首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
2.
Mammalian target of rapamycin (mTOR) inhibitors curtail cap-dependent translation. However, they can also induce post-translational modifications of proteins. We assessed both effects to understand the mechanism by which mTOR inhibitors like rapamycin sensitize multiple myeloma cells to dexamethasone-induced apoptosis. Sensitization was achieved in multiple myeloma cells irrespective of their PTEN or p53 status, enhanced by activation of AKT, and associated with stimulation of both intrinsic and extrinsic pathways of apoptosis. The sensitizing effect was not due to post-translational modifications of the RAFTK kinase, Jun kinase, p38 mitogen-activated protein kinase, or BAD. Sensitization was also not associated with a rapamycin-mediated increase in glucocorticoid receptor reporter expression. However, when cap-dependent translation was prevented by transfection with a mutant 4E-BP1 construct, which is resistant to mTOR-induced phosphorylation, cells responded to dexamethasone with enhanced apoptosis, mirroring the effect of coexposure to rapamycin. Thus, sensitization is mediated by inhibition of cap-dependent translation. A high-throughput screening for translational efficiency identified several antiapoptotic proteins whose translation was inhibited by rapamycin. Immunoblot assay confirmed rapamycin-induced down-regulated expressions of XIAP, CIAP1, HSP-27, and BAG-3, which may play a role in the sensitization to apoptosis. Studies in a xenograft model showed synergistic in vivo antimyeloma effects when dexamethasone was combined with the mTOR inhibitor CCI-779. Synergistic effects were associated with an enhanced multiple myeloma cell apoptosis in vivo. This study supports the strategy of combining dexamethasone with mTOR inhibitors in multiple myeloma and identifies a mechanism by which the synergistic effect is achieved.  相似文献   

3.
Mammalian target of rapamycin (mTOR) has been shown to play an important function in cell proliferation, metabolism and tumorigenesis, and proteins that regulate signaling through mTOR are frequently altered in human cancers. In this study we investigated the phosphorylation status of key proteins in the PI3K/AKT/mTOR pathway and the effects of the mTOR inhibitors rapamycin and CCI-779 on neuroblastoma tumorigenesis. Significant expression of activated AKT and mTOR were detected in all primary neuroblastoma tissue samples investigated, but not in non-malignant adrenal medullas. mTOR inhibitors showed antiproliferative effects on neuroblastoma cells in vitro. Neuroblastoma cell lines expressing high levels of MYCN were significantly more sensitive to mTOR inhibitors compared to cell lines expressing low MYCN levels. Established neuroblastoma tumors treated with mTOR inhibitors in vivo showed increased apoptosis, decreased proliferation and inhibition of angiogenesis. Importantly, mTOR inhibitors induced downregulation of vascular endothelial growth factor A (VEGF-A) secretion, cyclin D1 and MYCN protein expression in vitro and in vivo. Our data suggest that mTOR inhibitors have therapeutic efficacy on aggressive MYCN amplified neuroblastomas.  相似文献   

4.
mTOR inhibitor rapamycin and its analogs are lipophilic, demonstrate blood?Cbrain barrier penetration, and have shown promising antitumor effects in several types of refractory tumors. We thus try to explore the therapeutic effects of mTOR inhibitors on brain metastasis models. We examined the effects of different dose of mTOR inhibitors (rapamycin, Temsirolimus-CCI-779) on cell invasion in two brain metastatic breast cancer cell lines (MDA-MB231-BR and CN34-BrM2). Antibody microarray and immunoblotting were applied to detect signaling pathways underlying the dose differential drug effects. The in vivo effects of single drug (CCI-779), and drug combination of CCI-779 with SL327 (a brain penetrant MEK inhibitor) to eliminate the unfavorable activation of MAPK pathway were evaluated in MDA-MB231-BR brain metastases xenograft mice. The two mTOR inhibitors, rapamycin and CCI-779, inhibited the invasion of brain metastatic cells only at a moderate concentration level, which was lost at higher concentrations secondary to activation of the MAPK signaling pathway. Pharmacological inhibition of ERK1/2 by PD98059 and SL327 restored the anti-invasion effects of mTOR inhibition in vitro. In vivo, a significant decrease was noted in the average number of micro and large metastatic lesions as well as the whole brain GFP expression in the CCI-779 1?mg/kg/day treated group compared with that in the vehicle group (P?<?0.05). However, 10?mg/kg CCI-779 treatment did not show significant anti-metastasis effect on the animal model. High-dose CCI-779 eliciting the ERK MAPK activation in the brain metastatic lesion was corroborated. Combined with the brain penetrant MEK inhibitor SL327, high-dose CCI-779 significantly reduces the brain metastasis, and the combination treatment prohibited perivascular invasion of tumor cells and inhibits tumor angiogenesis in vivo. This study provides evidence on the potential value of CCI-779 as well as CCI-779?+?SL327 in prohibiting breast cancer brain metastasis.  相似文献   

5.
The mammalian target of rapamycin (mTOR) inhibitor CCI-779 (temsirolimus) is a recently Food and Drug Administration-approved anticancer drug with efficacy in certain solid tumors and hematologic malignancies. In cell culture studies, CCI-779 at the commonly used nanomolar concentrations generally confers a modest and selective antiproliferative activity. Here, we report that, at clinically relevant low micromolar concentrations, CCI-779 completely suppressed proliferation of a broad panel of tumor cells. This "high-dose" drug effect did not require FKBP12 and correlated with an FKBP12-independent suppression of mTOR signaling. An FKBP12-rapamycin binding domain (FRB) binding-deficient rapamycin analogue failed to elicit both the nanomolar and micromolar inhibitions of growth and mTOR signaling, implicating FRB binding in both actions. Biochemical assays indicated that CCI-779 and rapamycin directly inhibited mTOR kinase activity with IC(50) values of 1.76 +/- 0.15 and 1.74 +/- 0.34 micromol/L, respectively. Interestingly, a CCI-779-resistant mTOR mutant (mTOR-SI) displayed an 11-fold resistance to the micromolar CCI-779 in vitro (IC(50), 20 +/- 3.4 micromol/L) and conferred a partial protection in cells exposed to micromolar CCI-779. Treatment of cancer cells with micromolar but not nanomolar concentrations of CCI-779 caused a marked decline in global protein synthesis and disassembly of polyribosomes. The profound inhibition of protein synthesis was accompanied by rapid increase in the phosphorylation of translation elongation factor eEF2 and the translation initiation factor eIF2 alpha. These findings suggest that high-dose CCI-779 inhibits mTOR signaling through an FKBP12-independent mechanism that leads to profound translational repression. This distinctive high-dose drug effect could be directly related to the antitumor activities of CCI-779 and other rapalogues in human cancer patients.  相似文献   

6.
Wu L  Birle DC  Tannock IF 《Cancer research》2005,65(7):2825-2831
Selective inhibition of repopulation of surviving tumor cells between courses of chemotherapy might improve the outcome of treatment. A potential target for inhibiting repopulation is the mammalian target of rapamycin pathway; PTEN-negative tumor cells are particularly sensitive to inhibition of this pathway. Here we study the rapamycin analogue CCI-779, alone or with chemotherapy, as an inhibitor of proliferation of the human prostate cancer cell lines PC-3 and DU145. The PTEN and phospho-Akt/PKB status and the effect of CCI-779 on phosphorylation of ribosomal protein S6 were evaluated by immunostaining and/or Western blotting. Expression of phospho-Akt/PKB in PTEN mutant PC-3 cells and xenografts was higher than in PTEN wild-type DU145 cells. Phosphorylation of S6 was inhibited by CCI-779 in both cell lines. Cultured cells were treated weekly with mitoxantrone or docetaxel for two cycles, and CCI-779 or vehicle was given between courses. Growth and clonogenic survival of both cell lines were inhibited in a dose-dependent manner by CCI-779, but there were minimal effects when CCI-779 was given between courses of chemotherapy. CCI-779 inhibited the growth of xenografts derived from both cell lines with greater effects against PC-3 than DU145 tumors. CCI-779 caused mild myelosuppression. The activity of mitoxantrone or docetaxel was limited, but CCI-779 given between courses of chemotherapy increased growth delay of PC-3 xenografts. Our results suggest that repopulation of PTEN-negative cancer cells between courses of chemotherapy might be inhibited by CCI-779.  相似文献   

7.
Molecular therapeutics identifies an aberration in tumors to select patients that benefit from molecular targeted therapy. Overexpression of eIF4E in histologically "tumor-free" surgical margins of head and neck squamous cell cancer (HNSCC) patients is an independent predictor of recurrence and is functionally activated through the Akt/mammalian target of rapamycin (mTOR) pathway. Although mTOR inhibitors are cytostatic agents, best used in combination therapy, we hypothesize that they can be used as long-term single agents in an HNSCC model of minimal residual disease (MRD). CCI-779, an mTOR inhibitor, arrested growth of a phosphatase and tensin homologue deleted on chromosome 10 (PTEN) abnormal HNSCC cell line FaDu, inhibiting phosphorylation of 4E-binding protein 1, resulting in increased association with eIF4E and inhibition of basic fibroblast growth factor and vascular endothelial growth factor. Fluorescence in situ hybridization detected PTEN abnormalities in 68% of patient tumors and 35% of tumor-free margins. CCI-779 inhibited growth of established tumors in nude mice. However, in the MRD model, there were significant differences in the tumor-free rate between the control (4%) and the treatment group (50%), and the median tumor-free time was 7 versus 18 days, respectively (P < 0.0001). In those animals that formed tumors, CCI-779 caused a significant decrease in the tumor volume. The Kaplan-Meier curve showed that CCI-779 significantly increased survival (P < 0.0001). The mTOR pathway was inhibited in peripheral blood mononuclear cells potential surrogate markers of response to therapy. Stable transfection of FaDu with luciferase allowed us to monitor the effects of CCI-779 with bioluminescence imaging in the MRD model. These results pave the way for a clinical trial using targeted molecular therapy with CCI-779 as a single agent for mTOR-activated residual cells.  相似文献   

8.
The serine/threonine kinase AKT and its downstream mediator mammalian target of rapamycin (mTOR) are activated in lung adenocarcinoma, and clinical trials are under way to test whether inhibition of mTOR is useful in treating lung cancer. Here, we report that mTOR inhibition blocked malignant progression in K-ras(LA1) mice, which undergo somatic activation of the K-ras oncogene and display morphologic changes in alveolar epithelial cells that recapitulate those of precursors of human lung adenocarcinoma. Levels of phospho-S6(Ser236/235), a downstream mediator of mTOR, increased with malignant progression (normal alveolar epithelial cells to adenocarcinoma) in K-ras(LA1) mice and in patients with lung adenocarcinoma. Atypical alveolar hyperplasia, an early neoplastic change, was prominently associated with macrophages and expressed high levels of phospho-S6(Ser236/235). mTOR inhibition in K-ras(LA1) mice by treatment with the rapamycin analogue CCI-779 reduced the size and number of early epithelial neoplastic lesions (atypical alveolar hyperplasia and adenomas) and induced apoptosis of intraepithelial macrophages. LKR-13, a lung adenocarcinoma cell line derived from K-ras(LA1) mice, was resistant to treatment with CCI-779 in vitro. However, LKR-13 cells grown as syngeneic tumors recruited macrophages, and those tumors regressed in response to treatment with CCI-779. Lastly, conditioned medium from primary cultures of alveolar macrophages stimulated the proliferation of LKR-13 cells. These findings provide evidence that the expansion of lung adenocarcinoma precursors induced by oncogenic K-ras requires mTOR-dependent signaling and that host factors derived from macrophages play a critical role in adenocarcinoma progression.  相似文献   

9.
The epidermal growth factor receptor (EGFR) is commonly amplified, overexpressed, and mutated in glioblastoma, making it a compelling molecular target for therapy. We have recently shown that coexpression of EGFRvIII and PTEN protein by glioblastoma cells is strongly associated with clinical response to EGFR kinase inhibitor therapy. PTEN loss, by dissociating inhibition of the EGFR from downstream phosphatidylinositol 3-kinase (PI3K) pathway inhibition, seems to act as a resistance factor. Because 40% to 50% of glioblastomas are PTEN deficient, a critical challenge is to identify strategies that promote responsiveness to EGFR kinase inhibitors in patients whose tumors lack PTEN. Here, we show that the mammalian target of rapamycin (mTOR) inhibitor rapamycin enhances the sensitivity of PTEN-deficient tumor cells to the EGFR kinase inhibitor erlotinib. In two isogenic model systems (U87MG glioblastoma cells expressing EGFR, EGFRvIII, and PTEN in relevant combinations, and SF295 glioblastoma cells in which PTEN protein expression has been stably restored), we show that combined EGFR/mTOR kinase inhibition inhibits tumor cell growth and has an additive effect on inhibiting downstream PI3K pathway signaling. We also show that combination therapy provides added benefit in promoting cell death in PTEN-deficient tumor cells. These studies provide strong rationale for combined mTOR/EGFR kinase inhibitor therapy in glioblastoma patients, particularly those with PTEN-deficient tumors.  相似文献   

10.
Mammalian target of rapamycin (mTOR) is considered to be a major effector of cell growth and proliferation that controls protein synthesis through a large number of downstream targets. We investigated the expression of the phosphatidylinositol 3'-kinase (PI3K)/mTOR signaling pathway in human pancreatic cancer cells and tissues, and the in vivo antitumor effects of the mTOR inhibitor CCI-779 with/without gemcitabine in xenograft models of human pancreatic cancer. We found that the Akt, mTOR and p70 S6 kinase (S6K1) from the PI3K/mTOR signaling pathway were activated in all of the pancreatic cancer cell lines examined. When surgically resected tissue specimens of pancreatic ductal adenocarcinoma were examined, phosphorylation of Akt, mTOR and S6K1 was detected in 50, 55 and 65% of the specimens, respectively. Although CCI-779 had no additive or synergistic antiproliferative effect when combined with gemcitabine in vitro, it showed significant antitumor activity in the AsPC-1 subcutaneous xenograft model as both a single agent and in combination with gemictabine. Furthermore, in the Suit-2 peritoneal dissemination xenograft model, the combination of these 2 drugs achieved significantly better survival when compared with CCI-779 or gemcitabine alone. These results demonstrate promising activity of the mTOR inhibitor CCI-779 against human pancreatic cancer, and suggest that the inhibition of mTOR signaling can be exploited as a potentially tumor-selective therapeutic strategy.  相似文献   

11.
Phosphatase and tensin homologue deleted from chromosome 10 (PTEN) is a lipid phosphatase with putative tumor suppressing abilities, which is frequently mutated in prostate cancer. Loss of PTEN leads to constitutive activation of the phosphatidylinositol 3'-kinase/serine-threonine kinase (Akt) signal transduction pathway and has been associated with resistance to chemotherapy. This study aimed to determine the effects of PTEN status and treatment with rapamycin, an inhibitor of mTOR, in the response of prostate cancer cell lines to doxorubicin. The DU-145 PTEN-positive cell line was significantly more susceptible to the antiproliferative effects of doxorubicin as compared with the PTEN-negative PC-3 cell line. Transfection of PTEN into the PC3 cells decreased the activation of Akt and the downstream mTOR-regulated 70-kDa S6 (p70(s6k)) kinase and reversed the resistance to doxorubicin in these cells, indicating that changes in PTEN status/Akt activation modulate the cellular response to doxorubicin. Treatment of PC-3 PTEN-negative cells with rapamycin inhibited 70-kDa S6 kinase and increased the proliferative response of these cells to doxorubicin, so that it was comparable with the responses of PTEN-positive DU-145 cells and the PC-3-transfected cells. Furthermore, treatment of mice bearing the PTEN-negative PC-3 prostate cancer xenografts with CCI-779, an ester of rapamycin in clinical development combined with doxorubicin, inhibited the growth of the doxorubicin-resistant PC-3 tumors confirming the observations in vitro. Thus, rapamycin and CCI-779, by interacting with downstream intermediates in the phosphatidylinositol 3'-kinase/Akt signaling pathway, reverse the resistance to doxorubicin conferred by PTEN mutation/Akt activation. These results provide the rationale to explore in clinical trials whether these agents increase the response to chemotherapy of patients with PTEN-negative/Akt active cancers.  相似文献   

12.
Deregulation of the phosphatidyl inositol trisphosphate kinase/AKT/mammalian target of rapamycin (mTOR) and RAS/mitogen-activated protein kinase (MAPK)/MNK pathways frequently occurs in human prostate carcinomas (PCas) and leads to aberrant modulation of messenger RNA (mRNA) translation. We have investigated the relative contribution of these pathways to translational regulation and proliferation of PCa cells. MNK-dependent phosphorylation of eIF4E is elevated in DU145 cells, which have low basal levels of AKT/mTOR activity due to the expression of the tumor suppressor PTEN. In contrast, eIF4E phosphorylation is low in PC3 and LNCaP cells with mutated PTEN and constitutively active AKT/mTOR pathway, but it can be strongly induced through inhibition of mTOR activity by rapamycin or serum depletion. Remarkably, we found that inhibition of MNKs strongly reduced the polysomal recruitment of terminal oligopyrimidine messenger RNAs (TOP mRNAs), which are known targets of mTOR-dependent translational control. Pull-down assays of the eIF4F complex indicated that translation initiation was differently affected by inhibition of MNKs and mTOR. In addition, concomitant treatment with MNK inhibitor and rapamycin exerted additive effects on polysomal recruitment of TOP mRNAs and protein synthesis. The MNK inhibitor was more effective than rapamycin in blocking proliferation of PTEN-expressing cells, whereas combination of the two inhibitors suppressed cell cycle progression in both cell lines. Microarray analysis showed that MNK affected translation of mRNAs involved in cell cycle progression. Thus, our results indicate that a balance between the activity of the AKT/mTOR and the MAPK/MNK pathway in PCa cells maintains a defined translational level of specific mRNAs required for ribosome biogenesis, cell proliferation and stress response and might confer to these cells the ability to overcome negative insults.  相似文献   

13.
PURPOSE: The involvement of phosphatase and tensin homologue deleted on chromosome ten (PTEN) in endometrial carcinoma has implicated phosphatidylinositol 3-kinase signaling and mammalian target of rapamycin (mTOR) activation in this disease. Understanding the extent of mTOR involvement and the mechanism responsible for activation is important, as mTOR inhibitors are currently being evaluated in clinical trials for endometrial carcinoma. Although tuberous sclerosis complex 2 (TSC2) is the "gatekeeper" for mTOR activation, little is known about defects in the TSC2 tumor suppressor or signaling pathways that regulate TSC2, such as LKB1/AMP-activated protein kinase, in the development of endometrial carcinoma. EXPERIMENTAL DESIGN: We determined the frequency of mTOR activation in endometrial carcinoma (primary tumors and cell lines) and investigated PTEN, LKB1, and TSC2 defects as underlying cause(s) of mTOR activation, and determined the ability of rapamycin to reverse these signaling defects in endometrial carcinoma cells. RESULTS: Activation of mTOR was a consistent feature in endometrial carcinomas and cell lines. In addition to PTEN, loss of TSC2 and LKB1 expression occurred in a significant fraction of primary tumors (13% and 21%, respectively). In tumors that retained TSC2 expression, phosphorylation of tuberin at S939 was observed with a high frequency, indicating that mTOR repression by TSC2 had been relieved via AKT phosphorylation of this tumor suppressor. In PTEN-null and LKB1-null endometrial carcinoma cell lines with functional inactivation of TSC2, phosphatidylinositol 3-kinase (PI3K) inhibitors wortmannin and LY294002 were able to inhibit AKT and mTOR signaling and reverse TSC2 phosphorylation. In contrast, although rapamycin inhibited mTOR signaling, it did not relieve phosphorylation of TSC2 at S939. CONCLUSIONS: Inactivation of TSC2 via loss of expression or phosphorylation occurred frequently in endometrial carcinoma to activate mTOR signaling. High-frequency mTOR activation supports mTOR as a rational therapeutic target for endometrial carcinoma. However, whereas rapamycin and its analogues may be efficacious at inhibiting mTOR activity, these drugs do not reverse the functional inactivation of TSC2 that occurs in these tumors.  相似文献   

14.
15.
The protein synthetic machinery is activated by a variety of genetic alterations during tumor progression and represents an attractive target for cancer therapy. The mammalian target of rapamycin (mTOR) plays an important role in regulating protein translation through phosphorylation of p70 S6 kinase 1 (S6K1), a protein involved in ribosome biogenesis, and 4E-BP1 (eIF-4E binding protein), a translation repressor. It has been shown that mTOR has a direct linkage to the phosphatidylinositol-3'-kinase (PI3K)/PTEN-AKT survival pathway. Recent studies have demonstrated that mTOR inhibition by rapamycin or its analogues have remarkable activity against a wide range of human cancers in vitro and in human tumor xenograft models. Phase I clinical evaluations also suggested an anti-tumor effect of rapamycin analogue such as CCI-779. The clinical challenge for the application of this class of anticancer drug is the ability to prospectively identify which tumors will be sensitive to mTOR inhibition. Recent studies have identified cellular markers that are associated with the in vitro activity of rapamycin or CCI-779. However, there have been no reports on how these cellular markers are expressed together in human tumor specimen. In this study, multiple components of the PI3K/PTEN-AKT-mTOR pathway were evaluated by immunohistochemistry in tissue arrays containing 124 tumors from 8 common tumor types. The results show variable expression of all the signaling proteins. For example, mTOR expression was low in brain tumors, but high in the rest of tumors. High levels of 4E-BP1 were seen in colonic adenocarcinoma and low levels in lymphoma. Phospho-AKT (p-AKT) and phospho-S6K1 (p-S6K1) were the only proteins that had significantly correlated protein expression (rs=0.51, p<0.001). Since low PTEN, high p-AKT and high p-S6K1 expression render tumors sensitive to mTOR inhibition in vitro, these criteria were used to model tumor sensitivity. Overall, 26% of tumors (32/124) are predicted to be sensitive to mTOR inhibition, with variable rates for different tumors (melanoma 0% vs ovarian 41%). This is the first report on the PI3K/PTEN-AKT-mTOR pathway in common human tumors and evaluation of the coordinated expression of different signaling proteins. This study should provide a useful tool for selecting future targeted phase II and III clinical trials in the development of this exciting class of agents.  相似文献   

16.

Background:

Preclinical studies have shown that PTEN loss enhances sensitivity to mammalian target of Rapamycin (mTOR) inhibitors because of facilitated PI3K (phosphatidylinositol-3 kinase)/Akt activation and consecutive stimulation of the mTOR pathway. In patients with advanced transitional cell carcinoma (TCC) treated with the mTOR inhibitor everolimus, PTEN loss was, however, associated with resistance to treatment.

Methods:

Transitional cell carcinoma specimens, human bladder cancer cells and derived mouse xenografts were used to evaluate how the PTEN status influences the activity of mTOR inhibitors.

Results:

Transitional cell carcinoma patients with a shorter progression-free survival under everolimus exhibited PTEN deficiency and increased Akt activation. Moreover, PTEN-deficient bladder cancer cells were less sensitive to rapamycin than cells expressing wild-type PTEN, and rapamycin strikingly induced Akt activation in the absence of functional PTEN. Inhibition of Akt activation by the PI3K inhibitor wortmannin interrupted this rapamycin-induced feedback loop, thereby enhancing the antiproliferative effects of the mTOR inhibitor both in vitro and in vivo.

Conclusion:

Facilitation of Akt activation upon PTEN loss can have a more prominent role in driving the feedback loop in response to mTOR inhibition than in promoting the mTOR pathway. These data support the use of both PI3K and mTOR inhibitors to treat urothelial carcinoma, in particular in the absence of functional PTEN.  相似文献   

17.
mTOR-targeted therapy of cancer with rapamycin derivatives.   总被引:25,自引:0,他引:25  
Rapamycin and its derivatives (CCI-779, RAD001 and AP23576) are immunosuppressor macrolides that block mTOR (mammalian target of rapamycin) functions and yield antiproliferative activity in a variety of malignancies. Molecular characterization of upstream and downstream mTOR signaling pathways is thought to allow a better selection of rapamycin-sensitive tumours. For instance, a loss of PTEN functions results in Akt phosphorylation, cell growth and proliferation; circumstances that can be blocked using rapamycin derivatives. From recent studies, rapamycin derivatives appear to display a safe toxicity profile with skin rashes and mucositis being prominent and dose-limiting. Sporadic activity with no evidence of dose-effect relationship has been reported. Evidence suggests that rapamycin derivatives could induce G1-S cell cycle delay and eventually apoptosis depending on inner cellular characteristics of tumour cells. Surrogate molecular markers that could be used to monitor biological effects of rapamycin derivatives and narrow down biologically active doses in patients, such as the phosphorylation of P70S6K or expression of cyclin D1 and caspase 3, are currently evaluated. Since apoptosis induced by rapamycin is blocked by BCL-2, strategies aimed at detecting human tumours that express BCL-2 and other anti-apoptotic proteins might allow identification of rapamycin-resistant tumours. Finally, we discuss current and future placements of rapamycin derivatives and related translational research into novel therapeutic strategies against cancer.  相似文献   

18.
The PTEN protein is a lipid phosphatase with putative tumor suppressing abilities, including inhibition of the PI3K/Akt signaling pathway. Inactivating mutations or deletions of the PTEN gene, which result in hyper-activation of the PI3K/Akt signaling pathway, are increasingly being reported in human malignancies, including breast cancer, and have been related to features of poor prognosis and resistance to chemotherapy and hormone therapy. Prior studies in different tumor models have shown that, under conditions of PTEN deficiency, the PI3K/Akt signaling pathway becomes a fundamental proliferative and survival pathway, and that pharmacological inhibition of this pathway results in tumor growth inhibition. This study aimed to explore further this hypothesis in breast cancer cells. To this end, we have determined the growth response to inhibition of the PI3K/Akt signaling pathway in a series of breast cancer cell lines with different PTEN levels. The PTEN-negative cell line displayed greater sensitivity to the growth inhibitory effects of the PI3K inhibitor, LY294002 and rapamycin, an inhibitor of the PI3K/Akt downstream mediator mTOR, compared with the PTEN-positive cell lines. To determine whether or not these differences in response are specifically due to effects of PTEN, we developed a series of cell lines with reduced PTEN protein expression compared with the parental cell line. These reduced PTEN cells demonstrated an increased sensitivity to the anti-proliferative effects induced by LY294002 and rapamycin compared with the parental cells, which corresponded to alterations in cell cycle response. These findings indicate that inhibitors of mTOR, some of which are already in clinical development (CCI-779, an ester of rapamycin), have the potential to be effective in the treatment of breast cancer patients with PTEN-negative tumors and should be evaluated in this setting.  相似文献   

19.
Panwalkar A  Verstovsek S  Giles FJ 《Cancer》2004,100(4):657-666
  相似文献   

20.
The mammalian target of rapamycin (mTOR), a downstream effector of the phosphatidylinositol 3-kinase (PI3K)/Akt (protein kinase B) signaling pathway that mediates cell survival and proliferation, is a prime strategic target for anticancer therapeutic development. By targeting mTOR, the immunosuppressant and antiproliferative agent rapamycin inhibits signals required for cell cycle progression, cell growth, and proliferation. Both rapamycin and novel rapamycin analogues with more favorable pharmaceutical properties, such as CCI-779, RAD 001, and AP23573, are highly specific inhibitors of mTOR. In essence, these agents gain function by binding to the immunophilin FK506 binding protein 12 and the resultant complex inhibits the activity of mTOR. Because mTOR activates both the 40S ribosomal protein S6 kinase (p70s6k) and the eukaryotic initiation factor 4E-binding protein-1, rapamycin-like compounds block the actions of these downstream signaling elements, which results in cell cycle arrest in the G1 phase. Rapamycin and its analogues also prevent cyclin-dependent kinase (CDK) activation, inhibit retinoblastoma protein phosphorylation, and accelerate the turnover of cyclin D1, leading to a deficiency of active CDK4/cyclin D1 complexes, all of which potentially contribute to the prominent inhibitory effects of rapamycin at the G1/S boundary of the cell cycle. Rapamycin and rapamycin analogues have demonstrated impressive growth-inhibitory effects against a broad range of human cancers, including breast cancer, in preclinical and early clinical evaluations. In breast cancer cells, PI3K/Akt and mTOR pathways seem to be critical for the proliferative responses mediated by the epidermal growth factor receptor, the insulin growth factor receptor, and the estrogen receptor. Furthermore, these pathways may be constitutively activated in cancers with many types of aberrations, including those with loss of PTEN suppressor gene function. Therefore, the development of inhibitors of mTOR and related pathways is a rational therapeutic strategy for breast and other malignancies that possess a wide range of aberrant molecular constituents. This review will summarize the principal mechanisms of action of rapamycin and rapamycin derivatives, as well as the potential utility of these agents as anticancer therapeutic agents with an emphasis on breast cancer. The preliminary results of early clinical evaluations with rapamycin analogues and the unique developmental challenges that lie ahead will also be discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号