首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Background and purpose:  Increasing evidence suggests a direct role of the TAR DNA-binding protein 43 (TDP-43) in neurodegeneration. Mutations in the TARDBP gene, which codes for TDP-43, have been recently reported in familial and sporadic amyotrophic lateral sclerosis (ALS) cases.
Methods:  To further define the spectrum and frequency of TARDBP mutations, we present genetic analysis data on TARDBP in 314 ALS mainly Italian patients, including 16 subjects with non-SOD1 familial ALS.
Results:  We identified four heterozygous missense mutations in five unrelated ALS patients (1.6%). Two of these mutations (p.G348C and p.A382T) were detected in carriers coming from families with an autosomal dominant transmission of different geographic origin (Belgian and Italian, respectively). The Belgian pedigree showed several affected members within five generations and with variable clinical features. Two novel mutations (p.G294V and p.G295S) were identified in two sporadic cases.
Conclusion:  The identification of five ALS patients carrying TARDBP alterations extends the spectrum of TARDBP mutations and supports the pathological role of TDP-43 in motor neurone disease. Our findings provide evidence that TARDBP mutations are not frequent in Italian sporadic ALS patients (1%); however, combined with the literature, our data further support TARDBP mutations as a relevant cause of familial ALS.  相似文献   

2.
BACKGROUND: TDP-43 is a major component of the ubiquitinated inclusions that characterise amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD) with ubiquitin inclusions (FTLD-U). TDP-43 is an RNA-binding and DNA-binding protein that has many functions and is encoded by the TAR DNA-binding protein gene (TARDBP) on chromosome 1. Our aim was to investigate whether TARDBP is a candidate disease gene for familial ALS that is not associated with mutations in superoxide dismutase 1 (SOD1). METHODS: TARDBP was sequenced in 259 patients with ALS, FTLD, or both. We used TaqMan-based SNP genotyping to screen for the identified variants in control groups matched to two kindreds of patients for age and ethnic origin. Additional clinical, genetic, and pathological assessments were made in these two families. FINDINGS: We identified two variants in TARDBP, which would encode Gly290Ala and Gly298Ser forms of TDP-43, in two kindreds with familial ALS. The variants seem to be pathogenic because they co-segregated with disease in both families, were absent in controls, and were associated with TDP-43 neuropathology in both members of one of these families for whom CNS tissue was available. INTERPRETATION: The Gly290Ala and Gly298Ser mutations are located in the glycine-rich domain of TDP-43, which regulates gene expression and mediates protein-protein interactions such as those with heterogeneous ribonucleoproteins. Owing to the varied and important cellular functions of TDP-43, these mutations might cause neurodegeneration through both gains and losses of function. The finding of pathogenic mutations in TARDBP implicates TDP-43 as an active mediator of neurodegeneration in TDP-43 proteinopathies, a class of disorder that includes ALS and FTLD-U. FUNDING: National Institutes of Health (AG10124, AG17586, AG005136-22, PO1 AG14382), Department of Veterans Affairs, Friedrich-Baur Stiftung (0017/2007), US Public Health Service, ALS Association, and Fundació 'la Caixa'.  相似文献   

3.
4.
5.
Amyotrophic lateral sclerosis (ALS) is a progressive, adult-onset neurodegenerative disease characterized by degeneration of motor neurons, resulting in paralysis and death. A pathological hallmark of the degenerating motor neurons in most ALS patients is the presence of cytoplasmic inclusions containing the protein TDP-43. The morphology and type of TDP-43 pathological inclusions is variable and can range from large round Lewy body-like inclusions to filamentous skein-like inclusions. The clinical significance of this variable pathology is unclear. Intermediate-length polyglutamine (polyQ) expansions in ataxin 2 were recently identified as a genetic risk factor for ALS. Here we have analyzed TDP-43 pathology in a series of ALS cases with or without ataxin 2 intermediate-length polyQ expansions. The motor neurons of ALS cases harboring ataxin 2 polyQ expansions (n = 6) contained primarily skein-like or filamentous TDP-43 pathology and only rarely, if ever, contained large round inclusions, whereas the ALS cases without ataxin 2 polyQ expansions (n = 13) contained abundant large round and skein-like TDP-43 pathology. The paucity of large round TDP-43 inclusions in ALS cases with ataxin 2 polyQ expansions suggests a distinct pathological subtype of ALS and highlights the possibility for distinct pathogenic mechanisms.  相似文献   

6.
Major discoveries have been made in the recent past in the genetics, biochemistry and neuropathology of frontotemporal lobar degeneration (FTLD). TAR DNA-binding protein 43 (TDP-43), encoded by the TARDBP gene, has been identified as the major pathological protein of FTLD with ubiquitin-immunoreactive (ub-ir) inclusions (FTLD-U) with or without amyotrophic lateral sclerosis (ALS) and sporadic ALS. Recently, mutations in the TARDBP gene in familial and sporadic ALS have been reported which demonstrate that abnormal TDP-43 alone is sufficient to cause neurodegeneration. Several familial cases of FTLD-U, however, are now known to have mutations in the progranulin ( GRN ) gene, but granulin is not a component of the TDP-43- and ub-ir inclusions. Further, TDP-43 is found to be a component of the inclusions of an increasing number of neurodegenerative diseases. Other FTLD-U entities with TDP-43 proteinopathy include: FTLD-U with valosin-containing protein ( VCP ) gene mutation and FTLD with ALS linked to chromosome 9p. In contrast, chromosome 3-linked dementia, FTLD-U with chromatin modifying protein 2B ( CHMP2B ) mutation, has ub-ir, TDP-43-negative inclusions. In summary, recent discoveries have generated new insights into the pathogenesis of a spectrum of disorders called TDP-43 proteinopathies including: FTLD-U, FTLD-U with ALS, ALS, and a broadening spectrum of other disorders. It is anticipated that these discoveries and a revised nosology of FTLD will contribute toward an accurate diagnosis, and facilitate the development of new diagnostic tests and therapeutics.  相似文献   

7.
TDP-43 has been identified as a major component of the pathological inclusions in most forms of frontotemporal lobar degeneration with ubiquitin-positive inclusions and in amyotrophic lateral sclerosis (ALS). In the present study, paraffin sections of the midbrain in 112 patients with various non-ALS disorders and 27 patients with sporadic ALS were immunostained with antibody against phosphorylated TDP-43 (pTDP-43). pTDP-43-positive inclusions in oculomotor neurons were detected in 18 of 112 patients with non-ALS disorders (16.1%). The appearance of the inclusions showed fine filamentous structures rather than the skein-like inclusions seen in the anterior horn cells of ALS spinal cords. The incidence was increased in the age range of 80-89 years old (10/37 cases; 27.0%), in which 6 of 10 cases demonstrated AD pathology in the temporal lobes. Twenty-seven ALS patients were examined and the findings were compared with those of non-ALS patients. There were 13 cases demonstrating pTDP-43-positive inclusions (48.1%) which showed stronger immunoreactivities in ALS cases. This is the first report demonstrating fine filamentous pTDP-43-positive inclusions in oculomotor neurons in non-ALS disorders. Although the mechanisms underlying pTDP-43 in oculomotor neurons are currently unknown, its detection is of interest, and the expression may occur not only in ALS but also during the aging process.  相似文献   

8.
9.
10.
11.
目的探索肌萎缩侧索硬化症(ALS)相关TDP-43的降解机制。方法用瞬时转染的方法在运动神经元样细胞系NSC-34中过表达野生型(role of wild-type,WT)WT TDP-43,与家族型ALS相关的Q331K TDP-43、M337V TDP-43突变蛋白、TDP-43的两种C末端片段TDP-25和TDP-35,再给予自噬、蛋白酶体通路的特异性诱导剂和阻断剂,通过蛋白印迹方法检测5种TDP-43以及自噬标记物LC3-Ⅱ的表达水平。结果在自噬诱导剂作用下,各组LC3-Ⅱ的表达升高,同时两种突变TDP-43及其C末端片段的表达明显减少,在自噬通路和蛋白酶体阻断剂作用下突变TDP-43及其C末端片段表达水平明显增多,而WT TDP-43的蛋白表达水平仅在蛋白酶体阻断剂作用时增多。结论 WT TDP-43主要经由蛋白酶体途径降解,Q331K TDP-43、M337V TDP-43及其C末端片段经由蛋白酶体途径和自噬两种途径降解。  相似文献   

12.
反式激活应答DNA结合蛋白-43(TDP-43)是近年发现的一种病理沉积蛋白,常见于多种神经变性疾病,如肌萎缩侧索硬化、额颞叶变性、阿尔茨海默病等,这一类以病理性TDP-43沉积为主的神经变性疾病统称为TDP-43蛋白病。研究发现TDP-43在这些疾病中既有相同(均有TDP-43异常沉积),又有差异(不同的形态、分布而导致不同的症状),其作用机制至今仍有许多未明。这一异常蛋白的发现不仅为研究TDP-43蛋白病的发病机制及相关疾病间的联系提供了新途径,同时为探索新的诊断方法、治疗方案提供了方向。  相似文献   

13.
Aggregation of TDP-43 proteins to form intracellular inclusions is the primary pathology in amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD) with TDP-43 inclusions (FTLD-TDP). Histologically, in the cerebral cortex and limbic regions of affected ALS and FTLD-TDP patients, these pathologies occur as a variety of cytoplasmic, neuritic and intranuclear TDP-43 inclusions. In the spinal cord and lower brainstem of ALS patients, the lesions form cytoplasmic dashes or complex filamentous and spherical profiles in addition to skein-like inclusions (SLI). Ultrastructurally, the morphology of TDP-43 inclusions is heterogeneous but mainly composed of loose bundles of 10- to 20-nm-diameter straight filaments associated with electron-dense granular material. All of these TDP-43 inclusions are generally described as disordered amorphous aggregations unlike the amyloid fibrils that characterize protein accumulations in neurodegenerative diseases such as Alzheimer’s disease and Parkinson’s disease. We here report that Thioflavin-S positive SLI are present in a subset of ALS cases, while TDP-43 inclusions outside the spinal cord lack the chemical properties of amyloid. Further, we examine the differential enrichment of fibrillar profiles in SLI of ALS cases by TDP-43 immuno-electron microscopy (immuno-EM). The demonstration that pathological TDP-43 can be amyloidogenic in situ suggests the following conclusions: (1) the conformational changes associated with TDP-43 aggregation are more complex than previously thought; (2) Thioflavin-S positive SLI may be composed primarily of filamentous ultrastructures.  相似文献   

14.
Frontotemporal dementia with inclusion body myopathy and Paget disease of bone is a rare, autosomal-dominant disorder caused by mutations in the gene valosin-containing protein (VCP). The CNS pathology is characterized by a novel pattern of ubiquitin pathology distinct from sporadic and familial frontotemporal lobar degeneration with ubiquitin-positive inclusions (FTLD-U) without VCP mutations. TAR DNA binding protein 43 (TDP-43) was recently identified as a major disease protein in the ubiquitin-positive inclusions of sporadic and familial FTLD-U. To determine whether the ubiquitin pathology associated with mutations in VCP is characterized by the accumulation of TDP-43, we analyzed TDP-43 in the CNS pathology of five patients with VCP gene mutations. Accumulations of TDP-43 colocalized with ubiquitin pathology in inclusion body myopathy and Paget disease of bone, including both intranuclear inclusions and dystrophic neurites. Similar to FTLD-U, phosphorylated TDP-43 was detected only in insoluble brain extracts from affected brain regions. Identification of TDP-43, but not VCP, within ubiquitin-positive inclusions supports the hypothesis that VCP gene mutations lead to a dominant negative loss or alteration of VCP function culminating in impaired degradation of TDP-43. TDP-43 is a common pathologic substrate linking a variety of distinct patterns of FTLD-U pathology caused by different genetic alterations.  相似文献   

15.
Recently, TAR DNA-binding protein of 43-kDa (TDP-43) was identified as a major component of ubiquitinated neuronal cytoplasmic inclusions observed in lower motor neurons in amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration with ubiquitinated inclusions. We herein investigated the relationship between TDP-43 immunoreactivities and fragmentation of the Golgi apparatus (GA). Each mirror section of spinal cord tissues in 10 ALS and 3 control cases were immunostained with polyclonal anti-TDP-43 and polyclonal anti-trans-Golgi-network (TGN)-46 antibodies. The neurons were divided into subtypes according to differences in TDP-43 immunoreactivities, and we examined the morphological changes of GA in each type. We divided the neurons into four subtypes according to the observed differences in TDP-43 immunoreactivities, Type A: neurons showing normal nuclear staining, Type B: neurons showing a loss of normal nuclear staining and a few granular cytoplasmic immunoreactivities, Type C: neurons showing a lot of granular immunoreactivities and no inclusions, Type D: neurons with inclusions. All of the neurons in Type A showed normal GA profiles, however, almost all of the neurons with abnormal TDP-43 immunoreactivities (Type B–D) showed GA fragmentation. These results suggest that neurons with abnormal TDP-43 immunoreactivities are associated with dysfunction of the secretory pathway in motor neurons.  相似文献   

16.
17.
Frontotemporal lobar degeneration (FTLD) has been subdivided based on the main pathology found in the brains of affected individuals. When the primary pathology is aggregated, hyperphosphorylated tau, the pathological diagnosis is FTLD-tau. When the primary pathology is cytoplasmic and/or nuclear aggregates of phosphorylated TAR-DNA-binding protein (TDP-43), the pathological diagnosis is FTLD-TDP. Notably, TDP-43 pathology can also occur in conjunction with a number of neurodegenerative disorders; however, unknown environmental and genetic factors may regulate this TDP-43 pathology. Using transgenic mouse models of several diseases of the central nervous system, we explored whether a primary proteinopathy might secondarily drive TDP-43 proteinopathy. We found abnormal, cytoplasmic accumulation of phosphorylated TDP-43 specifically in two tau transgenic models, but TDP-43 pathology was absent in mouse models of Aβ deposition, α-synucleinopathy or Huntington’s disease. Though tau pathology showed considerable overlap with cytoplasmic, phosphorylated TDP-43, tau pathology generally preceded TDP-43 pathology. Biochemical analysis confirmed the presence of TDP-43 abnormalities in the tau mice, which showed increased levels of high molecular weight, soluble TDP-43 and insoluble full-length and ~35 kD TDP-43. These data demonstrate that the neurodegenerative cascade associated with a primary tauopathy in tau transgenic mice can also promote TDP-43 abnormalities. These findings provide the first in vivo models to understand how TDP-43 pathology may arise as a secondary consequence of a primary proteinopathy.  相似文献   

18.
The clinical and pathological overlap between amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD) suggests these diseases share common underlying mechanisms, a suggestion underscored by the discovery that TDP-43 inclusions are a key pathologic feature in both ALS and FTLD. This finding, combined with the identification of TDP-43 mutations in ALS, directly implicates this DNA/RNA binding protein in disease pathogenesis in ALS and FTLD. However, many key questions remain, including what is the normal function of TDP-43, and whether disease-associated mutations produce toxicity in the nucleus, cytoplasm or both. Furthermore, although pathologic TDP-43 inclusions are clearly associated with many forms of neurodegeneration, whether TDP-43 aggregation is a key step in the pathogenesis in ALS, FTLD and other disorders remains to be proven. This review will compare the features of numerous recently developed animal models of TDP-43-related neurodegeneration, and discuss how they contribute to our understanding of the pathogenesis of human ALS and FTLD.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号