首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract

During ischemic stroke, massive neural damage occurs due to excess release of glutamate which acts mainly through N-methyl-D-aspartate (NMDA) receptors. Activation of the NMDA receptor stimulates nitric oxide (NO) production by NO synthase (NOS). NO mediates glutamate neurotoxicity as inhibitors of NOS prevent neuronal death. FK506> an immunosuppressant drug, binds to FK506 binding protein (FKBP). One target of the FK506/FKBP complex is the calcium/calmodulin-dependent protein phosphatase calcineurin, whose activity is inhibited upon interaction with FK506/FKBP. FK506 treatment increases phosphorylation level of calcinurin substrates including NOS. As a potent neuroprotective agent in vitro and in vivo, FK506 increases NOS phosphorylation and decreases NO production. NO activates poly(ADP-ribose) synthetase (PARS), a nuclear enzyme that synthesizes poly(ADP-ribose) from NAD. Prolonged activation of PARS depletes NAD and lowers cellular energy levels. Inhibition of PARS also prevents NO toxicity. NOS inhibitors, immunosuppressants and PARS inhibitors may be useful agents to prevent neuronal damage during stroke. [Neurol Res 1995; 17: 285-288]  相似文献   

2.
Nitric oxide (NO) is a diffusible, multifunctional signaling molecule found in many areas of the brain. NO signaling is involved in a wide array of neurophysiological functions including synaptogenesis, modulation of neurotransmitter release, synaptic plasticity, central nervous system blood flow and cell death. NO synthase (NOS) activity regulates the production of NO and the cerebellum expresses high levels of nitric oxide synthase (NOS) in granule, stellate and basket cells. Cerebellar mutant mice provide excellent opportunities to study changes of NO/NOS concentrations and activities to gain a greater understanding of the roles of NO and NOS in cerebellar function. Here, we have reviewed the current understanding of the functional roles of NO and NOS in the cerebellum and present NO/NOS activities that have been described in various cerebellar mutant mice and NOS knockout mice. NO appears to exert neuroprotective effects at low to moderate concentrations, whereas NO becomes neurotoxic as the concentration increases. Excessive NO production can cause oxidative stress to neurons, ultimately impairing neuronal function and result in neuronal cell death. Based on their genetics and cerebellar histopathology, some of cerebellar mutant mice display similarities with human neurological conditions and may prove to be valuable models to study several human neurological disorders, such as autism and schizophrenia.  相似文献   

3.
There is contradictory information on the relevance of nitric oxide (NO) and cGMP for the function of brain capillary endothelial cells (BCEC) forming the blood-brain barrier (BBB). Therefore, NO/cGMP-mediated signal transduction was investigated in cell cultures of BCEC and of astrocytes (AC) inducing BBB properties in BCEC. Constitutive, Ca2+-activated isoforms of NO synthase (NOS) were found in BCEC (endothelial NOS: eNOS) and in AC (neuronal NOS: nNOS), leading to increased NO release after incubation with the Ca2+-ionophore A23187. Both cell types expressed inducible NOS (iNOS) after incubation with cytokines. Soluble guanylate cyclase (sGC) was detected in both cell types. NO-dependent cGMP formation were observed in BCEC and, less pronounced, in AC. Furthermore, both cell types formed cGMP independently of NO via stimulation of particulate guanylate cyclase (pGC). cGMP-dependent protein kinase (PKG) type Ibeta, but not type II, was expressed in BCEC and AC. In BCEC, vasodilator-stimulated phosphoprotein (VASP) was detected, an established substrate of PKG and associated with microfilaments and cell-cell contacts. Phosphorylation of VASP was intensified by increased intracellular cGMP concentrations. The results indicate that BCEC and, to a smaller degree, AC can form NO and cGMP in response to different stimuli. In BCEC, NO/cGMP-dependent phosphorylation of VASP is demonstrated, thus providing a possibility of influencing cell-cell contacts.  相似文献   

4.
Multiple processes lead to neuronal death after ischemia, but the generation of nitric oxide (NO) is a key component in this cascade of events. The mechanisms that regulate the extent of neuronal degeneration during anoxia and NO toxicity are multifactorial. Neuronal death may be modulated by the activity of signal transduction systems that influence the toxicity of NO or its metabolic products such as cGMP. The enzyme responsible for the production of NO, nitric oxide synthase (NOS), is phosphorylated by protein kinase C (PKC), the cAMP-dependent protein kinase (PKA), and the calcium/calmodulin-dependent protein kinase II (CaM-II). We examined in primary cultured hippocampal neurons whether the protein kinases PKC, PKA, CaM-II, and cGMP-dependent protein kinase modified the toxic effects of anoxia and NO. Down-regulation of PKC activity with PMA (1μM) increased hippocampal neuronal survival during anoxia and NO exposure from approximately 22% to 88%. Inhibitors of PKC activity 9H-7, H-8, sphingosine, and staurosporine also were neuroprotective. Down-regulation of PKC activity increased survival during anoxia even in the presence of the NOS inhibitor, Nω-methyl-L-arginine. Thus, although down-regulation of PKC activity may increase neuronal survival by decreasing NOS activity, it also is likely that PKC contributes to ischemic neuronal death by mechanisms that are independent of NOS. Inhibition of the cGMP-dependent protein kinase activity, but not the activity of the CaM-II also was neuroprotective during NO administration. In contrast to the protective effects of inhibition of PKC and the cGMP-dependent protein kinase, activation rather than inhibition of PKA increased hippocampal neuronal survival during NO exposure. These results indicate that neuronal survival during anoxia and NO exposure is linked to the modulation of PKC, PKA, and cGMP-dependent protein kinase activity but is not dependent on the CaM-II pathway. Understanding the involvement of PKC, PKA, and the cGMP-dependent protein kinase in modulating the effect of neuronal death during ischemia and NO toxicity may help in directing future therapeutic modalities for cerebrovascular disease. © 1993 Wiley-Liss, Inc.  相似文献   

5.
Parkinson's disease is characterized by dopaminergic neuronal degeneration, but its pathogenic mechanism is still unknown. In the dopaminergic neurons, oxygen radicals such as hydrogen peroxide are released through dopamine oxidation. Many factors are involved in radical formation, but glutamate and nitric oxide (NO) are the major effectors of the radical-induced neurotoxicity mediated primarily through calcium influx. In the cultured embryonic rat mesencephalon, we investigated the dopaminergic and non-dopaminergic neuronal death induced by glutamate and by NO-generating agents. Although glutamate had a neurotoxic effect on both dopaminergic and non-dopaminergic neurons, it showed slightly greater effect in the dopaminergic neurons. In contrast to glutamate, NO-generating agents (S-nitrosocysteine and sodium nitroprusside) showed neurotoxic effects restricted exclusively to non-dopaminergic neurons. Although No-nitro-L-arginine, an NO synthase inhibitor, had no significant effect on the glutamate-induced cytotoxicity in dopaminergic neurons, it had a significant antagonistic effect on that in non-dopaminergic neurons. These findings indicate the presence of two different mechanisms of glutamate-induced neuronal death, one being neurotoxicity not mediated by NO, found in dopaminergic neurons, and the other being that mediated via NO, found in non-dopaminergic neurons. © 1996 Wiley-Liss, Inc.  相似文献   

6.
Xu Y  Tao YX 《Neuroreport》2004,15(2):263-266
Platelet-activating factor (PAF), a bioactive phospholipid implicated in neuronal excitotoxic death, augments the presynaptic release of glutamate. Excessive activation of postsynaptic glutamate receptors and subsequent downstream signals leads to excitotoxicity. The present study proposed that the NMDA receptor/nitric oxide (NO) signal pathway might be involved in PAF-induced neurotoxicity. After the cultured neurons were exposed to PAF for 24 h the percentage of neuronal death increased in a dose-dependent manner. The PAF effects were significantly prevented not only by BN52021, a PAF antagonist, but also by MK-801, an NMDA antagonist, and L-NAME, an NO synthase (NOS) inhibitor. Moreover, the increases in NOS activity and neuronal NOS expression induced by chronic exposure of the cultured neurons to PAF were dramatically blocked by BN52021 and MK-801, respectively. Our findings suggest that the NMDA receptor/NO signaling pathway might contribute to the pathological mechanism of cell death triggered via PAF receptor activation.  相似文献   

7.
The neuroprotective effects of a novel synthetic compound, M50463, have been determined by using embryonic rat neocortical neurons in various culture conditions. M50463 was initially characterized as a potent specific ligand for a voltage-dependent sodium channel by radioligand binding studies. In fact, M50463 inhibited neuronal cell death induced by veratrine and inhibited an increase of the intracellular calcium level in neurons evoked by veratrine. In addition to such expected effects, M50463 had the ability to prevent glutamate neurotoxicity, to promote the neuronal survival in serum-deprived medium and to prevent nitric oxide-induced neurotoxicity. These results suggested that M50463 is not a simple sodium channel blocker, but a neuroprotective agent which has some crucial mechanism of action on neuronal death occurring in various situations, and it is a novel, innovative candidate for neuroprotective therapy for various neurodegenerative disorders.  相似文献   

8.
Pérez-Capote K  Serratosa J  Solà C 《Glia》2004,45(3):258-268
We studied the influence of glial cells on the neuronal response to glutamate toxicity in cerebellar granule cell cultures. We compared the effect of glutamate on neuronal viability in neuronal vs. neuronal-glial cultures and determined this effect after pretreating the cultures with the lipopolysaccharide (LPS) of Escherichia coli, agent widely used to induce glial activation. Morphological changes in glial cells and nitric oxide (NO) production were evaluated as indicators of glial activation. We observed that glutamate neurotoxicity in neuronal-glial cultures was attenuated in a certain range of glutamate concentration when compared to neuronal cultures, but it was enhanced at higher glutamate concentrations. This enhanced neurotoxicity was associated with morphological changes in astrocytes and microglial cells in the absence of NO production. LPS treatment induced morphological changes in glial cells in neuronal-glial cultures as well as NO production. These effects occurred in the absence of significant neuronal death. However, when LPS-pretreated cultures were treated with glutamate, the sensitivity of neuronal-glial cultures to glutamate neurotoxicity was increased. This was accompanied by additional morphological changes in glial cells in the absence of a further increase in NO production. These results suggest that quiescent glial cells protect neuronal cells from glutamate neurotoxicity, but reactive glial cells increase glutamate neurotoxicity. Therefore, glial cells play a key role in the neuronal response to a negative stimulus, suggesting that this response can be modified through an action on glial cells.  相似文献   

9.
The biological roles of nitric oxide (NO) and cGMP as inter- and intracellular messengers have been intensively investigated during the last decade. NO and cGMP both mediate physiological effects in the cardiovascular, endocrinological, and immunological systems as well as in central nervous system (CNS). In the CNS, activation of theN-methyl-d-aspartic acid (NMDA) type of glutamatergic receptor induces Ca2+-dependent NOS and NO release, which then activates soluble guanylate cyclase for the synthesis of cGMP. Both compounds appear to be important mediators in long-term potentiation and long-term depression, and thus may play important roles in the mechanisms of learning and memory. Aging and the accumulation of amyloid β (Aβ) peptides are important risk factors for the impairment of memory and development of dementia. In these studies, the mechanism of basal- and NMDA receptor-mediated cGMP formation in different parts of adult and aged brains was evaluated. The relative activity of the NO cascade was determined by assay of NOS and guanylate cyclase activities. In addition, the effect of the neurotoxic fragment 25–35 of Aβ (Aβ) peptide on basal and NMDA receptor-mediated NOS activity was investigated. The studies were carried out using slices of hippocampus, brain cortex, and cerebellum from 3- and 28-mo-old rats. Aging coincided with a decrease in the basal level of cGMP as a consequence of a more active degradation of cGMP by a phosphodiesterase in the aged brain as compared to the adult brain. Moreover, a loss of the NMDA receptor-stimulated enhancement of the cGMP level determined in the presence of cGMP-phosphodiesterase inhibitor 3-isobutyl-1-methylxanthine (IBMX) was observed in hippocampus and cerebellum of aged rats. However, this NMDA receptor response was preserved in aged brain cerebral cortex. A significant enhancement of the basal activity of NOS by about 175 and 160% in hippocampus and cerebellum, respectively, of aged brain may be involved in the alteration of the NMDA receptor response. The neurotoxic fragment of Aβ, peptide 25–35, decreased significantly the NMDA receptor-mediated calcium, and calmodulin-dependent NO synthesis that may then be responsible for disturbances of the NO and cGMP signaling pathway. We concluded that cGMP-dependent signal transduction in hippocampus and cerebellum may become insufficient in senescent brain and may have functional consequences in disturbances of learning and memory processes. Aβ peptide accumulated during brain aging and in Alzheimer disease may be an important factor in decreasing the NO-dependent signal transduction mediated by NMDA receptors.  相似文献   

10.
Zheng S  Zuo Z 《Brain research》2005,1054(2):143-151
A brain slice model was used to test the hypothesis that preconditioning with isoflurane, a commonly used volatile anesthetic in clinical practice, reduces neuronal injury caused by overstimulation of glutamate receptors. Glutamate receptors were stimulated by various concentrations of glutamate for 20 min, N-methyl-d-aspartate (NMDA) for 15 min or alpha-amino-3-hydroxy-5-methyl-4-isoxazol propionic acid (AMPA) for 15 min. Morphology of Purkinje neurons in the cerebellar slices of adult male Sprague-Dawley rats was evaluated 5 h after the agonist stimulation. Glutamate, NMDA and AMPA induced a dose-dependent decrease in the percentage of morphologically normal Purkinje neurons. The concentration to induce the maximal neurotoxic effect was 300 microM for glutamate, 300 microM for NMDA and 30 microM for AMPA. Isoflurane preconditioning (2% isoflurane for 30 min and then a 15-min rest period before the agonist stimulation) significantly reduced the neurotoxicity induced by 300 microM glutamate, 300 microM NMDA or 30 microM AMPA. Isoflurane preconditioning-induced protection against glutamate neurotoxicity was abolished by two protein kinase C (PKC) inhibitors, calphostin C (0.5 microM) and chelerythrine (5 microM), or a nitric oxide synthase (NOS) inhibitor, l-nitro(G)-arginine methyl ester (l-NAME, 1.5 mM), but was not affected by an adenosine A1 receptor inhibitor, 8-cyclopentyl-1,3-dipropylxanthine (DPCPX, 300 nM), or a Gi protein inhibitor, pertussis toxin (PTX, 200 ng/ml). Isoflurane preconditioning-induced protection against NMDA neurotoxicity was also abolished by calphostin C, chelerythrine or l-NAME. Thus, isoflurane preconditioning reduced glutamate receptor overstimulation-induced neuronal injury/death. This neuroprotection may be PKC- and NOS-dependent.  相似文献   

11.
We have characterized lipopolysaccharide (LPS) preconditioning-induced neuroprotective mechanisms against nitric oxide (NO) toxicity. Pretreatment of rat cortical cultures with LPS attenuated neurotoxicity of NO donors, including sodium nitroprusside (SNP) and diethylamine NONOate (NONOate). A transiently increased expression of endothelial nitric oxide synthase (eNOS) accompanied by an increase in NO production was observed during LPS preconditioning. Application of NOS inhibitors including L-N(5)-(1-iminoethyl)-ornithine (L-NIO) and L-nitroarginine methylester (L-NAME) abolished LPS-dependent protection against SNP toxicity. The LPS effect was also blocked by KT5823, an inhibitor of cGMP-dependent protein kinase (PKG). Consistently, application of 8-bromo-cyclic GMP (8-Br-cGMP), a slowly degradable cGMP analogue capable of PKG activation, was neuroprotective. LPS preconditioning resulted in a heightened neuronal expression of Bcl-2 protein that was abolished by L-NAME and KT5823, the respective inhibitors of NOS and PKG. Together, our results reveal the signaling cascade of "LPS --> eNOS --> NO --> cGMP/PKG --> Bcl-2" that might have contributed to the LPS protective effects in cortical neurons.  相似文献   

12.
Inflammatory activation of glial cells is associated with neuronal injury in several degenerative movement disorders of the basal ganglia, including manganese neurotoxicity. Manganese (Mn) potentiates the effects of inflammatory cytokines on nuclear factor-kappaB (NF-kappaB)-dependent expression of nitric oxide synthase 2 (NOS2) in astrocytes, but the signaling mechanisms underlying this effect have remained elusive. It was postulated in the present studies that direct stimulation of cGMP synthesis and activation of mitogen-activated protein (MAP) kinase signaling pathways underlies the capacity of Mn to augment NF-kappaB-dependent gene expression in astrocytes. Exposure of primary cortical astrocytes to a low concentration of Mn (10 microM) potentiated expression of NOS2 mRNA and protein along with production of NO in response to interferon-gamma (IFNgamma) and tumor necrosis factor-alpha (TNFalpha), which was prevented by overexpression of dominant negative IkappaB alpha. Mn also potentiated IFNgamma- and TNFalpha-induced phosphorylation of extracellular response kinase (ERK), p38, and JNK, as well as cytokine-induced activation of a fluorescent NF-kappaB reporter construct in transgenic astrocytes. Activation of ERK preceded that of NF-kappaB and was required for maximal activation of NO synthesis. Independently of IFNgamma/TNFalpha, Mn-stimulated synthesis of cGMP in astrocytes and inhibition of soluble guanylate cyclase (sGC) abolished the potentiating effect of Mn on MAP kinase phosphorylation, NF-kappaB activation, and production of NO. These data indicate that near-physiological concentrations of Mn potentiate cytokine-induced expression of NOS2 and production of NO in astrocytes via activation of sGC, which promotes ERK-dependent enhancement of NF-kappaB signaling.  相似文献   

13.
The human immunodeficiency virus type 1 (HIV-1) glycoprotein gp120 causes neuronal cell death; however, the molecular mechanisms of the neurotoxic effect remain largely unresolved. It has been suggested that gp120 evokes cell death by inducing the release of neurotoxins, including glutamate. The objective of this work was to examine the role of glutamate in gp120-mediated neurotoxicity. We used as an experimental tool cerebellar granule cells prepared from 8-day-old rat cerebella, in which both glutamate and gp120 cause cell death. Cerebellar granule neurons were exposed to gp120 or glutamate alone or in combination with the glutamate receptor antagonist MK801 as well as other antiglutamatergic compounds. Cell viability was measured at various times by using several markers of cell death and apoptosis. MK801, at a concentration that blocked glutamate-induced neuronal cell death, failed to prevent gp120-mediated apoptotic cell death. Moreover, interleukin-10, which has previously been shown to block glutamate toxicity in these neurons, was not neuroprotective against gp120. Because gp120 toxicity is mediated by activation of the chemokine receptor CXCR4, neurons were incubated with the CXCR4 inhibitor AMD3100. This compound prevented gp120- but not glutamate-mediated cell death. These findings suggest that gp120 is toxic to neurons even in the absence of the virus and that the toxic mechanism involves primarily activation of CXCR4 receptor. Therefore, antagonists to the CXCR4 receptor may be more suitable compounds for inhibiting HIV-1 neurotoxicity.  相似文献   

14.
Thippeswamy T  McKay JS  Morris R  Quinn J  Wong LF  Murphy D 《Glia》2005,49(2):197-210
The NO-cGMP pathway has emerged as a neuroprotective signaling system involved in communication between neurons and glia. We have previously shown that axotomy or nerve growth factor (NGF)-deprivation of dorsal root ganglion (DRG) neurons leads to increased production of NO and at the same time an increase in cGMP production in their satellite glia cells. Blockade of NO or its receptor, the cGMP synthesizing enzyme soluble guanylate cyclase (sGC), results in apoptosis of neurons and glia. We now show that co-culture of neonatal DRG neurons with either Schwann cells pre-treated with an NO donor or a membrane-permeant cGMP analogue; or neurons maintained in the medium from Schwann cell cultures treated in the same way, prevents neuronal apoptosis. Both NO donor and cGMP treatment of Schwann cells results in synthesis of NGF and NT3. Furthermore, if the Schwann cells are previously infected with adenoviral vectors expressing a dominant negative sGC mutant transgene, treatment of these Schwann cells with an NO donor now fails to prevent neuronal apoptosis. Schwann cells treated in this way also fail to express neither cGMP nor neurotrophins. These findings suggest NO-sGC-cGMP-mediated NGF and NT3 synthesis by Schwann cells protect neurons.  相似文献   

15.
Lee HH  Yang LL  Wang CC  Hu SY  Chang SF  Lee YH 《Brain research》2003,986(1-2):103-113
Neuronal injury in the central nervous system following ischemic insult is believed to result from glutamate toxicity and glucose deprivation. In this study, polyphenols isolated from Scutellaria baicalensis Georgi, including baicalin, baicalein, and wogonin, were investigated for their neuroprotective effects against glutamate/NMDA (Glu/NMDA) stimulation and glucose deprivation in primary cultured rat brain neurons. Cell death was accessed by lactate dehydrogenase (LDH) release assay for necrosis, and mitochondrial activity was accessed by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) reduction activity assay. It was found that both baicalin and baicalein decreased LDH release of the cultured neurons after 24 h treatment, whereas wogonin profoundly increased LDH release after 2 h treatment and resulted in neuronal death after 24 h. Glu/NMDA treatment profoundly increased LDH release and moderately decreased MTT reduction activity in an NMDA receptor-dependent manner. Both baicalin and baicalein significantly reduced Glu/NMDA-increased LDH release, in which baicalein is much more potent than baicalin. Glu/NMDA-increased intracellular calcium was also significantly attenuated by baicalin and baicalein. Baicalin and baicalein did not affect glutamate receptor binding activity, but baicalein did moderately decrease Glu/NMDA-induced nitric oxide (NO) production. In the glucose deprivation (GD) study, baicalein but not baicalin showed significant protective effects on the GD-increased LDH release, without affecting the GD-induced NO production, in cultured rat brain neurons. These results suggest that baicalein is the most effective compound among three polyphenols tested in preventing neurotoxicity induced by both glutamate and GD, whereas baicalin was only effective in preventing glutamate toxicity. Wogonin might have a neurotoxic effect on the brain.  相似文献   

16.
Polybrominated diphenylethers (PBDEs) are widely used as flame retardants. Significant amounts of PBDEs are present in the milk of lactating women. The possible neurotoxic effects of PBDEs are not well known. Perinatal exposure to PBDEs affects both motor and cognitive functions by mechanisms that remain unclear. Some types of learning depend on N-methyl-D-aspartate receptor activation, which increases intracellular calcium that binds to calmodulin and activates nitric oxide synthase, increasing nitric oxide formation that activates guanylate cyclase, increasing cGMP formation. Part of this cGMP is released to the extracellular fluid. We studied whether prenatal exposure of rats to PBDE99 alters the function of this glutamate-nitric oxide-cGMP pathway in rat brain in vivo. At 10 weeks of age, rats treated with PBDE99 showed increased function of the glutamate-nitric oxide-cGMP pathway in brain in vivo, as assessed by microdialysis in freely moving rats. The increased function of the pathway was reproduced in primary cultures of cerebellar neurons prepared from rats prenatally exposed to PBDE99 as well as in neurons cultured from normal rats and treated in vitro with PBDE99. Increased calmodulin content and activation of soluble guanylate cyclase by nitric oxide contributed to the increased function of the pathway.  相似文献   

17.
N‐methyl‐D‐aspartate (NMDA) receptors play a crucial role in learning. However, the molecular mechanisms by which NMDA receptors contribute to learning processes are not known in detail. Activation of NMDA receptors leads to increased calcium in the postsynaptic neuron. Calcium binds to calmodulin and activates neuronal nitric oxide synthase, increasing nitric oxide (NO), which activates soluble guanylate cyclase, increasing cGMP. Part of this cGMP is released to the extracellular space. Several reports indicate that impairment of this glutamate‐NO‐cGMP pathway reduces the ability to learn a Y‐maze conditional discrimination task by rats. The aim of this work was to assess whether enhancing the function of this pathway increases the ability to learn this task. Prenatal exposure to the polybrominated diphenylether PBDE‐99 during embryonic days 2–9 or 11–19 enhances the function of the glutamate‐NO‐cGMP pathway in cerebellum in vivo as assessed by microdialysis in freely moving rats. This was associated with an increase in the ability to learn the Y‐maze task. Rats prenatally exposed to PBDE need fewer trials than control rats to learn the Y‐maze task. These results show that the function of the glutamate‐NO‐cGMP modulates the ability of rats to learn the Y‐maze task, that the function of the pathway under physiological conditions is not optimal for learning, and that performance in the Y‐maze task may be improved by enhancing slightly the function of the pathway and cGMP formation. © 2009 Wiley‐Liss, Inc.  相似文献   

18.
Nitric oxide (NO), a cell-derived highly diffusible and unstable gas is regarded to be involved in inter- and intracellular communication in the nervous system. Based on findings about the expression of the inducible NO synthase (NOS) isoform during development of early mouse olfactory as well as vestibulocochlear receptor neurons, we intended to prove a general role of this isoform for neuronal differentiation. Using immunohistochemical techniques, an exclusive expression of the inducible NOS-II isoform in early post-mitotic neurons of the developing mouse cortex and retina can be detected. In a pharmacological approach using cultures of the mouse cortex as well as embryonic stem cell-derived neural precursor cells, we investigated the functional role of NO on initial neuronal differentiation. Effects of NOS inhibitors and NO donors on the morphological differentiation were correlated with developmentally regulated calcium current densities, focusing on the effects of the specific NOS-II inhibitor GW 274150. Furthermore, involvement of the soluble guanylate cyclase (sGC)/cGMP signaling cascade was pharmacologically investigated. Our data indicate that while a specific block of NOS-II provokes a clear inhibition of neurite outgrowth formation as well as a decrease of calcium current densities, the inverse is true for exogenous NO donation. In line with lacking immunoreactivity for the sGC and cGMP there are only minor effects of compounds manipulating the sGC/cGMP pathway, suggesting the downstream sGC/cGMP pathway not to be essential in these early differentiation steps.  相似文献   

19.
In dissociated cultures of dorsal root ganglia (DRG) derived from 15-day-old rats, many neurones expressed nitric oxide synthase (NOS) and this expression was found to be reduced by nerve growth factor. The application of blockers of NOS caused selective death of those neurones expressing NOS. The soluble guanylate cyclase (sGC) blocker ODQ also caused neuronal death. The appearance of the neurones undergoing cell death was typical of apoptosis. This suggests that NO has a neuroprotective action in DRG neurones which is probably mediated by its activation of cyclic guanosine 3′,5′-monophosphate. These observations are discussed in relation to the developmental and neuropathic changes in NOS expression by DRG neurones.  相似文献   

20.
Excitotoxic neuronal cell death is characterized by an overactivation of glutamate receptors, in particular of the NMDA subtype, and the stimulation of the neuronal nitric oxide synthase (nNOS), which catalyses the formation of nitric oxide (NO) from l-arginine (L-Arg). At low L-Arg concentrations, nNOS generates NO and superoxide (O2(.)(-)), favouring the production of the toxin peroxynitrite (ONOO-). Here we report that NMDA application for five minutes in the absence of added L-Arg induces neuronal cell death, and that the presence of L-Arg during NMDA application prevents cell loss by blocking O2(.)(-) and ONOO- formation and by inhibiting mitochondrial depolarization. Because L-Arg is transferred from glial cells to neurons upon activation of glial glutamate receptors, we hypothesized that glial cells play an important modulator role in excitotoxicity by releasing L-Arg. Indeed, as we further show, glial-derived L-Arg inhibits NMDA-induced toxic radical formation, mitochondrial dysfunction and cell death. Glial cells thus may protect neurons from excitotoxicity by supplying L-Arg. This potential neuroprotective mechanism may lead to an alternative approach for the treatment of neurodegenerative diseases involving excitotoxic processes, such as ischemia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号