首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
1. Paired extra- and intracellular recording was used to study the activity of neurons in the dentate hilus and their interaction with CA3/CA4 pyramidal neurons and granule cells during picrotoxin- or 4-aminopyridine (4-AP)-induced rhythmical activity in the guinea pig hippocampal slice. 2. Picrotoxin induced synchronous repetitive population spikes in the CA3, CA4, and hilar region, but no extracellular activity in the granule cell layer. 4-AP induced rhythmically occurring positive field-potential waves in the CA3, CA4, and granular layer coincident to negative/positive field potentials in the hilus. 3. Picrotoxin-induced activity originated in the CA3 area and subsequently appeared in the CA4 and hilar region, whereas 4-AP-induced activity appeared simultaneously in all subfields. 4. Blockade of fast glutamatergic excitation by 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX, 10 microM) blocked the picrotoxin-induced activity but not the 4-AP-induced activity. 5. Focal application of tetrodotoxin (TTX) between area CA3 and CA4 blocked picrotoxin-induced activity in the CA4 and hilar region but decoupled 4-AP-induced activity in the CA3 area. 6. Under intracellular recording, picrotoxin induced bursts in CA3, CA4, and hilar neurons but K-dependent slow IPSPs in granule cells. 4-AP induced rhythmically occurring burst in hilar neurons synchronous to Cl- and K-dependent IPSPs in CA3, CA4, and granule cells. 7. Comparison of picrotoxin- and 4-AP-induced rhythmical burst activity reveals that many hilar neurons are excited by CA3/CA4 pyramidal neurons in addition to the well-known excitation by granule cells and perforant path fibers, and that, in turn, many hilar neurons inhibit CA3, CA4, and granule cells.  相似文献   

2.
Inhibitory role of dentate hilus neurons in guinea pig hippocampal slice   总被引:3,自引:0,他引:3  
1. Current and voltage-clamp recording of CA3/CA4 pyramidal neurons, hilar neurons, and granule cells or pairs of these neurons were used to study the generation of Cl-dependent and K-dependent inhibitory postsynaptic potentials (IPSPs) in the guinea pig hippocampal slice preparation. 2. A sequence of an early Cl-dependent and a late K-dependent IPSP was evoked in CA3 neurons by electrical stimulation from the stratum moleculare of the dentate gyrus, the hilus, and the stratum oriens/alveus. Blockade of glutamatergic excitation by 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX, 10 microM) and D(-)-2-amino-5-phosphonovaleric acid (APV, 30 microM) abolished IPSPs evoked from the stratum moleculare of the dentate gyrus, but IPSPs could still be evoked from the hilus and the stratum oriens/alveus. 3. Repetitive giant IPSPs, which consisted of Cl-dependent and K-dependent components, were evoked by bath application of 4-aminopyridine (4-AP, 10-50 microM) in CA3 neurons and in granule cells. Giant IPSPs were blocked by bath-applied tetrodotoxin (TTX). In addition, 4-AP hyperpolarized CA3 neurons in a Cl-dependent and picrotoxin-sensitive way. 4. Focal application of TTX to the dentate gyrus or the hilus considerably reduced the amplitude of giant IPSPs evoked by 4-AP in CA3 neurons. In hilar neurons, 4-AP evoked repetitive bursts, eventually, but not necessarily intermingled with giant IPSPs. Bursts were observed in hilar neurons in presence as well as absence of CNQX and APV. 5. In paired recordings, bursts in hilar neurons induced by 4-AP occurred simultaneously to giant IPSPs in granule cells and CA3 neurons, and giant IPSPs in granule cells occurred simultaneously to giant IPSPs in CA3 neurons. Blockade of glutamatergic excitation by CNQX and APV did not abolish this synchrony. 6. 4-AP-evoked Cl- and K-dependent IPSPs were, unlike electrically evoked IPSPs, not strictly coupled: some 20% of large IPSPs and up to 90% of small IPSPs were either Cl or K dependent. In granule cells K-dependent components either preceded or followed Cl-dependent components. 7. K-dependent IPSPs only could be evoked in CA3 neurons by focal application of 4-AP (1 mM) to the hilus, the stratum lacunosum moleculare or the stratum pyramidale. Wash out of Ca for 15-20 min blocked the Cl-dependent but not the K-dependent component of giant IPSPs evoked by bath-applied 4-AP.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

3.
1. Spontaneous discharges that resemble interictal spikes arise in area CA3 b/c of rat hippocampal slices bathed in 8.5 mM [K+]o. Excitatory postsynaptic potentials (EPSPs) also appear at irregular intervals in these cells. The role of local synaptic excitation in burst initiation was examined with intracellular and extracellular recordings from CA3 pyramidal neurons. 2. Most (70%) EPSPs were small (less than 2 mV in amplitude), suggesting that they were the product of quantal release or were evoked by a single presynaptic action potential in another cell. It is unlikely that most EPSPs were evoked by a presynaptic burst of action potentials. Indeed, intrinsic burst firing was not prominent in CA3 b/c pyramidal cells perfused in 8.5 mM [K+]o. 3. The likelihood of occurrence and the amplitude of EPSPs were higher in the 50-ms interval just before the onset of each burst than during a similar interval 250 ms before the burst. This likely reflects increased firing probability of CA3 neurons as they emerge from the afterhyperpolarization (AHP) and conductance shunt associated with the previous burst. 4. Perfusion with 2 microM 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX), a potent quisqualate receptor antagonist, decreased the frequency of EPSPs in CA3 b/c neurons from 3.6 +/- 0.9 to 0.9 +/- 0.3 (SE) Hz. Likewise, CNQX reversibly reduced the amplitude of evoked EPSPs in CA3 b/c cells. 5. Spontaneous burst firing in 8.5 mM [K+]o was abolished in 11 of 31 slices perfused with 2 microM CNQX.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
Intracellular recording and staining was applied to study non-pyramidal neurons in the guinea-pig hippocampus. To avoid accidental impalement of pyramidal or granule cells, two hippocampal regions known to be devoid of pyramidal or granule cells were chosen. In transverse and longitudinal slices, neurons of the deep hilar region (zone 4 of Amaral3), and in transverse slices, neurons of the stratum lacunosum-moleculare (CA3) were impaled. The intracellular staining with Lucifer Yellow revealed that of 20 neurons stained in these zones all were non-pyramidal neurons. Hilar neurons, situated just below the granular layer, differed from granule cells and CA3 neurons with respect to their action potential waveform and their current/voltage relationship. In contrast to granule cells, hilar neurons exhibited spontaneous bursts in the presence of bicuculline (25 microM). In all neurons impaled in the hilar region and the stratum lacunosum-moleculare (n = 42), inhibitory postsynaptic potentials could be elicited. These inhibitory postsynaptic potentials were blocked by bicuculline. In transverse slices, perforant path stimulation elicited inhibition preceding excitation in hilar neurons and excitation preceding inhibition in granule cells. Since non-pyramidal neurons are likely to be inhibitory neurons, our data suggest that GABAergic neurons in the hilus or in the stratum lacunosum-moleculare are controlled by inhibitory GABAergic synapses. This was verified by immunocytochemistry using antibodies against glutamate decarboxylase, the gamma-aminobutyric acid synthetizing enzyme. In both hippocampal regions studied, glutamate decarboxylase-positive synaptic terminals on glutamate decarboxylase-positive cells were observed. It is concluded that disinhibition is an important feature of information processing in the hippocampus, and that disinhibition is mediated by GABAergic synapses on GABAergic neurons.  相似文献   

5.
1. Extracellular and intracellular recordings in rat hippocampal slices were used to compare the synaptic responses to perforant path stimulation of granule cells of the dentate gyrus, spiny "mossy" cells of the hilus, and area CA3c pyramidal cells of hippocampus. Specifically, we asked whether aspects of the local circuitry could explain the relative vulnerability of spiny hilar neurons to various insults to the hippocampus. 2. Spiny hilar cells demonstrated a surprising lack of inhibition after perforant path activation, despite robust paired-pulse inhibition and inhibitory postsynaptic potentials (IPSPs) in adjacent granule cells and area CA3c pyramidal cells in response to the same stimulus in the same slice. However, when the slice was perfused with excitatory amino acid antagonists [6-cyano-7-nitro-quinoxaline-2,3-dione (CNQX), or CNQX with 2-amino-5-phosphonovaleric acid (APV)], IPSPs could be observed in spiny hilar cells in response to perforant path stimulation. 3. The IPSPs evoked in spiny hilar cells in the presence of CNQX were similar in their reversal potentials and bicuculline sensitivity to IPSPs recorded in dentate granule cells or hippocampal pyramidal cells in the absence of CNQX. 4. These results demonstrate that, at least in slices, perforant path stimulation of spiny hilar cells is primarily excitatory and, when excitation is blocked, underlying inhibition can be revealed. This contrasts to the situation for dentate and hippocampal principal cells, which are ordinarily dominated by inhibition, and only when inhibition is compromised can the full extent of excitation be appreciated.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
Using extra- and intracellular recording techniques, we investigated the epileptiform activity induced by low concentrations (5 and 10 microM) of bath-applied 4-aminopyridine (4-AP) in the CA3 subfield of rat hippocampal slices. We also studied the effects of 4-AP on the excitatory and inhibitory synaptic conductance changes in CA3 neurons produced by mossy fiber stimulation. Low concentrations of 4-AP induced spontaneously occurring epileptiform discharges at extracellular potassium concentrations between 1 and 10 mM. In contrast, picrotoxin and bicuculline produced spontaneous epileptiform discharges at extracellular potassium concentrations between 5 and 10 mM. The paroxysmal depolarizing shift (PDS) induced by 4-AP was also investigated. At potentials between -40 and -10 mV, the waveform of the PDS consisted of a depolarizing component enveloped by a hyperpolarizing component. The amplitude of the depolarizing component of the PDS was a monotonic function of the membrane potential, and the mean measured reversal potential was -25.7 mV. Under voltage-clamp conditions, the measured conductance associated with the depolarizing component of the PDS averaged 110 nS, with a reversal potential of -14.1 mV. Application of 5 microM 4-AP produced an increase in the inhibitory synaptic conductance change calculated from currents measured 15 ms following mossy fiber stimulation. The mean value increased from 35.2 to 58.1 nS (P less than 0.05) without a significant change in reversal potential. A concentration of 10 microM 4-AP also produced an increase in this inhibitory synaptic conductance change (from 53.3 to 66.3 nS, P less than 0.05) but caused a significant depolarization of the reversal potential (from -66.5 to -61.6 mV, P less than 0.05). This change in reversal potential may reflect a prolongation of the excitatory synaptic currents produced by 4-AP that contributes to the current measured 15 ms from the stimulus. Following application of either 5 or 10 microM 4-AP, there were no significant changes in the resting potential or input resistance of the neurons studied. Application of 5 microM 4-AP also significantly increased the amplitude of the measured excitatory synaptic conductance change produced by mossy fiber stimulation (from 27.9 to 44.1 nS, P less than 0.05) without producing a change in the reversal potential. In 5 of 21 neurons studied, a long-lasting outward synaptic current was present at holding potentials near rest following mossy fiber stimulation.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

7.
1. Conventional intracellular and extracellular recording techniques were used to investigate the physiology and pharmacology of epileptiform bursts induced by 4-aminopyridine (4-AP, 50 microM) in the CA3 area of rat hippocampal slices maintained in vitro. 2. 4-AP-induced epileptiform bursts, consisting of a 25-to 80-ms depolarizing shift of the neuronal membrane associated with three to six fast action potentials, occurred at the frequency of 0.61 +/- 0.29 (SD)/s. The bursts were generated synchronously by CA3 neurons and were triggered by giant excitatory postsynaptic potentials (EPSPs). A second type of spontaneous activity consisting of a slow depolarization also occurred but at a lower rate (0.04 +/- 0.2/s). 3. The effects of 4-AP on EPSPs and inhibitory postsynaptic potentials (IPSPs) evoked by mossy fiber stimulation were studied on neurons impaled with a mixture of K acetate and 2(triethyl-amino)-N-(2,6-dimethylphenyl) acetamide (QX-314)-filled microelectrodes. After the addition of 4-AP, the EPSP became potentiated and was followed by the appearance of a giant EPSP. This giant EPSP completely obscured the early IPSP recorded under control conditions and inverted at -32 +/- 3.9 mV (n = 4), suggesting that both inhibitory and excitatory conductances were involved in its generation. IPSPs evoked by Schaffer collateral stimulation increased in amplitude and duration after 4-AP application. 4. The spontaneous field bursts and the stimulus-induced giant EPSP induced by 4-AP were not affected by N-methyl-D-aspartate (NMDA) receptor antagonists 3-3 (2-carboxy piperazine-4-yl) propyl-1-phosphonate (CPP) and DL-2-amino-5-phosphonovalerate (APV) but were blocked by quisqualate/kainate receptor antagonists 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX) and 6,7-dinitroquinoxaline-2,3-dione (DNQX). CNQX also abolished the presence of small spontaneously occurring EPSPs, thereby disclosing the presence of bicuculline-sensitive (BMI, 20 microM) IPSPs. 5. Small, nonsynchronous EPSPs played an important role in the generation of 4-AP-induced epileptiform activity. 1) After the addition of 4-AP, small EPSPs appeared randomly on the baseline and then became clustered to produce a depolarizing envelope of irregular shape that progressively formed an epileptiform burst, 2) These small EPSPs were more numerous in the 100 ms period that preceded burst onset. 3) The frequency of occurrence of small EPSPs was positively correlated with the frequency of occurrence of synchronous bursts. 4) Small EPSPs and bursts were similarly decreased after the addition of different concentrations of CNQX (IC50 in both cases of approximately 1.2 microM).(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

8.
1. To investigate postsynaptic potentials (PSPs), we made intracellular recordings from neurons of the amygdaloid central nucleus in slices from the guinea pig and rat brains maintained in vitro. The results from guinea pigs and rats were very similar. 2. In the presence of bicuculline (20 microM), focal electrical stimulation of the amygdaloid basal nucleus with low intensities elicited short-latency excitatory PSPs (EPSPs) followed by long-latency EPSPs. The short-latency EPSP was selectively blocked by 6-cyano-7-nitroquinoxaline-2,3-dion (CNQX; 10-20 microM). The long-latency EPSP was preferentially abolished by D,L-2-amino-5-phosphonovaleric acid (D,L-APV; 40 microM) and was augmented by removal of extracellular Mg2+. The compound EPSP reversed at -4 mV, which was close to -1 mV, the reversal potential for pressure-ejected glutamate (Glu). 3. When the intensity of the focal stimulation was increased in the presence of bicuculline (20 microM), CNQX (20 microM), and D,L-APV (50 microM), a second EPSP with a short latency and a prolonged duration could be evoked in approximately 65% of the neurons. The EPSPs were reversibly blocked by d-tubocurarine (50 microM) or hexamethonium (200 microM) but were unaffected by atropine (1 microM) or a 5-hydroxytryptamine type 3 receptor antagonist, ICS-205930 (5-10 microM). In these neurons, acetylcholine (ACh; 1-3 mM) caused a depolarization, associated with a decreased input resistance. 4. In the presence of CNQX (20 microM) and D,L-APV (50 microM), single focal stimulation of the dorsolateral subdivision in the central nucleus with low intensities elicited a depolarizing inhibitory PSP (IPSP). The IPSP was reversibly abolished by bicuculline (20-40 microM). The reversal potential (-63 mV) for the IPSP was similar to the reversal potential (-61 mV) for the response to gamma-aminobutyric acid (GABA) applied by pressure ejection. 5. In the presence of bicuculline (20-40 microM) and CNQX (20 microM), a repetitive focal stimulus with high intensities delivered to the dorsolateral subdivision produced a hyperpolarizing PSP followed by a slow depolarization in most neurons. Of putative inhibitory amino acid transmitters, glycine (Gly; 3 mM) produced only a hyperpolarization, associated with a decrease in input resistance. Strychnine (1-2 microM) reversibly blocked both the Gly hyperpolarization and the synaptically evoked hyperpolarization. The reversal potential of -81 mV for the hyperpolarizing PSP was close to -82 mV for the Gly hyperpolarization. The reversal potential for the Gly response was shifted to less negative values by increasing the external K+ concentration or decreasing the extracellular Cl- concentration.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

9.
We analyzed how the GABA(B) receptor agonist baclofen (10-50 microM) influences the activity induced by 4-aminopyridine (4-AP, 50 microM) in the CA3 area of hippocampal slices obtained from 12- to 25-day-old rats. Interictal and ictal discharges along with synchronous GABA-mediated potentials occurred spontaneously in the presence of 4-AP. Baclofen abolished interictal activity (n = 29 slices) and either disclosed (n = 21/29) or prolonged ictal discharges (n = 8/29), whereas GABA-mediated potentials occurred at a decreased rate. The N-methyl-D-aspartate (NMDA) receptor antagonist 3,3-(2-carboxypiperazine-4-yl)-propyl-1-phosphate (CPP, 10 microM, n = 8) did not modify the GABA-mediated potentials or the ictal events recorded in 4-AP + baclofen. In contrast ictal, activity, but not GABA-mediated potentials, was blocked by the non-NMDA receptor antagonist 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX, 10 microM, n = 5). Most baclofen effects were reversed by the GABA(B) receptor antagonist CGP 35348 (1 mM; n = 4). Baseline and transient increases in [K(+)](o) associated with the 4-AP-induced synchronous activity were unaffected by baclofen. Baclofen hyperpolarized CA3 pyramids (n = 8) recorded with K-acetate-filled electrodes by 4.8 +/- 1.3 mV and made spontaneous, asynchronous hyperpolarizing and depolarizing potentials disappear along with interictal depolarizations. GABA-mediated synchronous long-lasting depolarizations (LLDs) and asynchronous depolarizations were also studied with KCl-filled electrodes in 4-AP + CPP + CNQX (n = 6); under these conditions baclofen did not reduce LLD amplitude but abolished the asynchronous events. Dentate hilus stimulation at 0. 2-0.8 Hz suppressed the ictal activity recorded in 4-AP + baclofen (n = 8). Our data indicate that GABA(B) receptor activation by baclofen decreases transmitter release leading to disappearance of interictal activity along with asynchronous excitatory and inhibitory potentials. By contrast, GABA-mediated LLDs and ictal events, which reflect intense action potential firing invading presynaptic inhibitory and excitatory terminals respectively, are not abolished. We propose that the proconvulsant action of baclofen results from 1) block of asynchronous GABA-mediated potentials causing disinhibition and 2) activity-dependent changes in hippocampal network excitability.  相似文献   

10.
The effect of the GABAB receptor blocker CGP 35348 on epileptic processes in vitro and in vivo was studied. In hippocampal slices of the rat maintained in vitro, CGP 35348 (100 microM) induced a moderate increase in the frequency of extracellularly recorded spontaneous epileptiform burst discharges induced in CA3 by penicillin (1.2 mM), bicuculline (5 microM) and low Mg(2+) (0.1 mM). This effect was observed in 50-75% of the slices. A similar but less consistent increase was also observed in CA1 in bicuculline and low Mg2+. Data obtained by intracellular recordings from CA1 pyramidal cells in the presence of bicuculline (10 microM) demonstrated that CGP 35348 (100 microM) increased the duration of the paroxysmal depolarization underlying an evoked epileptiform burst and reduced the early component of the after hyperpolarization which followed the burst. In mice pretreated with isoniazid, CGP 35348 (300 mg/kg, i.p.) significantly increased the number of convulsing mice. However, convulsions induced by submaximal doses of pentylenetetrazol, picrotoxin or strychnine were not facilitated by CGP 35348. We conclude that GABAB receptors appear to exert a suppressant effect on various kinds of epileptiform discharges of hippocampal neurons in vitro. In vivo, however, the role of GABAB receptors in regulating convulsions is less prominent since only isoniazid-induced convulsions were facilitated by GABAB receptor blockade.  相似文献   

11.
Intracellular and extracellular recordings were made from pyramidal neurons in hippocampal slices in order to study spontaneous paroxysmal bursting induced by raising the extracellular potassium concentration from 3.5 to 8.5 mM. Extracellular recordings from all hippocampal subfields indicated that spontaneous bursts appeared to originate in region CA3c or CA3b as judged by burst onset. Burst intensity was also greatest in regions CA3b and CA3c and became progressively less toward region CA2. Intracellular recordings indicated that in 8.5 mM potassium, large spontaneous excitatory postsynaptic potentials (EPSPs), large burst afterhyperpolarizations, and rhythmic hyperpolarizing-depolarizing waves of membrane potential were invariably present in CA3c neurons. High potassium (8.5 mM) induced a positive shift (+9 mV) in the reversal potential of GABAergic inhibitory postsynaptic potentials (IPSPs) in CA3c neurons without changing input resistance or resting potential. This resulted in a drastic reduction in amplitude of the IPSP. Reduction of IPSP amplitude occurred before the onset of spontaneous bursting and was reversible upon return to normal potassium. A new technique to quantify the relative intensity of interictal-like burst discharges is described. Pentobarbital, diazepam, and GABA uptake inhibitors, which enhance GABA-mediated synaptic inhibition, reduced the intensity of potassium-induced bursts, whereas the GABA antagonist bicuculline increased burst intensity. Diphenylhydantoin and phenobarbital, anticonvulsants that have little effect on GABAergic inhibition, were without effect on spontaneous bursts. Burst frequency was reduced by bicuculline and 4,5,6,7-tetrahydroisoxazolo[5,4-c]pyridin-3-ol but was unaffected by other drugs. Reduction of slice temperature from 35 to 19 degrees C dramatically reduced burst intensity but did not markedly affect burst frequency. We hypothesize that high potassium induces a rise in intracellular chloride concentration, possibly by activating an inward KCl pump or by a passive Donnan effect, which results in a decreased IPSP amplitude. With inhibition suppressed, the large spontaneous EPSPs that appear in high potassium cause individual CA3c neurons to fire. A combination of synaptic and electrical interactions among CA3c cells then synchronizes discharges into interictal spike bursts.  相似文献   

12.
In the slice preparation of the guinea pig hippocampus, the effects of (+/-) baclofen added to the Krebs-Ringer solution on dentate granule cells and CA3 pyramidal cells were investigated by means of intracellular recording techniques. In a 10-25 microM concentration, baclofen reduces the inhibitory postsynaptic potentials of the granule cells evoked by electrical stimulation of the perforant path and hyperpolarizes the granule cell membrane slightly. The reduction of both, the excitatory and inhibitory postsynaptic potentials of CA3 pyramidal cells evoked by mossy fiber stimulation, however, is accompanied by a strong hyperpolarization and conductance increase. Further, repetitive discharges of granule cells elicited in the presence of the convulsant bicuculline (25 microM) are hardly affected by baclofen (50 microM), whereas those of CA3 neurons are blocked.  相似文献   

13.
The ability of the non-NMDA receptor antagonist 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX) to suppress picrotoxin-induced epileptiform burst activity was examined. Intracellular recordings were obtained from hippocampal CA1 and CA3 pyramidal neurons maintained in vitro. Bath application of CNQX (5 microM) significantly reduced or abolished evoked paroxysmal depolarizing shifts (PDSs) in all CA1 and CA3 neurons tested. In cells where a CNQX-insensitive component in the PDS was manifest, this remaining activity was abolished by the N-methyl-D-aspartate (NMDA) receptor antagonist D-2-amino-5-phosphonovaleric acid (20 microM), suggesting the existence of a NMDA-mediated synaptic potential. Our results indicate that non-NMDA receptor antagonists are capable of markedly reducing picrotoxin-induced epileptiform activity and that these receptors play an important role in generation of PDSs.  相似文献   

14.
Excitatory synaptic transmission in cultures of rat olfactory bulb   总被引:11,自引:0,他引:11  
1. Olfactory bulb neurons were dissociated from neonatal rats and plated at low density on a confluent layer of olfactory bulb astrocytes. Intracellular stimulation of presumptive mitral/tufted (M/T) cells evoked monosynaptic excitatory postsynaptic potentials (EPSPs) in adjacent neurons. Whole-cell recording techniques and a flow-pipe drug delivery system were used to compare EPSPs with voltage-clamp recordings of currents evoked by excitatory amino acids (EAA) including N-acetylaspartylglutamate (NAAG), a putative mitral cell transmitter. 2. Cultured olfactory bulb neurons were morphologically and physiologically distinct. Large pyramidal-shaped neurons were present, which were NAAG immunoreactive; stimulation of these neurons invariably evoked EPSPs, suggesting that they were M/T cells. The majority of small bipolar neurons were glutamic acid decarboxylase (GAD) immunoreactive consistent with granule or periglomerular gamma-aminobutyric acid (GABA)ergic interneurons. 3. Monosynaptic EPSPs between M/T cells could be separated into fast and slow components by the use of EAA receptor antagonists. A fast component with a time-to-peak of 7.7 +/- 1.0 (SE) ms and half-width of 31.8 +/- 7.4 ms was blocked by the non-NMDA receptor antagonist 6-cyano-2,3-dihydroxy-7-nitro-quinoxaline (CNQX, 2.5 microM). The slow component (time-to-peak = 41.4 +/- 7.2 ms; half-width = 218.9 +/- 40.4 ms) was blocked by the N-methyl-D-aspartate (NMDA) receptor antagonist DL-2-amino-5-phosphonovaleric acid (AP5, 100 microM). 4. Under voltage clamp, flow-pipe applications of NAAG (10-1,000 microM) evoked inward currents at a holding potential of -60 mV in Mg-free solutions.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
1. Intracellular and extracellular recordings were carried out in guinea pig neocortical slices to examine the effects of blockade of excitatory amino acid (EAA) synaptic transmission on population discharges elicited by 4-aminopyridine (4-AP; 50-100 microM). 2. After the introduction of 4-AP, two distinct types of rhythmic spontaneous field potentials were recorded in neocortical slices. Type I consisted of multiple spike discharges lasting 20-90 s. These events occurred at a frequency of 0.4-0.2/min. Type II were single field potential spikes (3-6 s in duration) occurring at a higher frequency (2-4/min). 3. Blockade of amino acid-mediated excitatory synaptic transmission with D-2-amino-5-phosphonovaleric acid (D-AP5; 10-30 microM) or 3-(2-carboxypiperazin-4-yl)propyl-l-phosphonic acid (CPP, 10 microM) and 6-cyano-7nitroquinoxaline-2,3-dione (CNQX; 10 microM) abolished the first type of 4-AP-induced field potential, whereas type II events persisted. 4. Type II field events, occurring in the presence of EAA blockers, were further characterized by paired recordings. Events recorded along an axis orthogonal to the pia surface occurred simultaneously without measurable delay. Recordings made along a plane parallel to the pia surface showed that type II discharges propagated over distances of greater than or equal to 3 mm at an estimated velocity of 7.5 mm/s. 5. Intracellular recordings show that during type II field discharges all cells exhibited phasic depolarizations or hyperpolarizations, depending on the resting membrane potential. When resting potentials were more depolarized than -68 mV, events became mostly hyperpolarizing.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
Under conditions of increased excitability, such as application of the K(+) channel blocker 4-aminopyridine (4-AP, 100 microM), interneurons in the hippocampal slice show an additional form of synchronized activity that is distinct from the ictal and interictal epileptiform activity induced by these manipulations. In principal neurons, i.e., pyramidal and granule cells, this synchronized interneuron activity (SIA) generates large, multi-component synaptic potentials, which have been termed long-lasting depolarizations (LLDs). These LLDs are dependent on GABA(A) receptor-mediated synaptic transmission but not on excitatory amino acid (EAA) receptors. Intracellular recordings from hilar interneurons have shown that depolarizing GABA(A) receptor-mediated synaptic potentials are also largely responsible for the synchronization of interneurons. The spatiotemporal characteristics of this interneuron activity have not been investigated previously. Using a voltage-sensitive dye and optical techniques that are capable of recording spontaneous synchronized activity, we have characterized the spatiotemporal pattern of SIA (in the presence of 4-AP + EAA receptor antagonists) and compared it with interictal epileptiform activity (in 4-AP only). Like interictal activity, SIA could be observed throughout the hippocampal slice. Unlike interictal activity, which originated in area CA2/CA3 and spread from there, SIA was most prominent in area CA1 and originated either there or in the subiculum. In CA1, interictal activity was largest in and near stratum pyramidale, while SIA was mainly located in s. lacunosum moleculare. Furthermore SIA was equally likely to propagate in either direction, and multiple patterns of propagation could be observed within a single brain slice. These studies suggest that hippocampal area CA1 has the highest propensity for SIA, that multiple locations can serve as the site of origin, and that interneurons located in s. lacunosum moleculare or interneurons that specifically project to this region may be particularly important for synchronized interneuron activity.  相似文献   

17.
1. Intracellular and extracellular recording techniques were used to study the effects of bath application of 4-aminopyridine (4-AP) on pyramidal cells of the CA1 subfield of rat hippocampal slices maintained in vitro. The concentration of 4-AP used in most experiments was 50 microM. However, similar results were obtained with a concentration ranging from 5 to 100 microM. 2. Following 4-AP application, cells impaled with K-acetate-filled microelectrodes hyperpolarized by an average of 2.6 mV (from -68.7 to -71.3 mV, P less than or equal to 0.01). This change was accompanied by the appearance of high-frequency spontaneous hyperpolarizations. Conversely, when KCl-filled microelectrodes were used, an average depolarization of 5.8 mV [from -73.1 to -67.3 mV, not significant (NS)] associated with the occurrence of repetitive depolarizing potentials was observed. In both cases, these changes were concomitant with a small decrease in membrane input resistance, which was statistically significant only for cells impaled with K-acetate-filled microelectrodes. When synaptic transmission was blocked by tetrodotoxin (TTX), 4-AP induced in cells studied with K-acetate microelectrodes an average depolarization of 2.4 mV (from -62.8 to -60.4 mV, P less than or equal to 0.01) accompanied by a small increase in input resistance (from 32.0 to 35.8 M omega, P less than or equal to 0.05). High-frequency spontaneous potentials failed to occur under these conditions. During 4-AP application, the threshold and the latency of action potentials elicited by a depolarizing current pulse increased in 36% of the neurons studied (n = 14). 3. The amplitude of the stratum (s.) radiatum-induced excitatory postsynaptic potential (EPSP) was augmented by 4-AP. Both the early and late inhibitory postsynaptic potentials (IPSPs) evoked by orthodromic stimuli were also increased in amplitude and duration. In addition, a late (peak latency, 150-600 ms) and long-lasting (duration, 600-1,500 ms) depolarizing potential appeared between the early and the late IPSPs and progressively increased until it partially masked these hyperpolarizations. This long-lasting depolarization (LLD) could also be induced by antidromic stimulation, although in this case it was preceded by an additional, fast-rising, brief depolarization. 4. A similar brief depolarization preceded the orthodromically induced LLD in 69% of the neurons bathed in the presence of 4-AP. The average value of the peak latency of this potential was 62 +/- 27 (SD) ms for orthodromic and 110 +/- 70 ms for antidromic responses.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

18.
Intracellular recordings of cells, classified according to the criteria of Colom and Bland as phasic theta-ON or phasic theta-OFF cells, were carried out in the dorsal region of the hippocampal formation in urethan-anesthetized rats. Cells were studied during two spontaneously occurring hippocampal field conditions, asynchrony, termed large-amplitude irregular activity, and synchrony, termed theta. During the spontaneous cycling between these two field states, the effect of four levels of intracellular depolarizing and hyperpolarizing constant current injections on the amplitude and phase of membrane potential oscillations (MPOs) and the rate and pattern of cell discharges was assessed. Labeled CA1 pyramidal cells and bistratified cells met the criteria for classification as phasic theta-ON cells and labeled CA1 pyramidal layer basket cells, mossy hilar cells, and granule cells met the criteria for classification as phasic theta-OFF cells. MPOs were recorded in CA1 pyramidal cells, CA1 layer basket cells, mossy interneurons, and granule cells only during theta field activity, their onset in theta-ON cells signaled by a depolarizing shift of 5-10 mV and in theta-OFF cells by a hyperpolarizing shift of 5-10 mV, in membrane potential. The effect of current injections in phasic theta-ON and theta-OFF cells during the theta field condition revealed that MPO amplitude was voltage dependent and frequency was voltage independent. There were no phase changes observed in phasic theta-ON cells during current injections; however, amplitude analysis revealed an inverted U-shaped curve asymmetrically distributed around the average value of the membrane potential occurring during the spontaneous theta (no current) control condition. The occurrence and rate of rhythmical cell discharges in CA1 pyramidal phasic theta-ON cells during the theta condition was precisely controlled within a critical range of membrane potential values from approximately -57 to -68 mV, corresponding to a range of MPO amplitudes of approximately 4-7 mV. Outside the critical range, rhythmic cell discharges were abolished. Membrane potential oscillations in CA1 pyramidal layer basket cells underwent an approximate 180 degrees phase reversal when the membrane potential was depolarized above -65 mV. The occurrence and rate of rhythmic cell discharges in CA1 pyramidal layer basket cell phasic theta-OFF cells during the theta condition was precisely controlled within a critical range of membrane potential values from approximately -62 to -60 mV, corresponding to a range of MPO amplitudes of approximately 7-7.5 mV. Outside the critical range, cell discharges were absent or occurred singly.  相似文献   

19.
Activation of group I metabotropic glutamate receptors (mGluRs) elicits persistent ictaform discharges in guinea pig hippocampal slices, providing an in vitro model of epileptogenesis. The induction of these persistent ictaform bursts is prevented by l-cysteine sulfinic acid (CSA), an agonist at phospholipase D (PLD)-coupled mGluRs. Studies described herein examined the role of protein kinase C (PKC) in both the group I mGluR-mediated induction and CSA-mediated suppression of this form of epileptogenesis. Intracellular recordings were performed from CA3 stratum pyramidale and synchronized burst length was monitored. In the presence of 50 microM picrotoxin, a gamma-aminobutyric acid type A antagonist, 250- to 500-ms synchronized bursts were elicited. (S)-3,5-Dihydroxyphenylglycine (DHPG, 50 microM), an agonist at group I mGluRs, increased the burst length to 1-3 s in duration, a change that persisted after agonist washout. This persistent change in burst length was elicited in the presence of 10 microM chelerythrine, a PKC inhibitor, indicating that DHPG-induced epileptogenesis is PKC independent. However, although PLD activation with CSA (100 microM) was highly effective at suppressing group I mGluR-mediated induction of burst prolongation, CSA application in the presence of chelerythrine was no longer effective and resulted in the expression of persistent ictaform bursts. These data suggest that CSA-mediated suppression of group I mGluR-induced epileptogenesis is PKC dependent. We propose that CSA mediates its effect by PLD-driven activation of PKC, which may desensitize the phospholipase C-linked group I mGluRs and thereby prevent group I mGluR-induced epileptogenesis.  相似文献   

20.
In CA3 pyramidal cells of guinea pig hippocampal slices, picrotoxin (50 microM) elicited spontaneous, rhythmically recurring epileptiform bursts 285-435 ms in duration. The addition of (S)-3, 5-dihydroxyphenylglycine (DHPG, 50 microM, 90 min application), a selective group I metabotropic glutamate receptor (mGluR) agonist, resulted in a rapid-onset transient increase in burst frequency. This was followed by a slowly progressive increase in burst duration, with bursts reaching 1.5-3.8 s in duration at 90 min of DHPG application. The potentiation of epileptiform burst duration persisted at least 2 h after agonist removal. To determine whether N-methyl-D-aspartate (NMDA) receptor activation participates in the mGluR-induced potentiation of epileptiform bursts, experiments were carried out in the presence of D-2-amino-5-phosphonovaleric acid (APV, 50-100 microM), an NMDA receptor antagonist. Application of DHPG in the presence of APV resulted in a significantly enhanced transient increase in burst frequency. Nevertheless, when compared with the control described above, there was no significant alteration in the rate of development of the burst prolongation nor its persistence after washout. In other experiments, application of APV in the presence of fully developed mGluR-induced potentiated bursts (after 90 min washout of DHPG) resulted in no significant change in either burst frequency or duration. The data reveal that both induction and maintenance of group I mGluR-mediated potentiation of epileptiform discharges are NMDA receptor-independent processes, suggesting that epileptogenesis, when induced by group I mGluR activation, may occur and be sustained in the absence of NMDA receptor activation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号