首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The origin of the noradrenergic innervation of the preganglionic autonomic nuclei in the medulla oblongata and spinal cord is still controversial. In this investigation descending connections of the locus coeruleus to the dorsal motor vagus nucleus in the rat are studied with Phaseolus vulgaris leucoagglutinin and horseradish peroxidase as neuroanatomical tracers. Locus coeruleus projections in the motor vagus nucleus are found in the medial part at rostral levels and in the lateral part at intermediate levels of this nucleus. The terminal labeling in the lateral intermediate part of the vagus nucleus appears in an area where possibly preganglionic parasympathetic cardiac neurons are located, suggesting that the locus coeruleus might be involved in regulation of cardiovascular functions. After small iontophoretic injections of horseradish peroxidase in the motor vagus nucleus, retrogradely labeled cells are found in the ventral part of the locus coeruleus and occasionally in the dorsal part of the nucleus. The results show that the locus coeruleus-dorsal motor vagus nucleus pathway may participate in the inhibition of the cardiac preganglionic neurons in the dorsal motor vagus nucleus by the hypothalamic paraventricular nucleus.  相似文献   

2.
The physiological role of two types of autoreceptors, alpha 1- and alpha 2-adrenoceptors, located on the somadendritic membranes of locus coeruleus neurons, was studied in the developing and adult rat brain. Animals from birth to adulthood were anesthetized with urethan, and single-unit activity was recorded extracellularly in the locus coeruleus. The spontaneous firing of most locus coeruleus neurons was inhibited by iontophoretic application of noradrenaline at a high concentration, while noradrenaline at a low concentration frequently caused excitation of the neurons, predominantly in the developing brain. A similar excitation was also produced by iontophoretic application of the alpha 1-agonist phenylephrine. These excitations were antagonized by the alpha 1-antagonist, 2-beta [4-hydroxyphenylethylaminomethyl]-tetralone, while this antagonist had little effect on glutamate-induced excitation. The noradrenaline- and phenylephrine-induced excitation occurred more frequently in the neurons having little or no spontaneous activity. Electrical stimulation of the dorsal noradrenergic bundle arising in the locus coeruleus produced both inhibition and excitation. The excitatory responses were manifest primarily in early developmental stages, and occurred predominantly when the neurons had little or no spontaneous activity. When the neurons began firing at relatively high rates, the effects of dorsal noradrenergic bundle stimulation became principally inhibitory. Since the excitation evoked by dorsal noradrenergic bundle of stimulation was blocked by the alpha 1-antagonist, the excitation was thought to result from activation of alpha 1-adrenoceptors by noradrenaline released from the terminals of recurrent axon collaterals of locus coeruleus neurons themselves.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
(1) Spikes of single neurons were extracellularly recorded in the medial vestibular nucleus (MVN) in decerebrate cats and were functionally identified as secondary type I neurons by observing their responses to horizontal rotation and monosynaptic activation after stimulation of the ipsilateral vestibular nerve. Axonal projection of these neurons was examined by their antidromic responses to stimulation of the contralateral abducens nucleus, the spinal cord, and the ascending and descending MLF. (2) Almost all secondary type I vestibular neurons which sent their axon to the contralateral abducens nucleus were antidromically activated from the descending MLF at the level of the obex as well. Nearly half of these neurons sent their collateral axon to the level of C1 segment in the spinal cord and approximately one third to the ascending MLF close to the oculomotor complex. (3) The mean conduction velocity was 29 m/s for descending collateral axons and 30 m/s for ascending collateral axons. (4) Systematic tracking for antidromic microstimulation in the contralateral abducens nucleus and spinal gray matter at C2-C3 suggested that collateral axons of single type I vestibular neurons gave off local branches in the abducens nucleus and the motoneuron pool in the upper cervical gray matter. Existence of terminal branches in the neck motoneuron pool was confirmed by intraaxonal staining with horseradish peroxidase (HRP). (5) Neurons which projected to both the contralateral abducens nucleus and the spinal cord were located in a fairly localized region in the ventrolateral part of the rostral MVN. Neurons which projected to the contralateral abducens nucleus and not to the spinal cord were located in a rostrocaudally wider area in the ventrolateral MVN. Neurons projecting to the spinal cord and not to the contralateral abducens nucleus were located in the widest area in the rostrocaudal direction, covering almost the whole extent of the rostral half of the MVN.  相似文献   

4.
In a previous study, we showed in rats that axons of some locus coeruleus/subcoeruleus (LC/SC) neurons involved in coeruleospinal modulation of nociception descend through the ipsilateral side of the spinal cord and cross the midline at spinal segmental levels. The present study was designed to investigate a possible spinal pathway of these descending axons from the LC/SC. Extracellular recordings were made from the left dorsal horn with a carbon filament electrode (4-6 M(omega)). To block impulses from the LC/SC which descend through spinal pathways ipsilateral to the recording sites, a hemisection of the spinal cord ipsilateral to the recording sites was performed at the C2 level with fine forceps in all rats tested. In these rats, responses of dorsal horn neurons to noxious heat (53 degrees C) applied to receptive fields were inhibited during electrical stimulation (100 microA, 100 Hz, 0.1 ms pulses) of the LC/SC. The transection of the dorsolateral funiculus contralateral to the recording sites did not affect LC/SC stimulation-produced inhibition. Following transection of the ventrolateral funiculus (VLF) contralateral to the recording sites, LC/SC stimulation failed to inhibit heat-evoked responses. These results suggest that interruption of descending inhibition from the LC/SC produced by the VLF transections is due to the blockage of axons descending in the ventrolateral quadrant of the spinal cord, but not in the dorsolateral quadrant.  相似文献   

5.
The lateral geniculate nuclei of the rat are known to receive an innervation from catecholamine-containing neurons. In the present study the origin, axonal projections and terminal distribution of this innervation was studied. The lateral geniculate nuclei contain a356 ± 20 ng norepinephrine/g and64 ± 7 ng dopamine/g tissue; the latter is within the range expected for dopamine as a precursor in a region innervated by a norepinephrine-containing terminal system. When separate norepinephrine-containing cell groups located at various brain stem levels are ablated or their axonal projections destroyed, only lesions in the locus coeruleus produce a significant decrease in the norepinephrine content of the lateral geniculate nuclei. Injections of horseradish peroxidase into the lateral geniculate nuclei result in retrograde transport of horseradish peroxidase only to the noradrenergic neurons of the locus coeruleus. The labelled neurons are pretent throughout the rostrocaudal and dorsoventral axes of both the ipsilateral (60%) and contralateral (40%) nucleus. Autoradiographic and fluorescence histo-chemical experiments indicate that axons that ascend from the locus coeruleus reach the lateral geniculate nuclei via the dorsal tegmental catecholamine-containing bundle and the medial forebrain bundle. These fibers enter the ventral lateral geniculate nucleus from the zona incerta and the dorsal lateral geniculate nucleus from the superior thalamic radiation, thalamic reticular nucleus, and lateral posterior nucleus. Contralateral fibers from the locus coeruleus cross in the posterior commissure, supraoptic and pontine decussations and join the ipsilateral projections to the lateral geniculate nuclei. The bilateral locus coeruleus innervation of the nuclei is comprised of a highly branched network of varicose axons. Neither the ipsilateral nor the contralateral projections appear to be topographically organized; instead, a single fiber may have collateral axons that branch throughout large areas of the nuclei. This innervation is moderately dense in the ventral, and very dense in the dorsal, lateral geniculate nucleus.The study indicates that both the dorsal and ventral lateral geniculate nuclei receive a diffuse catecholamine-containing innervation which arises solely from the norepinephrine-containing neurons of the locus coeruleus. The innervation of each lateral geniculate nucleus is bilateral, with noradrenergic neurons located throughout both the ipsilateral and the contralateral locus coeruleus contributing to ascending pathways that terminate as a diffuse, plexiform innervation interspersed among other afferents to the lateral geniculate nuclei. It is speculated that such a diffuse noradrenergic innervation might depress the spontaneous activity of neurons in the lateral geniculate nuclei, while preserving or enhancing their responsiveness to afferent optic stimulation.  相似文献   

6.
Electrophysiologic studies support the hypothesis that corticotropin-releasing factor, the neurohormone that initiates adrenocorticotropin release during stress, also serves as a neurotransmitter in the pontine noradrenergic nucleus, the locus coeruleus. To elucidate the circuitry underlying proposed corticotropin-releasing factor neurotransmission in the locus coeruleus, the present study utilized immunohistochemical techniques to characterize corticotropin-releasing factor innervation of rat locus coeruleus and pericoerulear regions. Corticotropin-releasing factor-like immunoreactive fibers were identified in the locus coeruleus of colchicine- and non-colchicine-treated rats. However, corticotropin-releasing factor innervation of pericoerulear regions rostral and lateral to the locus coeruleus was more dense than that of the locus coeruleus proper. Double-labeling studies utilizing antisera directed against corticotropin-releasing factor and tyrosine hydroxylase indicated that corticotropin-releasing factor-like immunoreactive fibers overlap with tyrosine hydroxylase-like immunoreactive processes of locus coeruleus neurons, particularly in rostral medial and lateral regions. A group of corticotropin-releasing factor-like immunoreactive neurons was localized just lateral to the locus coeruleus and numerous corticotropin-releasing factor-like immunoreactive neurons were visualized just ventral to the rostral pole of the locus coeruleus in a region corresponding to Barrington's nucleus. None of these corticotropin-releasing factor-like immunoreactive neurons were tyrosine hydroxylase-positive. To determine the source of corticotropin-releasing factor-like immunoreactive fibers in the locus coeruleus, injections of the retrograde tracer [wheat germ agglutinin conjugated to inactivated (apo) horseradish peroxidase coupled to gold particles] were made into the locus coeruleus and sections were processed for corticotropin-releasing factor-like immunoreactivity.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
Stimulation of neurons in the cuneiform nucleus (CnF) produces antinociception and cardiovascular responses that could be mediated, in part, by noradrenergic neurons that innervate the spinal cord dorsal horn. The present study determined the projections of neurons in the CnF to the pontine noradrenergic neurons in the A5, A6 (locus coeruleus), and A7 cell groups that are known to project to the spinal cord. Injections of the anterograde tracer, biotinylated dextran amine in the CnF of Sasco Sprague-Dawley rats labeled axons located near noradrenergic neurons that were visualized by processing tissue sections for tyrosine hydroxylase-immunoreactivity. Anterogradely labeled axons were more dense on the side ipsilateral to the BDA deposit. Both A7 and A5 cell groups received dense projections from neurons in the CnF, whereas locus coeruleus received only a sparse projection. Highly varicose anterogradely labeled axons from the CnF were found in close apposition to dendrites and somata of tyrosine hydroxylase-immunoreactive neurons in pontine tegmentum. Although definitive evidence for direct pathways from CnF neurons to the pontine noradrenergic cell groups requires ultrastructural analysis, the results of the present studies provide presumptive evidence of direct projections from neurons in the CnF to the pontine noradrenergic neurons of the A7, locus coeruleus, and A5 cell groups. These results support the suggestion that the analgesia and cardiovascular responses produced by stimulation of neurons in the CnF may be mediated, in part, by pontine noradrenergic neurons.  相似文献   

8.
S Pyner  J H Coote 《Neuroscience》1999,88(3):949-957
The paraventricular nucleus of the hypothalamus is increasingly being viewed as an important site for cardiovascular integration because of its connections to regions in the brain and spinal cord which are known to be important in cardiovascular control. Like the vasomotor neurons of the rostral ventrolateral medulla, descending axons from paraventricular neurons can be identified that form synapses on sympathetic preganglionic neurons in the thoracic spinal cord. The purpose of this study was to determine whether paraventricular axons project to the rostral ventrolateral medulla and whether they are closely apposed to reticulospinal neurons in this region. Descending paraventricular axons were labelled with biotin dextran amine, while rostral ventrolateral medullary neurons were retrogradely labelled from the spinal cord with wheatgerm agglutinin conjugated to horseradish peroxidase. This revealed, within the rostral ventrolateral medulla, paraventricular axon and terminal varicosities closely apposed to and apparently contiguous with retrogradely labelled spinally projecting neurons. Thus our study at the light microscopical level has shown the potential for the paraventricular nucleus to directly influence rostral ventrolateral reticulospinal neurons. We suggest these connections, if confirmed by electron microscopy, could be one means by which activation of paraventricular neurons elicits alterations in blood pressure.  相似文献   

9.
W E Lyons  R Grzanna 《Neuroscience》1988,26(2):681-693
Double retrograde axonal tracing was combined with the indirect immunofluorescence antibody method to determine whether noradrenergic neurons have divergent projections to the motor nucleus of the trigeminal nerve and the spinal cord. Rhodamine-labeled microspheres were injected into the motor trigeminal nucleus and True Blue was deposited into lumbar segments of the spinal cord. After a 10-18-day survival period, brainstem sections were processed for immunofluorescence staining of noradrenergic neurons using antibodies to rat dopamine-beta-hydroxylase. Rhodamine-labeled noradrenergic neurons were observed ipsilaterally throughout the A5 and A7 groups; the contralateral A5 and A7 groups contained few rhodamine-labeled cells. A few rhodamine-labeled noradrenergic neurons were observed in the locus coeruleus and subcoeruleus. True Blue-labeled noradrenergic neurons were identified in the A5 and A7 groups, in the ventral part of the locus coeruleus and in the subcoeruleus. Double retrogradely labeled noradrenergic neurons were observed in the A5 and A7 groups but not in the locus coeruleus and subcoeruleus. Of the total number of rhodamine-labeled noradrenergic cells, a large percentage also contained True Blue: 54% in the caudal A5 group, 59% in the rostral A5 group, and 72% in the A7 group. Of the total number of True Blue-labeled noradrenergic neurons, the percentage of double retrogradely labeled cells was 33% in the caudal A5 group, 46% in the rostral A5 group, and 56% in the A7 group. The findings of this study provide the first anatomic evidence for the existence of a prominent population of noradrenergic cells in the A5 and A7 groups with divergent projections to the motor trigeminal nucleus and the spinal cord. We propose that this subpopulation of noradrenergic neurons in the A5 and A7 groups influences motoneurons at multiple levels of the neuraxis.  相似文献   

10.
We studied the organization and spinal projection of the mouse red nucleus with a range of techniques (Nissl stain, immunofluorescence, retrograde tracer injections into the spinal cord, anterograde tracer injections into the red nucleus, and in situ hybridization) and counted the number of neurons in the red nucleus (3,200.9 ± 230.8). We found that the rubrospinal neurons were mainly located in the parvicellular region of the red nucleus, more lateral in the rostral part and more medial in the caudal part. Labeled neurons were least common in the rostral and caudal most parts of the red nucleus. Neurons projecting to the cervical cord were predominantly dorsomedially placed and neurons projecting to the lumbar cord were predominantly ventrolaterally placed. Immunofluorescence staining with SMI-32 antibody showed that ~60% of SMI-32-positive neurons were cervical cord-projecting neurons and 24% were lumbar cord-projecting neurons. SMI-32-positive neurons were mainly located in the caudomedial part of the red nucleus. A study of vGluT2 expression showed that the number and location of glutamatergic neurons matched with those of the rubrospinal neurons. In the anterograde tracing experiments, rubrospinal fibers travelled in the dorsal portion of the lateral funiculus, between the lateral spinal nucleus and the calretinin-positive fibers of the lateral funiculus. Rubrospinal fibers terminated in contralateral laminae 5, 6, and the dorsal part of lamina 7 at all spinal cord levels. A few fibers could be seen next to the neurons in the dorsolateral part of lamina 9 at levels of C8–T1 (hand motor neurons) and L5–L6 (foot motor neurons), which is consistent with a view that rubrospinal fibers may play a role in distal limb movement in rodents.  相似文献   

11.
Summary The cochlear nuclei (CN) contain a moderate concentration of norepinephrine (445±20 ng/g tissue) with dopamine levels (46±14 ng/g) that are low and within the precursor range expected for a norepinephrine (NE) terminal system. Lesion and horseradish peroxidase (HRP) experiments indicate that this innervation is bilateral and arises from fusiform and multipolar neurons in the locus coeruleus.Autoradiographic and fluorescence histochemical experiments demonstrate that locus coeruleus fibers reach the ipsilateral ventral cochlear nuclei via a rostral pathway that projects from the rostral locus coeruleus laterally through the brain stem to the rostral tip of the ventral nuclei. This pathway is located dorsal to the motor and spinal trigeminal nuclei and ventral to the middle cerebellar peduncle. Descending coeruleo-cochlear fibers travel between the fourth ventricle and the vestibular nuclei to enter the acoustic striae. These fibers innervate both the dorsal and ventral nuclei. Contralateral locus fibers reach the CN by crossing in the pontine central gray at the rostral border of the fourth ventricle and by decussating with the fibers of the mesencephalic trigeminal nucleus ventral to the medial longitudinal fasciculus. The bilateral locus coeruleus innervation of the cochlear nuclei comprises a highly collateralized network of varicose axons which are not topographically organized. Unlike the cochlear nerve fibers in the CN which form specific projections, the locus coeruleus afferents to these sensory nuclei are diffuse and non-specific.  相似文献   

12.
 Spinal interneuronal networks have been implicated in the coordination of reflex behaviors and limb postures in the spinal frog. As a first step in defining these networks, retrograde transport of horseradish peroxidase (HRP) was used to examine the anatomical organization of interneuronal circuitry in the lumbar spinal cord of the frog. Following neuronal degeneration induced by spinal transection and section of the dorsal and ventral roots, HRP was placed at different locations in the spinal cord and the positions of labeled neuronal cell bodies plotted using a Eutectics Neuron Tracing System. We describe four spinal interneuronal systems, three with cell bodies located in the lumbar cord and one with descending projections to the lumbar cord. Interneurons with cell bodies located in the lumbar cord include: (1) Lumbar neurons projecting rostrally. Those projecting to thoracic segments tended to be located in the lateral and ventrolateral gray and in the lower two-thirds of the dorsal horn, with projections that were predominantly uncrossed. Those projecting to the brachial plexus and beyond were located in the dorsal part of the dorsal horn (uncrossed) and in the lateral, ventrolateral, and ventromedial gray (crossed). (2) Lumbar neurons with segmental projections within the lumbar cord. These neurons, which were by far the most numerous, had both uncrossed and crossed projections and were distributed throughout the dorsal, lateral, ventrolateral, and ventromedial gray matter. (3) Lumbar neurons projecting to the sacral cord. This population, which arose mainly from the dorsal horn and lateral or ventrolateral gray, was much smaller than in the other systems. Neuronal density of some of these populations of lumbar interneurons appeared to vary with rostrocaudal level. Finally, a population of neurons with cell bodies in the brachial and thoracic segments that projects to the lumbar cord is described. The most rostral of these neurons were multipolar cells with uncrossed projections, while those with crossed projections were confined almost exclusively to the ventral half of the cord. The distribution of spinal interneurons reported here will provide guidance for future studies of the role of interneuronal networks in the control of movements using the spinal frog as a model system. Received: 11 June 1996 / Accepted: 26 February 1997  相似文献   

13.
Summary The aim of this study was to corroborate lesioning work (Mackel and Noda 1989), suggesting the pretectal area of the rostral midbrain acts as a relay between the spinal cord and the ventrolateral (VL) nucleus of the thalamus. For this purpose, extracellular recordings were made from neurons in the pretectal area which were antidromically activated by stimulation in the rostral thalamus, particularly in VL. The neurons were tested for input from the dorsal columns of the spinal cord, the dorsal column nuclei, and the ventral quadrant of the spinal cord. Latencies of the antidromic responses ranged between 0.6 and 3.0 ms (median 1.0 ms): no differences in latencies were associated with either location of the neurons in the pretectal area or with the site of their thalamic projection. Orthodromic responses to stimulation of ascending pathways were seen in the majority of neurons throughout the pretectal area sampled. Latencies of orthodromic responses varied considerably, with ranges of 0.9–9 ms, 6–20 ms, and 2.5–20 ms upon stimulating the dorsal column nuclei, dorsal columns, and ventrolateral quadrant, respectively. The shortest-latency responses to stimulation of the dorsal column nuclei or of the ventral quadrant were likely to be monosynaptic. Temporal and spatial facilitation of the responses to ascending input were common. The data show that neurons of the pretectal area are capable of relaying somatosensory input ascending from the spinal cord to the rostral thalamus. It is suggested that the pretectofugal output to VL converges with cerebellar input in VL neurons and becomes incorporated in cerebello-cerebral interactions and, ultimately, the control of movement.  相似文献   

14.
We have examined collateral projections of locus coeruleus afferent neurons in the rostral medulla to the caudal nucleus of the solitary tract or to the periaqueductal gray using double retrograde labeling techniques in the rat. The present findings confirm previously reported connections to the locus coeruleus, the nucleus of the solitary tract and the lateral periaqueductal gray from the nucleus paragigantocellularis in the rostral ventral medulla. Our results also reveal previously unreported projections from the rostral dorsomedial medulla (in a similar region as locus coeruleus-projecting neurons) to the lateral periaqueductal gray. Following retrograde tracer injections into the nucleus of the solitary tract and the locus coeruleus, doubly labeled neurons were seen in both the nucleus paragigantocellularis and in the rostral dorsomedial medulla. Cell counts revealed that approximately 25% of locus coeruleus-projecting neurons in the nucleus paragigantocellularis, and 12% in the dorsomedial medulla, also innervate the caudal nucleus of the solitary tract. In contrast, no doubly labeled neurons within the rostral ventral medulla were found following injections into the lateral periaqueductal gray and the locus coeruleus, although singly labeled neurons for the two tracers were interdigitated in some regions. Following these injections, numerous neurons were also retrogradely labeled in the dorsomedial medulla in the region of the medial prepositus hypoglossi and the perifascicular reticular formation. A small percentage of locus coeruleus afferents in the dorsal medulla (approximately 10%) also projected to the lateral periaqueductal gray. These results indicate that neurons in both the ventrolateral and dorsomedial rostral medulla frequently send collaterals to both the locus coeruleus and the caudal nucleus of the solitary tract. A small number of neurons in the dorsomedial medulla project to both the locus coeruleus and the lateral periaqueductal gray, but separate populations of neurons project to the locus coeruleus and the lateral periaqueductal gray from the ventrolateral medulla. These results functionally link the locus coeruleus and the nucleus of the solitary tract by virtue of common afferents, and support other studies indicating the importance of central autonomic circuitry in the afferent control of locus coeruleus neurons.  相似文献   

15.
R.P. Vertes 《Neuroscience》1984,11(3):651-668
The origins of projections within the medial forebrain bundle from the lower brainstem were examined with the horseradish peroxidase technique. Labeled cells were found in at least 15 lower brainstem nuclei following injections of a conjugate or horseradish peroxidase and wheat germ agglutinin at various levels of the medial forebrain bundle. Dense labeling was observed in the following cell groups (from caudal to rostral): A1 (above the lateral reticular nucleus); A2 (mainly within the nucleus of the solitary tract); a distinct group of cell trailing ventrolaterally from the medial longitudinal fasciculus at the level of the rostral pole of the inferior olive; raphe magnus; nucleus incertus; dorsolateral tegmental nucleus (of Castaldi); locus coeruleus; nucleus subcoeruleus; caudal part of the dorsal (lateral) parabrachial nucleus; and raphe pontis. Distinct but light labeling was seen in raphe pallidus and obscurus, nucleus prepositus hypoglossi, nucleus gigantocellularis pars ventralis, and the ventral (medial) parabrachial nucleus. Sparse labeling was observed throughout the medullary and caudal pontine reticular formation. Several lower brainstem nuclei were found to send strong projections along the medial forebrain bundle to very anterior levels of the forebrain. They were: A1, A2, raphe magnus (rostral part), nucleus incertus, dorsolateral tegmental nucleus, raphe pontis and locus coeruleus. With the exception of the locus coeruleus, attention has only recently been directed to the ascending projections of most of the nuclei mentioned above. Evidence was reviewed indicating that fibers from lower brainstem nuclei with ascending medial forebrain bundle projections distribute to widespread regions of the forebrain.It is concluded from the present findings that several medullary cell groups are capable of exerting a direct effect on the forebrain and that the medial forebrain bundle is the major ascending link between the lower brainstem and the forebrain.  相似文献   

16.
The aim of the present study was to determine whether or not descending control of spinal dorsal horn neuronal responsiveness following neuronal activation at pressor sites in the rostral ventrolateral medulla is selective for nociceptive information. Extracellular single-unit activity was recorded from 49 dorsal horn neurons in the lower lumbar spinal cord of anaesthetized rats. The 30 Class 2 neurons selected for investigation responded to noxious (pinch and radiant heat) and non-noxious (prod, stroke and/or brush) stimulation within their cutaneous receptive fields on the ipsilateral hindpaw. The excitatory amino acid, DL-homocysteic acid, was microinjected into either the rostral or the caudal rostral ventrolateral medulla at sites that evoked increases in arterial blood pressure. Effects of neuronal activation at these sites were then tested on the responses of Class 2 neurons to noxious and non-noxious stimulation within their excitatory receptive fields. The noxious pinch and radiant heat responses of Class 2 neurons were depressed, respectively to 13+/-3.8% (n=23) and to 16+/-3.7% (n=18) of control, following stimulation at sites in the rostral rostral ventrolateral medulla. In contrast, the low-threshold (prod) responses of eight Class 2 neurons tested were not depressed following neuronal activation at the same sites. When tested, control injections of the inhibitory amino acid, GABA, at the same sites in the rostral rostral ventrolateral medulla had no significant effects on neuronal activity. Neither intravenous administration of noradrenaline (to mimic the pressor responses evoked by DL-homocysteic acid microinjections in the rostral ventrolateral medulla) nor activation at pressor sites in the caudal rostral ventrolateral medulla had any significant effect on neuronal responsiveness.With regard to sensory processing in the spinal cord, these data suggest that descending inhibitory control that originates from neurons in pressor regions of the rostral rostral ventrolateral medulla is highly selective for nociceptive inputs to Class 2 neurons. These data are discussed in relation to the role of the rostral ventrolateral medulla in executing the changes in autonomic and sensory functions that are co-ordinated by higher centres in the CNS.  相似文献   

17.
Summary The projections to the midbrain from the spinal cord have been investigated in the cat with the degeneration technique and by using horseradish peroxidase (HRP) as an anterograde tracer. Two types of spinal cord lesions were performed: 1) Cordotomies at cervical or thoracic levels transecting the ventral and lateral funiculi. 2) Transections of the ventral, ventrolateral, dorsolateral or dorsal funiculus, respectively, at cervical levels. In the anterograde tracing experiments HRP was injected into the spinal cord at cervical, lumbar or sacral levels.The results show large projections to the lateral and ventrolateral parts of the periaqueductal gray (PAG1), the posterior pretectal nucleus (PP) and the nucleus of Darkschewitsch (D). More moderate projections go to the medial division of the periaqueductal gray (PAGm), the cuneiform nucleus (CF), the mesencephalic reticular formation (MRF), lateral part of the deep layer of the superio colliculus (SP) and magnocellular medial geniculate nucleus (GMmc), while scattered spinal fibers are present in the dorsal part of the periaqueductal gray (PAGd), the external inferior collicular nucleus (IX), the intermediate layer of the superior colliculus (SI), the lateral part of the red nucleus (NR) and in the Edinger-Westphal portion of the oculomotor nucleus (3). In addition a few fibers are present in the interstitial nucleus of Cajal (CA) and anterior pretectal nucleus (PAc).The results indicate that at midcervical levels most of the spinomesencephalic fibers ascend in the ventral funiculus, with only a moderate fraction ascending in the ventral half of the lateral funiculus. Almost no fibers ascend in the dorso-lateral funiculus and none appear to pass in the dorsal funiculus.No distinct somatotopic pattern was found in the spinomesencephalic projections, but more fibers from cervicobrachial segments terminate in the rostral than in the caudal parts of the terminal fields in PAG, CF, SP and IX, while the lumbar fibers were more numberous in the caudal parts. PP seems to receive spinal fibers mainly from the caudal half of the cord.  相似文献   

18.
猫内脏大神经一级传入纤维在脊髓灰质和薄束核中的分布   总被引:1,自引:1,他引:1  
本文共用猫14只,取1~1.5mg HRP溶于7~10μl蒸馏水中,注入一侧的腹腔神经节或内脏大神经中,采用TMB成色法,观察跨神经节传递的一级内脏传人纤维在中枢神经系的分布。标记的一级内脏感觉纤维经后根进入脊髓后,绝大多数先行于背外侧束(或Lissauer束)中,少数进入后索上行。自背外侧束间断地发出内、外侧投射纤维,包绕着后角的内、外侧缘。外侧投射纤维在数量上比内侧的多,止于Ⅰ、Ⅴ、Ⅶ层和中央管周围。进入中间外侧核的纤维,再沿颅尾方向分开纵行,与交感节前细胞的纵向树突紧密平行排列。内侧投射纤维主要止于中央管周围区域。行于后索的纤维,止于闩平面以下薄束核的腹外侧部。  相似文献   

19.
Retrograde intra-axonal transport of horseradish peroxidase was used to classify red nucleus neurons by their efferents. After the injection of horseradish peroxidase in the nucleus ventralis lateralis thalami, labelled neurons were found in the ipsilateral red nucleus, indicating the existence of a rubrothalamic tract in the cat. Rubrothalamic neurons have triangularly shaped somata with an average diameter of27± 9μM (mean± S.E.) and have few dendrites; 80% of them were restricted to the rostral third of the red nucleus (A 5.5–A 7). Horseradish peroxidase injections in the spinal cord showed labelled neurons in the contralateral red nucleus. Rubrospinal neurons have a stellate soma with an average diameter of36±14 μM and have numerous dendrites; 85% of them were found in the caudal two-thirds of the red nucleus (A 3–A 5.5). Rubrothalamic and rubrospinal neurons differ in morphology, in soma dimension and in their distribution within the red nucleus. They thus belong, at least mainly, to two different neuronal populations.Comparison of the morphology of horseradish peroxidase-labelled neurons with Golgi-Cox impregnated neurons indicates that rubrothalamic neurons correspond to Golgi type B and rubrospinal neurons to Golgi type A, neurons of a previous study.It was found that rubrothalamic neurons were most readily labelled by injections of horseradish peroxidase in the dorsal part of the ventrolateral nucleus; this raises the possibility that this part of the ventrolateral nucleus might be involved in the control of axial musculature and/or eye movements.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号