首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Macrocyclic bisbibenzyls, characteristic components derived from liverworts, have various biological activities. Riccardin D (RD), a liverwort-derived naturally occurring macrocyclic bisbibenzyl, has been found to exert anticancer effects in multiple cancer cell types through apoptosis induction. However, the underlying mechanisms of such effects remain undefined. In addition, whether RD induces other forms of cell death such as autophagy is unknown. In this study, we found that the arrest of RD-caused U2OS (p53 wild) and Saos-2 (p53 null) cells in G1 phase was associated with the induction of p53 and p21WAF1 in U2OS cells. RD-mediated cell cycle arrest was accompanied with apoptosis promotion as indicated by changes in nuclear morphology and expression of apoptosis-related proteins. Further studies revealed that the antiproliferation of RD was unaffected in the presence of p53 inhibitor but was partially reversed by a pan-inhibitor of caspases, suggesting that p53 was not required in RD-mediated apoptosis and that caspase-independent mechanisms were involved in RD-mediated cell death. Except for apoptosis, RD-induced autophagy occurred as evidenced by the accumulation of microtubule-associated protein-1 light chain-3B-II, formation of AVOs, punctate dots, and increased autophagic flux. Pharmacological blockade of autophagy activation markedly attenuated RD-mediated cell death. RD-induced cell death was significantly restored by the combination of autophagy and caspase inhibitors in osteosarcoma cells. Overall, our study revealed RD-induced caspase-dependent apoptosis and autophagy in cancer cells, as well as highlighted the importance of continued investigation on the use of RD as a potential anticancer candidate.  相似文献   

2.
The bisdioxopiperazines ICRF-187 (dexrazoxane), ICRF-193, and ICRF-154 are catalytic noncleavable complex-forming inhibitors of DNA topoisomerase II that do not produce protein-linked DNA strand breaks. In this study, we showed that bisdioxopiperazines induced erythroid differentiation, inhibited human leukemia K562 cell growth, and caused a slow induction of apoptosis. Dexrazoxane treatment caused DNA endoreduplication resulting in large highly polyploid cells. This result suggested the lack of a DNA topoisomerase II activity-based cell cycle checkpoint. The percentage of K562 cells that became apoptotic was much larger than the percentage of cells that stained for hemoglobin, suggesting that prior differentiation was not required for induction of apoptosis. Use of the Bcr-Abl tyrosine kinase inhibitor STI-571 resulted in a reduction in Bcl-xL levels and potentiation of dexrazoxane-induced apoptosis related to an earlier onset and more extensive cleavage of caspase-3. These results indicated that dexrazoxane-induced apoptosis is associated with a caspase-3 activation/cleavage pathway. In addition, these results were consistent with the antiapoptotic signaling function of Bcr-Abl to regulate expression of Bcl-xL. The ability of dexrazoxane to induce differentiation and apoptosis suggests that bisdioxopiperazines may be useful in treating some types of leukemia.  相似文献   

3.
Dihydroptychantol A (DHA), a novel macrocyclic bisbibenzyl compound extracted from liverwort Asterella angusta, has antifungal and multi-drug resistance reversal properties. Here, the chemically synthesized DHA was employed to test its anti-cancer activities in human osteosarcoma U2OS cells. Our results demonstrated that DHA induced autophagy followed by apoptotic cell death accompanied with G2/M-phase cell cycle arrest in U2OS cells. DHA-induced autophagy was morphologically characterized by the formation of double membrane-bound autophagic vacuoles recognizable at the ultrastructural level. DHA also increased the levels of LC3-II, a marker of autophagy. Surprisingly, DHA-mediated apoptotic cell death was potentiated by the autophagy inhibitor 3-methyladenine, suggesting that autophagy may play a protective role that impedes the eventual cell death. Furthermore, p53 was shown to be involved in DHA-meditated autophagy and apoptosis. In this connection, DHA increased nuclear expression of p53, induced p53 phosphorylation, and upregulated p53 target gene p21Waf1/Cip1. In contrast, cytoplasmic p53 was reduced by DHA, which contributed to the stimulation of autophagy. In relation to the cell cycle, DHA decreased the expression of cyclin B1, a cyclin required for progression through the G2/M phase. Taken together, DHA induces G2/M-phase cell cycle arrest and apoptosis in U2OS cells. DHA-induced apoptosis was preceded by the induction of protective autophagy. DHA-mediated autophagy and apoptosis are associated with the cytoplasmic and nuclear functions of p53.  相似文献   

4.
5.
8-Chloro-cAMP and 8-chloro-adenosine (8-Cl-Ado) are known to inhibit proliferation of cancer cells by converting 8-Cl-Ado into an ATP analog, 8-chloro-ATP (8-Cl-ATP). Because type II topoisomerases (Topo II) are ATP-dependent, we infer that 8-Cl-Ado exposure might interfere with Topo II activities and DNA metabolism in cells. We found that 8-Cl-Ado exposure inhibited Topo II-catalytic activities in K562 cells, as revealed by decreased relaxation of the supercoiled pUC19 DNA and inhibited decatenation of the kinetoplast DNA (kDNA). In vitro assays showed that 8-Cl-ATP, but not 8-Cl-Ado, could directly inhibit Topo IIα-catalyzed relaxation and decatenation of substrate DNA. Furthermore, 8-Cl-ATP inhibited Topo II-catalyzed ATP hydrolysis and increased salt-stabilized closed clamp. In addition, 8-Cl-Ado exposure decreased bromo-deoxyuridine (BrdU) incorporation into DNA and led to enhanced DNA double-stranded breaks (DSBs) and to increased formation of γ-H2AX nuclear foci in exposed K562 cells. Together, 8-Cl-Ado/8-Cl-ATP can inhibit Topo II activities in cells, thereby inhibiting DNA synthesis and inducing DNA DSBs, which may contribute to 8-Cl-Ado-inhibited proliferation of cancers.  相似文献   

6.
Plant styryl-lactone derivatives isolated from Goniothalamus sp. are potential compounds for cancer chemotherapy. In this study, we have examined the mechanisms of apoptosis induced by altholactone, a stryl-lactone isolated from the Malaysian plant G. malayanus on human HL-60 promyelocytic leukemia cells. Flow cytometric analysis of the externalization of phosphatidylserine (PS) using the annexin V/PI method on altholactone treated HL-60 cells showed a concentration-dependent increase of apoptosis from concentrations ranging from 10.8 (2.5 microg/ml) to 172.4 microM (40 microg/ml). Pre-treatment with the antioxidant N-acetylcysteine (1 mM) completely abrogated apoptosis induced by altholactone, suggesting for the involvement of oxidative stress. Further flow cytometric assessment of the level of intracellular peroxides using the fluorescent probe 2',7'-dichlorofluorescein diacetate (DCFH-DA) confirmed that altholactone induced an increase in cellular oxidative stress in HL-60 cells which was suppressed by N-acetylcysteine. In summary, our results demonstrate for the first time that altholactone induced apoptosis in HL-60 cells occurs via oxidative stress.  相似文献   

7.
The DNA intercalating, ellipticine analog drug, 5,11-dimethyl-5H-indol[2,3-b]quinoline, is able to stabilize in vitro the topoisomerase II-DNA cleavable complex and to induce DNA breaks in BPV I episome in rat fibroblasts. Cytotoxicity studies with DC3F cells resistant to ellipticine strongly suggest that topoisomerase II is a cellular target involved in the mechanism of cytotoxic action of this carboline derivative.  相似文献   

8.
Riccardin D is a novel macrocyclic bisbibenzyl compound extracted from Chinese liverwort plant Dumortiera hirsuta. Our previous studies showed that riccardin D is a DNA topo II inhibitor and has therapeutic potential for treatment of cancers. In this combined in vitro and in vivo study, we examined the inhibitory effects of riccardin D on tumor angiogenesis and the subsequent effect of anticancer activity was evaluated. Incubation with riccardin D weakly inhibited the proliferation of human umbilical vascular endothelial cells (HUVEC) as estimated by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. The scratch wound experiment showed that riccardin D effectively decreased the motility and migration of HUVEC cells. Riccardin D inhibited the formation of capillary tube as demonstrated by decrease of branch points formed by HUVEC cells on 3-D Matrigel. We examined the levels of angiogenic factors including vascular endothelial growth factor (VEGF), VEGF receptor 2, epidermal growth factor receptor (EGF receptor), and matrix metalloproteinase (MMPs) in HUVEC cells. The expressions of VEGF, phospho-VEGF receptor 2, EGF receptor and MMP-2 were significantly reduced by riccardin D as estimated by Western blot assay and real-time quantitative PCR analysis. The decrease of VEGF was also detected in riccardin D-treated human lung cancer H460 cells. The anticancer activity of riccardin D was then evaluated in a mouse model in which riccardin D delayed the growth of H460 xenografts without obvious toxicity to animals after three weeks injection. To evaluate the role of antiangiogenesis of riccardin D in mice, CD34 immunohistochemical staining was employed to analyze the mean vascular density in H460 xenograft tissues. The number of blood vessels was significantly decreased after riccardin D treatment. These results suggest that riccardin D display the inhibitory effect on growth of human lung carcinoma cells and that the inhibition of angiogenesis may involve in anticancer activity of riccardin D.  相似文献   

9.
Polyphyllin D, a compound derived from Paris polyphylla rhizoma, demonstrated strong anticancer activities in a previous study. Our results demonstrated that polyphyllin D exerts a growth inhibitory effect by inducing apoptosis and differentiation in the human erythroleukemia cell line K562. Polyphyllin D induced apoptosis via the mitochondrial apoptotic pathway, as evidenced by the decreased Bcl-2 and Bcr/Abl expression levels, the disruption of MMP and increased Bax, cytochrome c and cleaved-caspase-3 levels. At a low dose, polyphyllin D increased CD14 expression on the surface of K562 cells and induced cells to differentiate into monocytes or mature macrophages. These data suggest that polyphyllin D has the potential to be a potent therapeutic agent for treating human chronic myelogenous leukemia.  相似文献   

10.
Here, we reported the synthesis of a novel topoisomerase II inhibitor, MHY336, which that has strong topoisomerase-mediated anticancer activity but fewer side effects than other topoisomerase II inhibitors. The catalytic activity of MHY336 on the topoisomerase II enzyme was the same as that of the etoposide. In a cell-free system, MHY336 exhibited a potent activity on scavenging of reactive oxygen species against 3-morpholinosydnonimine hydrochloride (SIN-1)-induced oxidative stress. An in vitro cell-based assay demonstrated that MHY336 significantly inhibited the proliferation of three prostate cancer cell lines, LNCaP, PC-3, and DU145 cells. Notably, the cytotoxicity of MHY336 was more potent in LNCaP cells (IC(50)=1.39 μM) than in DU145 (IC(50)=2.94 μM) and PC3 cells (IC(50)=3.72 μM). Furthermore, MHY336 treatment induced similar levels of cytotoxicity compared to doxorubicin treatment (IC(50)=1.55 μM) in LNCap cells. Also, MHY336 significantly down-regulated topoisomerase II alpha expression and up-regulated p53 expression in LNCaP cells (wild-type p53), whereas it up-regulated the topoisomerase II alpha protein in both DU145 and PC3 cells (p53 mutated or deleted). MHY336 induced G2/M or S phase arrest in LNCaP cells through a well-documented topoisomerase II-dependent mechanism. Further studies using Annexin V-FITC binding assay, DAPI staining, and Western blot analyses illustrated that MHY336 markedly induced apoptotic cell death via the mitochondria-mediated intrinsic pathway in LNCaP cells. These results suggest that MHY336 is an attractive chemotherapeutic agent because of its topoisomerase II-mediated anti-tumour activity in human prostate cancer.  相似文献   

11.
Unlike PMA, bryostatin 1 has been found to have a minimal effect on drug-induced topoisomerase II-mediated DNA cleavage and no effect on topoisomerase II mRNA levels. Furthermore, bryostatin 1 overcame the down-regulatory effects of PMA treatment on (1) drug-induced, topoisomerase II-mediated DNA cleavage, (2) drug-induced cytotoxicity, and (3) topoisomerase II gene expression. Thus, it is unlikely that the effects of phorbol ester treatment on topoisomerase II-mediated events are a direct consequence of protein kinase C activation per se. Rather, the results with bryostatin 1 suggest that the phorbol ester effects are related to more distal effects of phorbol ester treatment that may be related to monocytoid differentiation.  相似文献   

12.
Macrocyclic bisbibenzyls, a class of characteristic natural molecules derived from liverworts, have diverse biological significances. Dihydroptychantol A (DHA) was identified to be an antifungal active macrocyclic bisbibenzyl from liverwort Asterella angusta. In an attempt to understand other biological activities of this compound, the chemical synthesized DHA and its analogues (compounds 1–3) were employed to test this possibility by using adriamycin-resistant K562/A02 cells. Among the tested compounds (1–4), DHA showed the strongest potency to increase adriamycin cytotoxicity toward K562/A02 cells by MTT assays and its reversal fold is 8.18 (20 μM). Mechanisms of DHA on p-glycoprotein (P-gp)-mediated multidrug resistance (MDR) were further investigated. Based on the flow cytometry, we detected the significant increase of adriamycin and rhodamine123 accumulation in K562/A02 cells exposed to various concentrations of DHA, meanwhile, notable decrease of rhodamine123 efflux was also observed, which revealed DHA caused a decline of P-gp activity. Furthermore, P-gp expression was analyzed by the flow cytometry and RT-PCR. Dose-dependent reduction of P-gp expression was measured in K562/A02 cells pretreated with DHA for 24 h. No such results were found in parental K562 cells. These results demonstrated DHA reversed effectively MDR by blocking the drugs to be pumped out via inhibiting P-gp function and expression pathway.  相似文献   

13.
In our previous studies, we demonstrated that 2,6-bis-(2-chloroacetamido) anthraquinone (B1) showed a highly significant cytotoxic effect. However, its influence in the cell cycle and apoptotic induction effects has not been investigated yet. Here we report the antiproliferative effect of B1, for which IC50 values were 0.57 μmol/l for lung cancer A549 cells, 0.63 μmol/l for colon cancer HT-29 cells, and 0.53 μmol/l for breast cancer MCF-7 cells. DNA topoisomerase II (Topo II), an essential enzyme in DNA synthesis and meiotic division, is highly expressed in cancer cells. Some currently used clinical anticancer drugs (doxorubicin and mitoxantrone) targeting Topo II are very effective antineoplastic agents. B1, sharing the basic structure of known Topo II inhibitors, demonstrated a significant inhibitory effect on Topo II bioactivity. In A549 cells, B1 increased apoptotic cell population with induction of Fas, Bax, and cleaved poly(ADP-ribose) polymerase and by reduction of Bcl-2 expression. Moreover, cell cycle analysis indicated that B1 induced G1 phase arrest through modulation of G1 cell cycle regulatory proteins, such as the downregulation of cyclin D1 and upregulation of Cip/p21, Kip1/p27, and p53. Thus, our study suggests that B1, with the ability to inhibit Topo II activity and cause cell cycle G1 arrest and apoptosis, has potential as a novel anticancer agent.  相似文献   

14.
Merbarone (5-[N-phenyl carboxamido]-2-thiobarbituric acid) is an anticancer drug that inhibits the catalytic activity of DNA topoisomerase II (topo II) without damaging DNA or stabilizing DNA-topo II cleavable complexes. Although the cytotoxicity of the complex-stabilizing DNA-topo II inhibitors such as VP-16 (etoposide) has been partially elucidated, the cytotoxicity of merbarone is poorly understood. Here, we report that merbarone induces programmed cell death or apoptosis in human leukemic CEM cells, characterized by internucleosomal DNA cleavage and nuclear condensation. Treatment of CEM cells with apoptosis-inducing concentrations of merbarone caused activation of c-Jun NH2-terminal kinase/stress-activated protein kinase, c-jun gene induction, activation of caspase-3/CPP32-like protease but not caspase-1, and the proteolytic cleavage of poly(ADP-ribose) polymerase. Treatment of CEM cells with a potent inhibitor of caspases, Z-Asp-2. 6-dichlorobenzoyloxymethyl-ketone, inhibited merbarone-induced caspase-3/CPP32-like activity and apoptosis in a dose-dependent manner. These results indicate that the catalytic inhibition of topo II by merbarone leads to apoptotic cell death through a caspase-3-like protease-dependent mechanism. These results further suggest that c-Jun and c-Jun NH2-terminal kinase/stress-activated protein kinase signaling may be involved in the cytotoxicity of merbarone.  相似文献   

15.
冬凌草甲素诱导HL-60细胞凋亡   总被引:15,自引:4,他引:15  
目的 研究冬凌草甲素诱导人白血病HL 6 0细胞凋亡的作用。方法 形态学观察 ,DNA凝胶电泳及流式细胞术。结果 冬凌草甲素能显著地诱导HL 6 0细胞发生凋亡 ,其作用呈明显的浓度效应关系和时间依赖性。形态学观察可见凋亡小体的形成 ,琼脂糖凝胶电泳可见明显的DNA梯带 ;流式细胞仪检测到G1亚峰。结论 冬凌草甲素能诱导HL 6 0细胞凋亡 ,并与其细胞杀伤活性相互平行 ,提示冬凌草甲素的抗癌活性与诱导肿瘤细胞凋亡相关  相似文献   

16.
榄香烯诱导人白血病K562细胞凋亡   总被引:8,自引:1,他引:8  
目的研究榄香烯抗肿瘤的作用机制。方法用流式细胞仪和琼脂糖电泳检测DNA断裂,透射电镜观察超微结构变化。结果260μmol·L-1榄香烯孵育K562细胞6、12、24、48h后流式细胞仪检测到逐渐增强的凋亡峰,电泳发现明显的阶梯状条带,电镜观察到染色体聚集、凋亡小体。结论榄香烯能诱导K562细胞凋亡。  相似文献   

17.
毛兰素诱导人白血病HL—60细胞的凋亡   总被引:4,自引:1,他引:3  
目的:研究毛兰素对HL-60细胞增殖的抑制作用,探讨其诱导细胞凋亡的机制。方法:用MTT比色法测定了毛兰素对HL-60细胞增殖的抑制作用:应用荧光显微镜、透射电镜、DNA电泳及流式细胞仪观察了药物对细胞凋亡的诱导作用,并用免疫组化的方法从基因水平阐述了凋亡的发生。结果:毛兰素20-81.9nmol/L在72h内显著抑制HL-60细胞增殖,作用24h后,对HL-60细胞的IC50为38nmol/L,而阳性对照药长春新碱对HL-60细胞的IC50为101nmol/L,前者明显优于后者;形态学观察可见凋亡的特征性改变;琼脂糖电泳出现典型的DNA“ladder”;流式细胞仪结果表明细胞被阻滞于G2/M期;免疫组化可见bcl-2表达下降,bax表达升高。结论:毛兰素显著抑制HL-60细胞的生长,该抑制作用可能是通过诱导细胞凋亡和改变HL-60细胞bcl-2和bax基因的表达而实现的。  相似文献   

18.
We have previously reported that pretreatment of human lymphoblastoid cells with the hydroxyl radical scavenger, N-acetyl cysteine, attenuates doxorubicin-induced DNA damage signalling through the ATM protein kinase. We sought to extend these studies to examine the effects of other hydroxyl radical scavengers in human breast cancer cells. Using MCF-7 cells, we observed that doxorubicin treatment triggered autophosphorylation of ATM on serine 1981 and the ATM-dependent activation of its downstream effectors p53, Chk2, and SMC1. Furthermore, we demonstrate that this effect was attenuated by pretreatment of cells with the hydroxyl radical scavengers sodium benzoate, sodium salicylate and, to a lesser extent, N-acetyl cysteine, but not Trolox™. Intriguingly, these effects were independent of doxorubicin's ability to redox cycle, were observed with multiple classes of topoisomerase II poisons, but did not represent a general damage-attenuating response. In addition, the observed effects were independent of the ability of sodium salicylate to inhibit cyclooxygenase-2 or NFκB. We demonstrate that sodium salicylate prevented doxorubicin-induced DNA double-strand break generation, which was attributable to inhibition of doxorubicin-stabilized topoisomerase IIα-DNA cleavable complex formation in vivo. Using topoisomerase IIα-DNA cleavage and decatenation assays, we determined that sodium salicylate is a catalytic inhibitor of topoisomerase IIα. Consistent with the observed inhibition of double-strand break formation, pretreatment of cells with sodium salicylate attenuated doxorubicin and etoposide cytotoxicity. These results demonstrate a novel mechanism of action for sodium salicylate and suggest that further study on the mechanism of topoisomerase II inhibition and the effects of related therapeutics on doxorubicin and etoposide cytotoxicity are warranted.  相似文献   

19.
MicroRNA-34 (miR-34) is one the most important tumor suppressor miRNAs involving in the various aspects of oral cancer. The present study aimed to evaluate the effects of miR-34 restoration in OECM-1 oral cancer resistant to paclitaxel (OECM-1/PTX) and its underlying mechanisms through p53-mediated DNA damage and apoptosis. OECM-1 and OECM-1/PTX were transfected with miR-34 mimic and inhibitor. Cellular proliferation and apoptosis were evaluated through MTT assay and flow cytometry, respectively. The mRNA and protein expression levels of p53, p-glycoprotein (P-gp), ATM, ATR, CHK1, and CHK2 were assessed through qRT-PCR and western blotting. Rhodamin123 uptake assay was used to measure the P-gp activities. P53 expression was also suppressed by sing a siRNA transfection of cells. The expression levels of miR-34 were downregulated in OECM-1/PTX. Restoration of miR-34 led to increase in cytotoxic effects of paclitaxel in cells. In addition, the expression levels and activities of P-gp were reduced following miR-34 transfection. miR-34 transfection upregulated the p53, ATM, ATR, CHK1, and CHK2 expression levels in OECM-1/PTX cells. Furthermore, cells transfected with miR-34 showed higher levels of apoptosis. miR-34 restoration reverses paclitaxel resistance in OECM-1 oral cancer. The chemosensitive effects of miR-34 is mediated through increasing DNA damage and apoptosis in a p53 depended manner.  相似文献   

20.
Ascididemin (ASC) is a pentacyclic DNA-intercalating agent isolated from the Mediterranean ascidian Cystodytes dellechiajei. This marine alkaloid exhibits marked cytotoxic activities against a range of tumor cells, but its mechanism of action remains poorly understood. We investigated the effects of ASC on DNA cleavage by human topoisomerases I and II. Relaxation assays using supercoiled DNA showed that ASC stimulated double-stranded cleavage of DNA by topoisomerase II, but exerted only a very weak effect on topoisomerase I. ASC is a conventional topoisomerase II poison that significantly promoted DNA cleavage, essentially at sites having a C on the 3' side of the cleaved bond (-1 position), as observed with etoposide. The stimulation of DNA cleavage by topoisomerase I in the presence of ASC was considerably weaker than that observed with camptothecin. Cytotoxicity measurements showed that ASC was even less toxic to P388 leukemia cells than to P388CPT5 cells resistant to camptothecin. In addition, the marine alkaloid was found to be equally toxic to HL-60 leukemia cells sensitive or resistant to mitoxantrone. It is therefore unlikely that topoisomerases are the main cellular targets for ASC. This alkaloid was found to strongly induce apoptosis in HL-60 and P388 leukemia cells. Cell cycle analysis showed that ASC treatment was associated with a loss of cells in the G1 phase accompanied with a large increase in the sub-G1 region. Cleavage experiments with poly(ADP-ribose) polymerase (PARP) revealed that caspase-3 was a mediator of the apoptotic pathway induced by ASC. The DNA of ASC-treated cells was severely fragmented. Collectively, these findings indicate that ASC is a potent inducer of apoptosis in leukemia cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号