首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Purpose We comprehensively evaluated genetic variants in DNA repair genes with premenopausal breast cancer risk. Methods In this nested case–control study of 239 prospectively ascertained premenopausal breast cancer cases and 477 matched controls within the Nurses’ Health Study II, we evaluated 1,463 genetic variants in 60 candidate genes across five DNA repair pathways, along with DNA polymerases, Fanconi Anemia complementation groups, and other related genes. Results Four variants were associated with breast cancer risk with a significance level of <0.01; two in the XPF gene and two in the XRCC3 gene. An increased risk was found in those harboring a greater number of missense putative risk alleles (a priori defined in an independent study) in the non-homologous end-joining (NHEJ) repair pathway of double-strand breaks (odds ratio (OR) per risk allele, 1.37 (95% confidence interval (CI), 1.03–1.82), P trend, 0.03). Conclusions This study implicates variants of genes in the double-strand break repair pathway in the etiology of premenopausal breast cancer. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

2.
Genetic polymorphisms in DNA repair genes and risk of lung cancer   总被引:47,自引:0,他引:47  
Polymorphisms in DNA repair genes may be associated with differences in the repair efficiency of DNA damage and may influence an individual's risk of lung cancer. The frequencies of several amino acid substitutions in XRCC1 (Arg194Trp, Arg280His and Arg399Gln), XRCC3 (Thr241Met), XPD (Ile199Met, His201Tyr, Asp312Asn and Lys751Gln) and XPF (Pro379Ser) genes were studied in 96 non-small-cell lung cancer (NSCLC) cases and in 96 healthy controls matched for age, gender and cigarette smoking. The XPD codon 312 Asp/Asp genotype was found to have almost twice the risk of lung cancer when the Asp/Asn + Asn/Asn combined genotype served as reference [odds ratio (OR) 1.86, 95% confidence interval (CI), 1.02-3.40]. In light cigarette smokers (less than the median of 34.5 pack-years), the XPD codon 312 Asp/Asp genotype was more frequent among cases than in controls and was associated with an increased risk of NSCLC. Compared with the Asn/Asn carriers, the OR in light smokers with the Asp/Asn genotype was 1.70 (CI0.35 0.43-6.74) and the OR in those with the Asp/Asp genotype was 5.32 (CI0.35-21.02) (P trend = 0.01). The 312 Asp/Asp genotype was not associated with lung cancer risk in never-smokers or heavy smokers (>34.5 pack-years). The XPD-312Asp and -751Lys polymorphisms were in linkage disequilibrium in the group studied; this finding was further supported by pedigree analysis of four families from Utah. The XPD 312Asp amino acid is evolutionarily conserved and is located in the seven-motif helicase domain of the RecQ family of DNA helicases. Our results indicate that these polymorphisms in the XPD gene should be investigated further for the possible attenuation of DNA repair and apoptotic functions and that additional molecular epidemiological studies are warranted to extend these findings.  相似文献   

3.
Genetic polymorphisms and risk of breast cancer.   总被引:2,自引:0,他引:2  
  相似文献   

4.
PURPOSE: Genetic polymorphisms of DNA repair genes seem to determine the DNA repair capacity, which in turn may affect the risk of breast cancer. To evaluate the role of genetic polymorphisms of DNA repair genes in breast cancer, we conducted a hospital-based case-control study of Korean women. EXPERIMENTAL DESIGN: We included 872 incident breast cancer cases and 671 controls recruited from several teaching hospitals in Seoul from 1995 to 2002. Twelve loci of selected DNA repair genes were genotyped by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (XRCC2 Arg188His, XRCC4 921G > T, XRCC6 1796G > T, LIG4 1977T/C, RAD51 135G > C, 172G > T, RAD52 2259C > T, LIG1 551A > C, ERCC1 8092A > C, 354C > T, hMLH1 -93G > A, and Ile219Val). RESULTS: We found that the RAD52 2259 CT or TT, hMLH1 -93 GG, and ERCC1 8092 AA genotypes were associated with breast cancer risk after adjustment for known risk factors [odds ratio (OR), 1.33; 95% confidence interval (95% CI), 1.02-1.75; OR, 1.31; 95% CI, 0.99-1.74; and OR, 0.58; 95% CI, 0.38-0.89, respectively]. When Bonferroni's method was used to correct for multiple comparisons for nine polymorphisms with P = 0.005, all of these associations were not significant. However, the effects of RAD52 2259 CT or TT and ERCC1 354 CT or TT genotypes were more evident for the estrogen/progesterone receptor-negative cases (OR, 2.03; 95% CI, 1.24-3.34 and OR, 1.99; 95% CI, 1.35-2.94, respectively). CONCLUSION: Our findings suggest that genetic polymorphisms of RAD52, ERCC1, and hMLH1 may be associated with breast cancer risk in Korean women.  相似文献   

5.
FAS and FAS ligand (FASL) play key roles in apoptotic signaling and down-regulation of this pathway may facilitate tumorigenesis. Alterations in apoptosis genes may affect cancer risk by influencing individual susceptibility to environmental carcinogens. Using a population-based breast cancer case-control study on Long Island, New York, we examined whether polymorphisms in FAS and FASL modified the association between breast cancer risk and a marker of environmental exposures, polycyclic aromatic hydrocarbon (PAH)-DNA adducts. We examined polymorphisms in FAS (5' UTR -1377G/A and 5' UTR -670G/A) and FASL (5' UTR -844C/T) in 1053 breast cancer cases and 1102 population-based controls. There was no significant association between these genetic polymorphisms and breast cancer risk. The presence of at least one variant allele (GA or AA) in FAS1377 was associated with a 36% increase in breast cancer risk among those with detectable PAH-DNA adduct levels [odds ratio (OR) = 1.36, 95% confidence interval (CI) = 1.01-1.83]. In addition, lactation history significantly modified the association between FAS1377 and FAS670 genetic variants and breast cancer risk (OR = 1.46, 95% CI = 1.04-2.06 and OR = 1.71, 95% CI = 1.13-1.58, respectively, in those who ever lactated compared with those who did not with the wild-type alleles). Overall, this study suggests that the risk of breast cancer may be elevated among women with polymorphisms in the FAS gene and detectable PAH-DNA adducts.  相似文献   

6.
The impact of genetic variants in telomere pathway genes on telomere length and breast cancer survival remains unclear. We hypothesized that telomere length and genetic variants of telomere pathway genes are associated with survival among breast cancer patients. A population-based cohort study of 1,026 women diagnosed with a first primary breast cancer was conducted to examine telomere length and 52 genetic variants of 9 telomere pathway genes. Adjusted Cox regression analysis was employed to examine associations between telomere length, genetic variants and all-cause and breast cancer-specific mortality. Longer telomere length was significantly correlated with all-cause mortality in the subgroup with HER-2/neu negative tumors (HR=1.90, 95% CI: 1.12-3.22). Carrying the PINX1-33 (rs2277130) G-allele was significantly associated with increased all-cause mortality (HR=1.45, 95% CI: 1.06-1.98). Three SNPs (TERF2-03 rs35439397, TERT-14 rs2853677, and TERT-67 rs2853669) were significantly associated with reduced all-cause mortality. A similar reduced trend for breast cancer-specific mortality was observed for carrying the TERT-14 (rs2853677) T-allele (HR=0.57, 95% CI: 0.39-0.84), while carrying the POT1-18 (rs1034794) T-allele significantly increased breast cancer-specific mortality (HR=1.48, 95% CI: 1.00-2.19). However, none of the associations remained significant after correction for multiple tests. A significant dose-response effect was observed with increased number of unfavorable alleles/genotypes (PINX1-33 G-allele, POT1-18 T-allele, TERF2-03 GG, TERT-14 CC, and TERT-67 TT genotypes) and decreased survival. These data suggest that unfavorable genetic variants in telomere pathway genes may help to predict breast cancer survival.  相似文献   

7.
Chen X  Xiang YB  Long JR  Cai H  Cai Q  Cheng J  Wen W  Gao YT  Zheng W  Shu XO 《Cancer》2012,118(13):3356-3364

BACKGROUND:

Obesity is associated with circulating levels of adiponectin and leptin and endometrial cancer risk. Little is known about whether single nucleotide polymorphisms (SNPs) in the genes that encode adiponectin (ADIPOQ), leptin (LEP), adiponectin receptor 1 (ADIPOR1), adiponectin receptor 2 (ADIPOR2), and leptin receptor (LEPR) are associated with endometrial cancer.

METHODS:

The authors selected 87 tagging SNPs to capture common genetic variants in these 5 genes. These SNPs were evaluated in 1028 endometrial cancer cases and 1932 community controls recruited from Chinese women. Logistic regression models were used to estimate odds ratios (ORs) and 95% confidence intervals (95% CIs).

RESULTS:

Three of the 10 SNPs evaluated in the ADIPOQ gene were significantly associated with reduced cancer risk. The OR for women homozygous for the minor allele (A/A) for rs3774262 was 0.68 (95% CI, 0.48‐0.97) compared with women homozygous for the major allele (G/G). Similar results were found for SNPs rs1063539 and rs12629945 in ADIPOQ, which were in linkage disequilibrium with rs3774262. These associations became nonsignificant after Bonferroni correction was applied. Controls with the minor allele A at rs3774262 had lower weight, smaller waist and hip circumferences, and lower body mass index than controls with the major allele G (all P < .05). Women homozygous for the minor allele (T/T) of rs2071045 in the LEP gene also had significantly lower risk (OR, 0.70; 95% CI, 0.54‐0.90) than women homozygous for the major allele (C/C). No other SNPs in the LEP, ADIPOR1, ADIPOR2, or LEPR genes were found to be associated with cancer risk.

CONCLUSIONS:

Although a chance finding cannot be ruled out, the consistency of findings for gene‐endometrial cancer risk and gene‐obesity measurements suggests that genetic polymorphisms in the ADIPOQ gene may play a role in endometrial cancer development. Cancer 2011. © 2011 American Cancer Society.  相似文献   

8.
DNA repair function is believed to play an important role in cancer development and to be affected by genetic polymorphisms. Numerous epidemiological studies have examined the associations between single nucleotide polymorphisms (SNPs) in the DNA repair genes and lung cancer risk, but the results are inconsistent. The aim of this study was to investigate the associations of several SNPs in the DNA repair pathways and risk of non-small cell lung cancer (NSCLC) in a Chinese population. The study included 581 NSCLC cases and 603 healthy controls. The polymorphisms studied include XRCC1 (rs25487), hOGG1 (rs1052133), MUTYH (rs3219489) in the base excision repair (BER) pathway, XPA (rs1800975), ERCC2 (rs1799793 and rs13181) in the nucleotide excision repair (NER) pathway and XRCC3 (rs861539) in the double strand break repair (DSB) pathway. The associations between lung cancer risk and genetic polymorphisms were evaluated using the logistic regression models and subgroup analyses. Meta-analyses were conducted for the SNPs shown to be significantly associated with lung cancer risk in our study. Our findings showed that XPA −4G>A (rs1800975) had a significant association with lung cancer (OR = 1.64; 95% CI: 1.03-2.60), and the association was more evident in squamous cell carcinoma (OR = 1.69; 95% CI: 1.00-2.84). Three BER polymorphisms showed no independent effects on the risk of lung cancer. The stratified analysis showed higher lung cancer risk among the smokers carrying the variant XPA allele (OR = 1.75; 95% CI: 1.15-2.65) and among the non-smokers carrying the variant ERCC2 allele of 312Asn (OR = 2.10; 95% CI: 1.22-3.64). Meta-analysis showed that individuals with the variant AA genotype of XPA (−4G>A) had higher risk of lung cancer compared to those with the ‘G’ wild allele (OR = 1.28; 95% CI: 1.12-1.47); and those with variant alleles of ERCC2 312Asn had higher risk compared to those with wild 312Asp alleles among nonsmokers (OR = 1.58; 95% CI: 1.20-2.08). Although smoking is the dominant risk factor of lung cancer, XPA −4G>A (rs1800975) is also associated with the risk of NSCLC, especially for squamous cell carcinoma, among Asian young smokers. ERCC2 Asp/Asn (rs1799793) polymorphism may also affect lung cancer risk among nonsmokers. The NER pathway seems to have more strong influences on lung cancer than the BER pathway.  相似文献   

9.
To evaluate the role of genetic polymorphisms of ataxia telangiectasia mutated (ATM) in the etiology of breast cancer, a hospital-based case-control study was conducted in Korea. Nine-hundred ninety-six histologically confirmed incident breast cancer cases and 1,181 cancer-free controls were recruited in Seoul between 1995 and 2003. Genotypes of the ATM polymorphisms-5144A > T, IVS21 + 1049T > C, IVS33 - 55T > C, IVS34 + 60G > A, and 3393T > G were determined by the 5'-nuclease assay. Individual haplotypes were estimated from genotype data by a Bayesian method. Five ATM alleles were found to be in strong linkage disequilibrium (D' > 0.82; P < 0.001). Haplotype frequencies were significantly different between cases and controls (chi2 test, P < 0.001). The ATM IVS21 + 1049 TC or CC, IVS34 + 60 GA or AA, and 3393 TG or GG genotypes were associated with increased breast cancer risk, particularly in premenopausal women [odds ratios (OR), 1.51; 95% confidence interval (CI), 1.11-2.05; OR, 1.42; 95% CI, 1.08-1.88; and OR, 1.37; 95% CI, 1.04-1.80, respectively]. Compared with diploid of TCCAG:TCCAG, the most common haplotype, the ATTGT:ATTGT was associated with decreased risk of breast cancer with borderline significance (OR, 0.77; 95% CI, 0.58-1.04) and TCCAG:ATCGT and ATTGT:ACCAG were associated with increased breast cancer risk (OR, 2.30; 95% CI, 1.18-4.48 and OR, 2.43; 95% CI, 1.1.07-5.52, respectively) after adjusting for age, education, age at first full-term pregnancy, parity, family history of breast cancer, alcohol consumption, and smoking. As the number of ATTGT haplotype decreased, the risk of breast cancer increased (P for trend < 0.01). Our results thus suggest that genetic polymorphisms of ATM play an important role in the development of breast cancer in Korean women.  相似文献   

10.
Population-based studies have reported significant associations between specific genetic polymorphisms and breast cancer susceptibility. A number of studies have demonstrated that common variants of genes involved in the DNA repair pathway act as low penetrance breast cancer susceptibility alleles. We aimed to investigate the association of single nucleotide polymorphisms (SNPs) in the DNA repair genes XRCC1, XRCC2 and XRCC3 and breast cancer in MASTOS, a population-based case–control study of 1,109 Cypriot women with breast cancer diagnosed between 40 and 70 years and 1,177 age-matched healthy controls. Five coding SNPs were genotyped including rs1799782, rs25489 and rs25487 in XRCC1, rs3218536 in XRCC2 and rs861539 in XRCC3. Homozygous XRCC1 280His carriers had an increased risk of breast cancer (odds ratio 4.68; 95% CI 1.01–21.7; P = 0.03). The XRCC2 188His allele was associated with a marginal protective effect for breast cancer (odds ratio 0.79; 95% CI 0.62–1.00; P = 0.05). No significant associations were observed between the other three SNPs and breast cancer. This study suggests that genetic variation in SNPs in XRCC1 and XRCC2 genes may influence breast cancer susceptibility.  相似文献   

11.
Mistakes in DNA repair can result in sustained damage and genetic instability. We comprehensively evaluated common variants in DNA repair pathway genes for their association with postmenopausal breast cancer risk with and without respect to estrogen receptor (ER) and progesterone receptor (PR) subtypes. In this study of 1,145 prospectively ascertained breast cancer cases and 1,142 matched controls from the Nurses’ Health Study Cancer Genetic Markers of Susceptibility project, we evaluated 1,314 common genetic variants in 68 candidate genes. These variants were chosen to represent five DNA repair pathways including base excision repair, nucleotide excision repair, double-strand break repair (homologous recombination and non-homologous end-joining), direct reversal repair, and mismatch repair, along with candidate DNA polymerases, Fanconi Anemia complementation groups, and other genes relevant to DNA damage recognition and response. Main effects, pathway effects, and pair-wise interactions were evaluated using Logistic Regression, and the Admixture Maximum Likelihood (AML) and Kernel Machine tests. Eight linked loci within XRCC4 were associated with susceptibility to PR− breast cancer (main effect p-values corrected for multiple testing at the within-gene level < 0.04). These loci drove the association between the non-homologous end-joining pathway, and PR− breast cancer (AML p-value for the full pathway = 0.002; p-value when the eight loci were removed = 0.86). A Kernel machine test of no linear or quadratic effects, or pairwise interaction, yielded a p-value of 0.85. Common variation alone in DNA repair genes plays at most a small role in determining postmenopausal breast cancer risk among women of European ancestry.  相似文献   

12.
Base excision repair (BER) and nucleotide excision repair (NER) pathways repair damaged DNA, and polymorphisms in these genes might affect breast cancer susceptibility. We evaluated associations between seven single-nucleotide polymorphisms in four DNA repair genes (ERCC4 rs1799801, XPC rs2227998, rs2228001, rs2228000, OGG1 rs1052133 and XRCC1 rs25487 and rs25486) and breast cancer risk, examining modification by smoking and alcohol consumption, using data from the Western New York Exposures and Breast Cancer Study. Women aged 35-79 years with incident breast cancer (n = 1170) and age- and race-matched controls (n = 2115) were enrolled. Genotyping was performed using matrix-assisted laser desorption ionization time-of-flight mass spectrometry. Unconditional logistic regression was used to estimate odds ratios (OR) and 95% confidence intervals (CIs). No significant associations were observed in premenopausal women. Among postmenopausal women, rs25487 and rs25486 (OR = 1.24; 95% CI 1.01-1.51 and OR = 1.23; 95% CI 1.01-1.49, respectively, for combined heterozygous and homozygous variant compared with reference) were associated with increased risk of breast cancer. Postmenopausal women carrying the variant allele of the synonymous XPC polymorphism (rs2227998) were also at borderline significantly increased risk (OR = 1.24; 95% CI 1.01-1.52, heterozygous variant compared with reference; OR = 1.22; 95% CI 1.01-1.48, for combined heterozygous and homozygous variant compared with reference). There was no evidence of genotype-smoking and genotype-alcohol consumption interactions for pre- and postmenopausal women. These results indicate that some of the variants in BER and NER genes may influence risk of postmenopausal breast cancer.  相似文献   

13.
Previous research demonstrates increased prostate cancer risk for pesticide applicators and pesticide manufacturing workers. Although underlying mechanisms are unknown, human biomonitoring studies indicate increased genetic damage (e.g. chromosomal aberrations) with pesticide exposure. Given that the nucleotide excision repair (NER) pathway repairs a broad range of DNA damage, we evaluated interactions between pesticide exposure and 324 single-nucleotide polymorphisms (SNPs) tagging 27 NER genes among 776 prostate cancer cases and 1444 male controls in a nested case-control study of white Agricultural Health Study pesticide applicators. We determined interaction P values using likelihood ratio tests from logistic regression models and three-level pesticide variables (none/low/high) based on lifetime days of use weighted to an intensity score. We adjusted for multiple comparisons using the false discovery rate (FDR) method. Of the 17 interactions that met FDR <0.2, 3 displayed a monotonic increase in prostate cancer risk with increasing exposure in one genotype group and no significant association in the other group. Men carrying the variant A allele at ERCC1 rs2298881 exhibited increased prostate cancer risk with high versus no fonofos use [odds ratio (OR) 2.98; 95% confidence interval (CI) 1.65-5.39; P(interact) = 3.6 × 10(-4); FDR-adjusted P = 0.11]. Men carrying the homozygous wild-type TT genotype at two correlated CDK7 SNPs, rs11744596 and rs2932778 (r(2) = 1.0), exhibited increased risk with high versus no carbofuran use (OR 2.01; 95% CI 1.31-3.10 for rs11744596; P(interact) = 7.2 × 10(-4); FDR-adjusted P = 0.09). In contrast, we did not observe associations among men with other genotypes at these loci. While requiring replication, our findings suggest a role for NER genetic variation in pesticide-associated prostate cancer risk.  相似文献   

14.
We evaluated the association between 21 polymorphisms in hormone and DNA repair pathway genes and survival among 454 Australian women diagnosed with invasive epithelial ovarian cancer. The cohort was followed for mortality using personal identifiers which were linked to state cancer registry records and the Australian National Death Index. The mean follow-up time after ovarian cancer diagnosis was 4.63 years (all women) and 8.07 years for the censored group (those alive or dead from non-ovarian cancer causes). Two hundred and eighty-eight (63%) ovarian cancer deaths occurred during the follow-up period. No association was observed for the vast majority of polymorphisms, but there was suggestive evidence for altered risk of ovarian cancer death associated with the CYP17 5'UTR C allele (HR 1.30; 95% CI=1.02-1.68, p= 0.04), and for the SRD5A2 V89L C allele (HR 0.79; 95% CI=0.62-1.01, p=0.06). These results are interesting given tentative evidence that both of these variants are also associated with increased predisposition to ovarian cancer in our extended Australian study, and in other published studies. However, given the marginal significance of these associations and the large number of tests performed, independent replication will be necessary to validate these novel findings.  相似文献   

15.
Genetic variants in epigenetic genes and breast cancer risk   总被引:3,自引:0,他引:3  
Epigenetic events, resulting changes in gene expression capacity, are important in tumour progression, and variation in genes involved in epigenetic mechanisms might therefore be important in cancer susceptibility. To evaluate this hypothesis, we examined common variants in 12 genes coding for DNA methyltransferases (DNMT), histone acetyltransferases, histone deacetyltransferases, histone methyltrasferases and methyl-CpG binding domain proteins, for association with breast cancer in a large case-control study (N cases = 4474 and N controls = 4580). We identified 63 single nucleotide polymorphisms (SNPs) that efficiently tag all the known common variants in these genes, and are also expected to tag any unknown SNP in each gene. We found some evidence for association for six SNPs: DNMT3b-c31721t [P (2 df) = 0.007], PRDM2-c99243 t [P (2 df) = 0.03] and t105413c [P-recessive = 0.05], EHMT1-g-9441a [P (2df) = 0.05] and g41451t (P-trend = 0.04), and EHMT2-S237S [P (2df) = 0.04]. The most significant result was for DNMT3b-c31721t (P-trend = 0.124 after adjusting for multiple testing). However, there were three other results with P < 0.05. The permutation-based probability of this occurring by chance was 0.335. These significant SNPs were genotyped in 75 human cancer cell lines from different tumour types to assess if there was an association between them and six epigenetic measures. No statistically significant association was found. However, a trend was observed: homozygotes for the rare alleles of the EHMT1, EHMT2 and PRDM2 had a mean value for both trimethylation of K9 and K27 of histone H3 remarkably different to the homozygotes for the common alleles. Thus, these preliminary observations suggest the possible existence of a functional consequence of harbouring these genetic variants in histone methyltransferases, and warrant the design of larger epidemiological and biochemical studies to establish the true meaning of these findings.  相似文献   

16.

BACKGROUND:

Although the pathogenesis of Hodgkin disease (HD) remains unknown, the results of epidemiologic studies suggest that heritable factors are important in terms of susceptibility. Polymorphisms in DNA repair genes may contribute to individual susceptibility for development of different cancers. However, to the authors' knowledge, few studies to date have investigated the role of such polymorphisms as risk factors for development of HD.

METHODS:

The authors evaluated the relation between polymorphisms in 3 nucleotide excision repair pathway genes (XPD [Lys751Gln], XPC [Lys939Gln], and XPG [Asp1104His]), the base excision repair XRCC1 (Arg399Gln), and double‐strand break repair XRCC3 (Thr241Met) in a population of 200 HD cases and 220 matched controls. Variants were investigated independently and in combination; odd ratios (OR) were calculated.

RESULTS:

A positive association was found for XRCC1 gene polymorphism Arg399Gln (OR, 1.77; 95% confidence interval [95% CI], 1.16‐2.71) and risk of HD. The combined analysis demonstrated that XRCC1/XRCC3 and XRCC1/XPC polymorphisms were associated with a significant increase in HD risk. XRCC1 Arg/Arg and XRCC3 Thr/Met genotypes combined were associated with an OR of 2.38 (95% CI, 1.24‐4.55). The XRCC1 Arg/Gln and XRCC3 Thr/Thr, Thr/Met, and Met/Met genotypes had ORs of 1.88 (95% CI, 1.02‐4.10), 1.97 (95% CI, 1.05‐3.73), and 4.13 (95% CI, 1.50‐11.33), respectively. XRCC1 Gln/Gln and XRCC3 Thr/Thr variant led to a significant increase in risk, with ORs of 3.00 (95% CI, 1.15‐7.80). Similarly, XRCC1 Arg/Gln together with XPC Lys/Lys was found to significantly increase the risk of HD (OR, 2.14; 95% CI, 1.09‐4.23).

CONCLUSIONS:

These data suggest that genetic polymorphisms in DNA repair genes may modify the risk of HD, especially when interactions between the pathways are considered. Cancer 2009. © 2009 American Cancer Society.  相似文献   

17.
Deficiencies in DNA repair have been hypothesized to increase cancer risk and excess cancer incidence is a feature of inherited diseases caused by defects in DNA damage recognition and repair. We investigated, using a case-control design, whether the double-strand break repair gene polymorphisms RAD51 5' untranslated region -135 G > C, XRCC2 R188H G > A, and XRCC3 T241M C > T were associated with risk of breast or ovarian cancer in Australian women. Sample sets included 1,456 breast cancer cases and 793 age-matched controls ages under 60 years of age, 549 incident ovarian cancer cases, and 335 controls of similar age distribution. For the total sample and the subsample of Caucasian women, there were no significant differences in genotype distribution between breast cancer cases and controls or between ovarian cancer cases and combined control groups. The crude odds ratios (OR) and 95% confidence intervals (95% CI) associated with the RAD51 GC/CC genotype frequency was OR, 1.10; 95% CI, 0.80-1.41 for breast cancer and OR, 1.22; 95% CI, 0.92-1.62 for ovarian cancer. Similarly, there were no increased risks associated with the XRCC2 GA/AA genotype (OR, 0.98; 95% CI, 0.76-1.26 for breast cancer and OR, 0.93; 95% CI, 0.69-1.25 for ovarian cancer) or the XRCC3 CT/TT genotype (OR, 0.92; 95% CI, 0.77-1.10 for breast cancer and OR, 0.87; 95% CI, 0.71-1.08 for ovarian cancer). Results were little changed after adjustment for age and other measured risk factors. Although there was little statistical power to detect modest increases in risk for the homozygote variant genotypes, particularly for the rare RAD51 and XRCC2 variants, the data suggest that none of these variants play a major role in the etiology of breast or ovarian cancer.  相似文献   

18.
Li C  Hu Z  Lu J  Liu Z  Wang LE  El-Naggar AK  Sturgis EM  Spitz MR  Wei Q 《Cancer》2007,110(4):867-875
BACKGROUND: Tobacco smoke contains numerous carcinogens that cause DNA damage, including oxidative lesions that are removed effectively by the base-excision repair (BER) pathway, in which adenosine diphosphate ribosyl transferase (ADPRT), x-ray repair cross-complementing 1 (XRCC1), and apurinic/apyimidinic endonuclease (APE1) play key roles. Genetic variations in the genes encoding for these DNA repair enzymes may alter their functions. Although there have been several studies that generated mixed results on the association between XRCC1 variants and the risk of squamous cell carcinoma of the head and neck (SCCHN), no reported studies have investigated the association between ADPRT and APE1 variants and SCCHN risk. METHODS: In a hospital-based, case-control study of 830 non-Hispanic white patients with SCCHN and 854 cancer-free, matched control participants, the authors genotyped the ADPRT alanine 762 valine (Ala762Val) single-nucleotide polymorphism (SNP), the XRCC1 arginine 399 glutamine (Arg399Gln) SNP, and the APE aspartic acid 148 glutamic acid (Asp148Glu) SNP and assessed their associations with the risk of SCCHN in multivariate logistic regression models. RESULTS: The findings indicated that a significantly decreased risk of SCCHN was associated with the ADPRT 762Ala/Ala genotype (adjusted odds ratio [OR], 0.51; 95% confidence interval [95% CI], 0.27-0.97) and the combined ADPRT 762Ala/Val and Ala/Ala genotypes (OR, 0.79; 95% CI; 0.63-1.00) compared with the ADPRT 762Val/Val genotype, but no altered risk was associated with the XRCC1 Arg399Gln or APE Asp148Glu polymorphisms, and no evidence of interactions was observed between the 3 selected SNPs and age, sex, smoking status, drinking status, or tumor site. CONCLUSIONS: The ADPRT Ala762Val polymorphism may play a role in the etiology of SCCHN or in linkage disequilibrium with other untyped protective alleles. Larger studies with more SNPs in the BER genes will be needed to verify these findings.  相似文献   

19.
Selected polymorphisms of DNA repair genes and risk of pancreatic cancer   总被引:3,自引:0,他引:3  
BACKGROUND: Genetic variants of DNA repair genes may contribute to pancreatic carcinogenesis. O(6)-methylguanine-DNA methyltransferase (MGMT) is the major protein that removes alkylating DNA adducts, and apurinic/apyrimidinic endonuclease 1 (APE1) and X-ray repair cross-complementing group 1 (XRCC1) play important roles in the base excision repair pathway. METHODS: We investigated the association between polymorphisms of MGMT (Leu(84)Phe and Ile(143)Val), APE1 (Asp(148)Glu), and XRCC1 (Arg(194)Trp and Arg(399)Gln) and risk of pancreatic cancer in a case-control study. Exposure information from 384 patients with primary pancreatic ductal adenocarcinoma and 357 cancer-free healthy controls were collected and genomic DNAs were genotyped for five markers. Controls were frequency matched to patients by age at enrollment (+/-5 years), gender, and race. We estimated odds ratios (ORs) and 95% confidence intervals (CIs) by using unconditional logistic regression models. RESULTS: There was no significant main effect or interaction with smoking of these genetic variants on the risk of pancreatic cancer. However, the XRCC1(194) polymorphism had a significant interaction with the APE1(148) (p=0.005) or MGMT(84) polymorphism (p=0.02) in modifying the risk of pancreatic cancer. CONCLUSIONS: This study suggests that polymorphisms of genes involved in the repair of alkylating DNA adduct and DNA base damage may play a role in modulating the risk of pancreatic cancer. Larger studies are required to validate these preliminary findings. The mechanism of the combined genotype effects remains to be elucidated.  相似文献   

20.
DNA repair and cell cycle control play an important role in the repair of DNA damage caused by cigarette smoking. Given this role, functionally relevant single nucleotide polymorphisms (SNPs) in genes in these pathways may well affect the risk of smoking-related lung cancer. We examined the relationship between 240 SNPs in DNA repair and cell cycle control pathway genes and lung cancer risk in a case-control study of white current and ex-cigarette smokers (722 cases and 929 controls). Additive, dominant, and recessive genetic models were evaluated for each SNP. A genetic risk summary score was also constructed. Odds ratios (OR) for lung cancer risk and 95% confidence intervals (95% CI) were estimated using logistic regression models. Thirty-eight SNPs were associated with lung cancer risk in our study population at P?相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号