首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 577 毫秒
1.
Previously we demonstrated that nicotinic acetylcholine receptor stimulation protects neurons against beta-amyloid (Abeta)-induced cytotoxicity. In the present study, the effects of nicotinic receptor agonists on the beta-sheet formation were investigated using a thioflavin T (ThT)-based fluorescence assay. Nicotine, cytisine (an alpha4beta2 agonist), and 3-(2,4)-dimethoxybenzylidene anabaseine (DMXB, an alpha7 agonist) did not reduce fluorescence intensity when these agents were added to the beta-sheet-formed Abeta. Simultaneous incubation of Abeta with nicotinic agonists also did not cause a reduction in fluorescence intensity. This data suggests that nicotinic receptor agonists do not influence the formation of the beta-sheet structure.  相似文献   

2.
Amyloid beta peptide in the senile plaques of patients with Alzheimer's disease is considered to be responsible for the pathology of Alzheimer's disease. We have previously reported that 6-ethyl-N,N'-bis(3-hydroxyphenyl)[1,3,5]triazine-2,4-diamine, RS-0466, is capable of significantly inhibiting amyloid beta-induced cytotoxicity in HeLa cells. To determine various profiles of RS-0466, we investigated whether RS-0466 would enhance the neuroprotective effect of brain-derived neurotrophic factor on amyloid beta(1-42)-induced cytotoxicity in rat cortical neurones. Consistent with previous observations, brain-derived neurotrophic factor ameliorated amyloid beta(1-42)-induced cytotoxicity. Furthermore, co-application of RS-0466 enhanced the neuroprotective effect of brain-derived neurotrophic factor. RS-0466 also reversed amyloid beta(1-42)-induced decrease of brain-derived neurotrophic factor-triggered phosphorylated Akt. These results raise the possibility that RS-0466 or one of its derivatives has potential to enhance the neuroprotective effect of brain-derived neurotrophic factor, and could serve as a therapeutic agent for patients with Alzheimer's disease.  相似文献   

3.
We previously reported the neurotrophic effects of talaumidin (1) from Aristolochia arcuata MASTERS. In the present study, we compared the neurotrophic and neuroprotective effects of six other 2,5-diaryl-3,4-dimethyltetrahydrofuran neolignans isolated from the same plant, veraguensin (2), galgravin (3), aristolignin (4), nectandrin A (5), isonectandrin B (6), and nectandrin B (7), with compound 1 in primary cultured rat neurons. Compounds 3-7 promoted neuronal survival and neurite outgrowth, among which compounds 6 and 7 showed neurotrophic activity comparable with that of 1. Furthermore, compounds 1-7 protected hippocampal neurons against amyloid beta peptide (Abeta25-35)-induced cytotoxicity, while compounds 1 and 4-7 protected against neuronal death from 1-methyl-4-phenylpyridinium ion (MPP+)-induced toxicity in cultured rat hippocampal neurons.  相似文献   

4.
In Alzheimer's disease, fibrillar amyloid-beta (Abeta) peptides form senile plaques associated with microglia. However, the relationship between Abeta peptides and microglia is not fully understood. In this study, the incubation of Abeta1-40 (Abeta40) produced small oligomers, while incubation with Abeta1-42 (Abeta42) caused large molecular aggregates. Microglial production of nitrite, interleukin-6 and tumor necrosis factor-alpha was induced by Abeta40, but not Abeta42. This production was significantly reduced by 15-deoxy-Delta(12,14) prostaglandin J(2), and it was completely suppressed by beta-sheet breaker peptide, Leu-Pro-Phe-Phe-Asp. These results suggest that small oligomers, rather than large molecular aggregates, mediate microglial activation induced by Abeta peptides.  相似文献   

5.
Jung G  Ryu J  Heo J  Lee SJ  Cho JY  Hong S 《Die Pharmazie》2011,66(7):529-534
Fibrillar aggregates of beta-amyloid peptide (Abeta) are major constituents of the senile plaques found in the brains of patients suffering from Alzheimer's disease (AD). Previous studies have shown that spontaneous isomerization or racemization of aspartyl residues in Abeta peptides leads to conformational changes in the secondary structure and increased aggregative ability of the peptides. Protein L-isoaspartyl O-methyltransferase (PIMT, EC 2.1.1.77) is a repairing enzyme converting L-isoaspartyl/D-aspartyl residues in damaged proteins to normal L-aspartyl residues. In this study it was investigated, whether PIMT is able to modulate Abeta fibrillogenesis in vitro by methylation of isoaspartyl residue using purified 5Abeta and PIMT. A Thioflavin-T (Th-T) binding assay conducted after aging Abeta in vitro (37 degrees C, pH 7.4 in PBS) revealed that PIMT inhibited the increase of fluorescence caused by amyloid fibrillogenesis. Western blot analysis revealed that high molecular Abeta aggregates (> 200 kDa) only occurred during Abeta incubation, while they were reduced in response to incubation with PIMT and AdoMet. Additionally, circular dichroism (CD) showed that the beta-sheet structure was increased in Abeta peptides in a time-dependent fashion, while PIMT suppressed the beta-sheet transition after 24 h. Finally, transmission electron microscopy (TEM) revealed that PIMT reduced the size of the Abeta aggregates and induced a different pathway, leading to the formation of amorphous structures. Taken together, these findings indicate that isoaspartyl methylation leads to partial blockade of fibrillogenesis of Abeta by inhibiting the beta transition in the Abeta peptide.  相似文献   

6.
1. The accumulation of amyloid beta protein (Abeta) in the brain is a characteristic feature of Alzheimer's disease (AD). Clinical trials of AD patients with nonsteroidal anti-inflammatory drugs (NSAIDs) indicate a clinical benefit. NSAIDs are presumed to act by suppressing inhibiting chronic inflammation in the brain of AD patients. 2. In the present study, we investigated effects of S-2474 on Abeta-induced cell death in primary cultures of rat cortical neurons. 3. S-2474 is a novel NSAID, which inhibits cyclo-oxygenase-2 (COX-2) and contains the di-tert-butylphenol antioxidant moiety. S-2474 significantly prevented neurons from Abeta(25 - 35)- and Abeta(1 - 40)-induced cell death. S-2474 ameliorated Abeta-induced apoptotic features such as the condensation of chromatin and the fragmentation of DNA completely. 4. Prior to cell death, Abeta(25 - 35) generated prostaglandin D(2) (PGD(2)) and free radicals from neurons. PGD(2) is a product of cyclo-oxygenase (COX), and caused neuronal cell death. 5. S-2474 significantly inhibited the Abeta(25 - 35)-induced generation of PGD(2) and free radicals. 6. The present cortical cultures contained little non-neuronal cells, indicating that S-2474 affected neuronal survival directly, but not indirectly via non-neuronal cells. Both an inhibitory effect of COX-2 and an antioxidant effect might contribute to the neuroprotective effects of S-2474. 7. In conclusion, S-2474 exhibits protective effects against neurotoxicity of Abeta. Furthermore, the present study suggests that S-2474 may possess therapeutic potential for AD via ameliorating degeneration in neurons as well as suppressing chronic inflammation in non-neuronal cells.  相似文献   

7.
Progressive deposition of amyloid beta peptide in the senile plaques is a principal event in the neurodegenerative process of Alzheimer's disease. Several reports have demonstrated that amyloid beta is cytotoxic using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) as an indicator of viability in cells. With the MTT assay, we screened an in-house library to find compounds which suppress amyloid beta-induced inhibition of MTT reduction. We have previously reported that 6-ethyl-N,N'-bis(3-hydroxyphenyl)[1,3,5]triazine-2,4-diamine (named RS-0466), found in an in-house library, was capable of significantly inhibiting amyloid beta-induced cytotoxicity in HeLa cells. From further screening hits, we newly focused on 4-(7-hydroxy-2,2,4-trimethyl-chroman-4-yl)benzene-1,3-diol (named RS-4252), which show comparable potency to RS-0466 to ameliorate amyloid beta-induced cytotoxicity. Furthermore, RS-4252 reversed the decrease in phosphorylated Akt by amyloid beta. These results imply that RS-4252 or one of its derivatives has the potential to be a therapeutic for Alzheimer's disease patients, and that activation of Akt is at least in part involved in the effect.  相似文献   

8.
9.
Senile plaques are a hallmark of Alzheimer's disease (AD), a neurodegenerative disease associated with cognitive decline and aging. Abeta(1-42) is the primary component of the senile plaque in AD brain and has been shown to induce protein oxidation in vitro and in vivo. Oxidative stress is extensive in AD brain. As a result, Abeta(1-42) has been proposed to play a central role in the pathogenesis of AD; however, the specific mechanism of neurotoxicity remains unknown. Recently, it has been proposed that long distance electron transfer from methionine 35 to the Cu(II) bound at the N terminus of Abeta(1-42) occurs via phenylalanine 20. Additionally, it was proposed that substitution of phenylalanine 20 of Abeta(1-42) by alanine [Abeta(1-42)F20A] would lessen the neurotoxicity induced by Abeta(1-42). In this study, we evaluate the predictions of this theoretical study by determining the oxidative stress and neurotoxic properties of Abeta(1-42)F20A relative to Abeta(1-42) in primary neuronal cell culture. Abeta(1-42)F20A induced protein oxidation and lipid peroxidation similar to Abeta(1-42) but to a lesser extent and in a manner inhibited by pretreatment of neurons with vitamin E. Additionally, Abeta(1-42)F20A affected mitochondrial function similar to Abeta(1-42), albeit to a lesser extent. Furthermore, the mutation does not appear to abolish the ability of the native peptide to reduce Cu(II). Abeta(1-42)F20A did not compromise neuronal morphology at 24 h incubation with neurons, but did so after 48 h incubation. Taken together, these results suggest that long distance electron transfer from methionine 35 through phenylalanine 20 may not play a pivotal role in Abeta(1-42)-mediated oxidative stress and neurotoxicity.  相似文献   

10.
Statins are known to exert a number of biological effects apart from reducing cholesterol synthesis. The results of recent studies indicate that patients treated with pravastatin have a lower prevalence of diagnosed Alzheimer's disease (AD). These observations prompted us to examine the effects of pravastatin on Alzheimer's peptide (Abeta(1-42))-induced pro-inflammatory activation in the human glioma cell line in vitro. Cells alone or cells pre-treated with pravastatin (0.1mg x ml(-1)) for 24h were stimulated with 5 microM of freshly dissolved Abeta(1-42) for the next 24h. The pre-treatment of cells with pravastatin diminished the capacity of Abeta to induce metalloproteinases, cytokine IL-6 and free radical levels. Although both pravastatin and Abeta(1-42) separately increased PPARgamma activity, the combination of Abeta(1-42) and pravastatin resulted in no effect on PPARgamma expression. These data indicate that soluble forms of Abeta(1-42), which are a potent stimulus of pro-inflammatory activation of glioma cells in vitro, could be a good target for pravastatin.  相似文献   

11.
Wu M  Zhu YG  Pan XD  Lin N  Zhang J  Chen XC 《药学学报》2010,45(7):853-859
This study is to explore whether the Wnt/beta-catenin signaling pathway is involved in the process of tripchlorolide (T4) protecting against oligomeric Abeta(1-42)-induced neuronal apoptosis. Primary cultured cortical neurons were used for the experiments on day 6 or 7. The oligomeric Abeta(1-42) (5 micromol x L(-1) for 24 h) was applied to induce neuronal apoptosis. Prior to treatment with Abeta(1-42) for 24 h, the cultured neurons were pre-incubated with T4 (2.5, 10, and 40 nmol x L(-1)), Wnt3a (Wnt signaling agonists) and Dkk1 (inhibitors) for indicated time. Then the cell viability, neuronal apoptosis, and protein levels of Wnt, glycogen synthase kinase 3beta (GSK3beta), beta-catenin and phospho-beta-catenin were measured by MTT assay, TUNEL staining and Western blotting, respectively. The result demonstrated that oligomeric Abeta(1-42) induced apoptotic neuronal cell death in a time- and dose-dependent manner. Pretreatment with T4 significantly increased the neuronal cell survival and attenuated neuronal apoptosis. Moreover, oligomeric Abeta(1-42)-induced phosphorylation of beta-catenin and GSK3beta was markedly inhibited by T4. Additionally, T4 stabilized cytoplasmic beta-catenin. These results indicate that tripchlorolide protects against the neurotoxicity of Abeta by regulating Wnt/beta-catenin signaling pathway. This may provide insight into the clinical application of tripchlorolide to Alzheimer's disease.  相似文献   

12.
In search of novel therapeutic approaches for Alzheimer's disease (AD), we report herein the identification, design, synthesis, and pharmacological activity of (4-ethyl-piperaz-1-yl)-phenylmethanone derivatives with neuroprotective properties against beta-amyloid-induced toxicity. (4-ethyl-piperaz-1-yl)-phenylmethanone is a common substructure shared by molecules isolated from plants of the Asteraceae genus, traditionally used as restorative of lost or declining mental functions. (4-Ethyl-piperaz-1-yl)-phenylmethanone displayed strong neuroprotective properties against Abeta1-42 and reversed Abeta1-42-induced ATP depletion on neuronal cells, suggesting a mitochondrial site of action. Abeta1-42 has been described to induce a hyperactivity of the glutamate network in neuronal cells. (4-Ethyl-piperaz-1-yl)-phenylmethanone also inhibited the neurotoxic effect that glutamate displayed on PC12 cells, suggesting that the reduction of glutamate-induced neurotoxicity may be one of the mechanisms by which this compound exerts its neuroprotective properties against the deleterious effects of the Abeta1-42. These data suggest that the identified (4-ethyl-piperaz-1-yl)-phenylmethanone chemical entity exerts neuroprotective properties and may serve as a lead compound for the development of novel therapies for AD.  相似文献   

13.
Beta amyloid (Abeta) is implicated in Alzheimer's disease (AD). Abeta(1 - 42) (5, 10, or 20 microM) was able to increase NO release and decrease cellular viability in primary rat cortical mixed cultures. L-NOARG and SMTC (both at 10 or 100 microM) - type I NOS inhibitors - reduced cellular NO release in the absence of Abeta(1 - 42). At 100 microM, both drugs decreased cell viability. L-NIL (10 or 100 microM), and 1400W (1 or 5 microM) - type II NOS inhibitors - reduced NO release and improved viability when either drug was administered up to 4 h post Abeta(1 - 42) (10 microM) treatment. L-NOARG and SMTC (both at 10 or 100 microM) were only able to decrease NO release. Carboxy-PTIO or Trolox (both at 10 or 100 microM) - a NO scavenger and an antioxidant, respectively - increased viability when administered up to 1 h post Abeta(1 - 42) treatment. Either L-NIL (50 microM) or 1400W (3 microM) and Trolox (50 microM) showed synergistic actions. Peroxynitrite (100 or 200 microM) reduced cell viability. Viabilities were improved by L-NIL (100 microM), 1400W (5 microM), carboxy-PTIO (10 or 100 microM), and Trolox (10 or 100 microM). Hence, the data show that Abeta(1 - 42) induced NO release in neurons and glial cells, and that Abeta neurotoxicity is, at least in part, mediated by NO. NO concentration modulating compounds and antioxidant may have therapeutic importance in neurological disorders where oxidative stress is likely involved such as in AD.  相似文献   

14.
Production of nitric oxide (NO) by glial cells has been proposed to mediate cytotoxic effects on neighboring neurons. Although extensive genetic data implicate the beta amyloid peptide (Abeta) in the neurodegenerative cascade of Alzheimer's disease (AD), the molecular mechanisms underlying its effects on neurons and glia and the relationship between glial activation and neuronal death are not well understood. In AD, Abeta is sufficient to induce glial activation and promote the generation of inflammatory mediators including NO. We examined whether Abeta stimulated astrocytes to express nitric oxide synthase and produce NO. Also, we investigated whether astrocytic NO contributes to degenerative changes occurring in co-cocultured hippocampal neurons. We found that the treatment of rat hippocampal astrocyte cultures with Abeta(25-35) fragment up-regulated the mRNA and protein levels of both the inducible and neuronal forms of nitric oxide synthase (iNOS and nNOS, respectively) and increased the production of nitric oxide. Remarkably, hippocampal neurons co-cultured with astrocytes, previously stimulated with Abeta, displayed hyperphosphorylation of the microtubule-associated protein tau. This effect was attenuated by iNOS inhibitors, suggesting the role of overproduction of NO by reactive astrocytes in AD pathogenesis.  相似文献   

15.
The invariant characteristic features associated with Alzheimer's disease (AD) brain include the presence of extracellular neuritic plaques composed of amyloid beta (Abeta) peptide, intracellular neurofibrillary tangles containing hyper-phosphorylated tau protein and the loss of basal forebrain cholinergic neurons. Studies of the pathological changes that characterize AD and several other lines of evidence indicate that in vivo accumulation of Abeta(1-42) may initiate the process of neurodegeneration observed in AD brains. However, the cause of degeneration of the basal forebrain cholinergic neurons and their association to Abeta peptides or phosphorylated tau protein have not been clearly established. In the present study, using rat primary septal cultures, we have shown that Abeta(1-42), in a time (1-48 h) and concentration (0.01-20 microM)-dependent manner, induce toxicity in cultured neurons. Subsequently, we have demonstrated that Abeta toxicity is mediated via activation of cysteine proteases, i.e., calpain and caspase, and proteolytic breakdown of their downstream substrates tau, microtubule-associated protein-2 and alpha II-spectrin. Additionally, Abeta-treatment was found to induce phosphorylation of tau protein along with decreased levels of phospho-Akt and phospho-Ser(9)glycogen synthase kinase-3beta. Exposure to specific inhibitors of caspase or calpain can partially protect cultured neurons against Abeta-induced toxicity but their effects are not found to be additive. These results, taken together, suggest that Abeta peptide can induce toxicity in rat septal cultured neurons by activating multiple intracellular signaling molecules. Additionally, evidence that inhibitors of caspase and calpains can partially protect the cultured basal forebrain neurons raised the possibility that their inhibitors could be of therapeutic relevance in the treatment of AD pathology.  相似文献   

16.
The precise causative factors in neurodegenerative diseases such as Alzheimer's (AD) and Parkinson's disease remain elusive, but mechanisms implicated comprise excitotoxicity, mitochondrial dysfunction, and in the case of AD, the amyloid beta peptide (Abeta). Current therapeutic strategies for such disorders are very limited; thus, traditional herbal medicines currently receive increased attention. The seeds of Cassia obtisufolia have long been used in traditional eastern medicine and more recently the ethanolic fraction of the seeds (COE) has been shown to attenuate memory impairments in mice. In this study, we set out to determine the effect of COE (range: 0.1 - 10 microg/ml) on calcium dysregulation and cell death models in mouse primary hippocampal cultures implicated in general neurodegenerative processes and in the pathogenesis of AD: excitotoxicity, mitochondrial dysfunction, and Abeta toxicity. It was found that treatment with COE attenuated secondary Ca2+ dysregulation induced by NMDA (700 microM), while a pre-application of COE also reduced NMDA-induced cell death. Furthermore, COE was neuroprotective against the mitochondrial toxin 3-NP (1 mM), while having no significant effect on cell death induced by incubation with naturally-secreted oligomers of Abeta (8.2 pg/ml). Collectively, these results are important for the therapeutic use of COE in the treatment of neurodegenerative disorders.  相似文献   

17.
Although there is still no known effective preventative treatment or cure for Alzheimer's disease (AD), the development of new drugs that target pathological features that appear early in the course of this disease and alleviate some of the early cognitive and memory symptoms is a laudable goal that may be one step closer. To date, the acetylcholinesterase inhibitors have been the most widely used AD drugs and have been somewhat successful in slowing loss of cognition. In the last few years, a number of studies have demonstrated that amyloid beta (1-42) (Abeta42), the predominant Abeta peptide species in amyloid plaques, first accumulates in vulnerable neurons prior to plaque formation. Recently, we have shown that many (if not most) amyloid plaques in the entorhinal cortex of AD brains are actually the lysis remnants of degenerated, Abeta42-overburdened neurons. Furthermore, the most vulnerable neurons appear to be those that abundantly express the alpha7 nicotinic acetylcholine receptor (alpha7nAChR), and internalization of Abeta42 appears to be facilitated by the high-affinity binding of Abeta42 to the alpha7nAChR on neuronal cell surfaces, followed by endocytosis of the resulting complex and its accumulation within the lysosomal compartment. This mechanism provides a reasonable explanation for the selective vulnerability of cholinergic and cholinoceptive neurons in AD brains and for the fact that Abeta42 is the dominant Abeta peptide species in both intraneuronal accumulations and amyloid plaques. In view of the pathophysiological consequences of Abeta42 binding to alpha7nAChR on neuronal surfaces that stem from excessive intraneuronal Abeta42 accumulation, the alpha7nAChR could be an important therapeutic target for treatment of AD. In addition, it further emphasizes the potential merits of new and effective therapeutic strategies pointed towards the goal of lowering of Abeta42 levels in the blood and cerebrospinal fluid as well as blocking Abeta42 in the blood from penetrating the blood-brain barrier and entering into the brain parenchyma.  相似文献   

18.
The amyloid cascade hypothesis postulates that accumulation of beta-amyloid (Abeta) plays a key role in the development of Alzheimer's disease (AD). Accordingly, much effort has gone into reducing the amyloid burden, especially in transgenic mice expressing mutations in human amyloid precursor protein. Such mice develop amyloid plaques but not neurofibrillary tangles. Immunization with Abeta and other inflammatory stimuli, inhibitors of Abeta formation, cholesterol lowering agents, beta-sheet breaker peptides, antioxidants and various miscellaneous agents have been found to reduce the more soluble Abeta in such transgenic mice. Whether they would affect the more consolidated, cross-linked Abeta of AD and, if they did, whether that would really prove an effective treatment for the disease remains for future research to determine.  相似文献   

19.
目的研究阿魏酸钠(SF)对Aβ1-42所致培养海马神经元凋亡的抑制作用及机制。方法原代培养海马神经元,SF(50、100、200μmol.L-1)预处理6 h后,加入50 nmol.L-1的Aβ1-42作用72 h,JNK阻断剂SP600125(5μmol.L-1)在加入SF前30 min加入,Hoechst33258核染色观察细胞凋亡变化,ELISA法检测细胞色素C释放量,Western蛋白印迹法检测神经元Bcl-2,Bax,Caspase-3及JNK蛋白表达。结果与对照组相比,Aβ1-42组海马神经元细胞的凋亡率及释放的细胞色素C含量明显增加(P<0.01),Bax与bcl-2蛋白表达比值,磷酸化的Caspase-3及磷酸化JNK蛋白表达明显增加(P<0.01)。应用SF(50、100、200μmol.L-1)预处理6 h可明显对抗Aβ1-42引起的海马神经元细胞凋亡、细胞色素C释放量,SF(100μmol.L-1)能抑制蛋白表达的改变(P<0.01),JNK阻断剂也能抑制Aβ1-42引起的这些改变。结论 SF通过抑制JNK信号传导通路对抗Aβ1-42引起的海马神经元损伤。  相似文献   

20.
Nie BM  Jiang XY  Cai JX  Fu SL  Yang LM  Lin L  Hang Q  Lu PL  Lu Y 《Neuropharmacology》2008,54(5):845-853
Amyloid beta protein (Abeta), the central constituent of senile plaques in Alzheimer's disease (AD), is known to exert toxic effects on cultured neurons. In the present study, the protective effect of panaxydol (PND) and panaxynol (PNN) on Abeta25-35-induced neuronal apoptosis and potential mechanisms were investigated in primary cultured rat cortical neurons. Pretreatment of the cells with PND or PNN prior to 10 microM Abeta25-35 exposure resulted significantly in elevation of cell survival determined by MTT assay, TUNEL/Hoechst staining and western blot. Furthermore, a marked increase in calcium influx and intracellular free radical generation was found after Abeta25-35 exposure, which could be almost completely reversed by pretreatment of PND or PNN. PND and PNN could also alleviate Abeta25-35-induced early-stage neuronal degeneration. These results indicated that inhibition of calcium influx and free radical generation is a mechanism of the anti-apoptotic action of PND and PNN. Since Abeta plays critical roles in the pathogenesis of AD, these findings raise the possibility that PND and PNN reduce neurodegeneration in AD.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号