0 T compared to 1.5 T (27.4 +/- 8.2 vs. 17.4 +/- 8.0; p < .001). On qualitative analysis, visibility of CMBs was ranked significantly higher at 3.0 T (1.3 +/- 0.4 vs. 2.9 +/- 1.1; p < .001). CONCLUSION: Evidence of past microbleeds may even be found in neurologically normal elderly individuals by MRI. Detection rate and visibility of CMBs benefit from the higher field strength, resulting in a significantly improved depiction of iron-containing brain structures (CMBs) at 3.0 T with potential clinical relevance.  相似文献   

19.
Brain GABA editing without macromolecule contamination.   总被引:3,自引:0,他引:3  
A new scheme is proposed to edit the 3.0 ppm GABA resonance without macromolecule (MM) contamination. Like previous difference spectroscopy approaches, the new scheme manipulates J-modulation of this signal using a selective editing pulse. The elimination of undesirable MM contribution at 3.0 ppm is obtained by applying this pulse symmetrically about the J-coupled MM resonance, at 1.7 ppm, in the two steps of the editing scheme. The effectiveness of the method is demonstrated in vitro, using lysine to mimic MM, and in vivo. As compared to the most commonly used editing scheme, which necessitates the acquisition and processing of two distinct difference spectroscopy experiments, the new scheme offers a reduction in experimental time (-33%) and an increase in accuracy. Magn Reson Med 45:517-520, 2001.  相似文献   

20.
This paper describes a new method for diffusion imaging of the human brain in vivo that is based on a combination of diffusion-encoding gradients with high-speed STEAM MR imaging. The single-shot sequence 90 degrees-TE/2-90 degrees-TM-(alpha-TE/2-STE)n generates n = 32-64 differently phase-encoded stimulated echoes STE yielding image acquisition times of 576 ms for a 48 x 128 data matrix. Diffusion encoding is performed during the first TE/2-interval as well as during each readout period. Phantom studies reveal a quantitative agreement of calculated diffusion coefficients with literature values. EKG triggering completely eliminates motion artifacts from diffusion-weighted single-shot STEAM images of human brain in vivo. While signal attenuation of the cerebrospinal fluid (CSF) is predominantly due to flow, that observed for gray and white matter results from diffusion. Evaluated diffusion coefficients yield (1.0 +/- 0.1) x 10(-5) cm2 s-1 for gray matter, (0.5 +/- 0.1) x 10(-5) cm2 s-1 for white matter with the diffusion encoding parallel to the main orientation of the myelin sheath of the neurofibrils, and (0.3 +/- 0.1) x 10(-5) cm2 s-1 for white matter and a perpendicular orientation. All studies were performed at 2.0 T using a conventional 10 mT m-1 gradient system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号