首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The physiology of brain histamine   总被引:44,自引:0,他引:44  
Histamine-releasing neurons are located exclusively in the TM of the hypothalamus, from where they project to practically all brain regions, with ventral areas (hypothalamus, basal forebrain, amygdala) receiving a particularly strong innervation. The intrinsic electrophysiological properties of TM neurons (slow spontaneous firing, broad action potentials, deep after hyperpolarisations, etc.) are extremely similar to other aminergic neurons. Their firing rate varies across the sleep-wake cycle, being highest during waking and lowest during rapid-eye movement sleep. In contrast to other aminergic neurons somatodendritic autoreceptors (H3) do not activate an inwardly rectifying potassium channel but instead control firing by inhibiting voltage-dependent calcium channels. Histamine release is enhanced under extreme conditions such as dehydration or hypoglycemia or by a variety of stressors. Histamine activates four types of receptors. H1 receptors are mainly postsynaptically located and are coupled positively to phospholipase C. High densities are found especially in the hypothalamus and other limbic regions. Activation of these receptors causes large depolarisations via blockade of a leak potassium conductance, activation of a non-specific cation channel or activation of a sodium-calcium exchanger. H2 receptors are also mainly postsynaptically located and are coupled positively to adenylyl cyclase. High densities are found in hippocampus, amygdala and basal ganglia. Activation of these receptors also leads to mainly excitatory effects through blockade of calcium-dependent potassium channels and modulation of the hyperpolarisation-activated cation channel. H3 receptors are exclusively presynaptically located and are negatively coupled to adenylyl cyclase. High densities are found in the basal ganglia. These receptors mediated presynaptic inhibition of histamine release and the release of other neurotransmitters, most likely via inhibition of presynaptic calcium channels. Finally, histamine modulates the glutamate NMDA receptor via an action at the polyamine binding site. The central histamine system is involved in many central nervous system functions: arousal; anxiety; activation of the sympathetic nervous system; the stress-related release of hormones from the pituitary and of central aminergic neurotransmitters; antinociception; water retention and suppression of eating. A role for the neuronal histamine system as a danger response system is proposed.  相似文献   

2.
Yan J  He C  Xia JX  Zhang D  Hu ZA 《Neuroscience letters》2012,520(1):92-97
The arousal peptides, orexins, play an important role in regulating the function of the prefrontal cortex (PFC). Although orexins have been shown to increase the excitability of deep-layer neurons in the medial prefrontal cortex (mPFC), little is known about their effect on layer 2/3, the main intracortical processing layer. In this study, we investigated the effect of orexin-A on pyramidal neurons in layer 2/3 of the mPFC using whole-cell recordings in rat brain slices. We observed that orexin-A reversibly depolarized layer 2/3 pyramidal neurons through a postsynaptic action. This depolarization was concentration-dependent and mediated via orexin receptor 1. In voltage-clamp recordings, the orexin-A-induced current was reduced by the replacement of internal K(+) with Cs(+), removal of external Na(+), or an application of flufenamic acid (an inhibitor of nonselective cation channels). A blocker of Na(+)/Ca(2+) exchangers (SN-6) did not influence the excitatory effect of orexin-A. Moreover, the current induced by orexin-A reversed near E(k) when the external solution contained low levels of Na(+). When recording with Cs(+)-containing pipettes in normal external solution, the reversal potential of the current was approximately -25 mV. These data suggest an involvement of both K(+) channels and nonselective cation channels in the effect of orexin-A. The direct excitatory action of orexin-A on layer 2/3 mPFC neurons may contribute to the modulation of PFC activity, and play a role in cognitive arousal.  相似文献   

3.
4.
Devidze N  Zhang Q  Zhou J  Lee AW  Pataky S  Kow LM  Pfaff DW 《Neuroscience》2008,152(4):942-949
Estrogens act upon ventromedial hypothalamic (VMH) neurons, and their effects on female arousal and sexual behaviors mediated by VMH neurons involve several neurotransmitters and neuromodulators. Among these are opioid peptides which might be predicted to oppose estrogenic action on VMH because they tend to decrease CNS arousal. Spontaneous excitatory postsynaptic currents were recorded from VMH neurons from 17beta-estradiol- (E, 10 mug/0.1 ml) or oil-treated control ovariectomized (OVX) mice using whole-cell patch-clamp techniques. To examine the impact of opioidergic inputs, recordings of neurons from both treatment groups were obtained in the presence of the general opioid receptor agonist methionine enkephalin-Arg-Phe (MERF, 3 muM), or mu-receptor specific agonist [d-Ala(2), N-Me-Phe(4), Gly(5)-ol]-enkephalin (DAMGO, 1 muM). Compared with oil, E treatment for 48 h significantly increased the frequency of spontaneous excitatory postsynaptic currents (sEPSCs) without affecting their amplitude. MERF and DAMGO each abolished this E effect, causing significant reductions in sEPSCs. The effect of MERF was abolished by naltrexone (general opioid receptor antagonist, 3 muM) and the effect of DAMGO by d-Phe-Cys-Tyr-d-Trp-Arg-Thr-Pen-Thr-NH(2) (CTAP) (mu-opioid receptor selective antagonist, 1 muM); in contrast, kappa- and delta-opioid receptor agonists, U69593 (300 nM) and [d-Pen(2),d-Pen(5)]-enkephalin (DPDPE, 1 muM) respectively, had little effect on the sEPSCs compared with DAMGO. To consider presynaptic vs. postsynaptic effects of opioids, miniature excitatory postsynaptic currents (mEPSCs) were investigated in E- and oil-treated VMH neurons and opioid receptor antagonist effects on mEPSCs were observed. Both MERF and DAMGO reduced the frequency of mEPSCs, but had no effect on their amplitude. Our findings indicate that opioids suppress excitatory synaptic transmissions in VMH neurons primarily through mu-receptors and could thereby decrease sexual arousal in mice.  相似文献   

5.
Neurons within the posterodorsal medial amygdala of female rats are known to process vaginocervical stimulation received during mating through N-methyl-D-aspartate channel activation, conveying information to downstream hypothalamic cell groups that modulate neuroendocrine function. Stimulation of these neurons with an excitatory amino acid cocktail of glutamate, aspartate and glycine initiates 10-12 days of prolactin surge secretion that normally are observed only after the receipt of vaginocervical stimulation. Posterodorsal medial amygdala neurons responsive to vaginocervical stimulation also contain estrogen and progesterone receptors. The present experiment examined which downstream sites involved in prolactin secretion show c-fos expression following glutamate receptor activation within the posterodorsal medial amygdala and whether ovarian steroids influence cellular activation in these areas. Ovariectomized female rats implanted with unilateral cannulas directed at the posterodorsal medial amygdala received injections of estradiol benzoate and progesterone or oil before infusion treatment with either excitatory amino acid or control PBS. An additional group of estradiol benzoate+progesterone-treated females was infused with 1.0 microM glycine alone in PBS. Infusions were administered three times at 30 min intervals. FOS induction 90 min after infusion was determined immunohistochemically on the sides ipsilateral and contralateral to the infusion. Of the examined regions, excitatory amino acid treatment and hormone treatment induced three patterns of c-fos expression: 1) responses to both excitatory amino acid and hormone treatment [posterodorsal medial amygdala, medial preoptic area, ventrolateral ventromedial hypothalamic nucleus, bed nucleus of the stria terminalis]; 2) responses to estradiol benzoate+progesterone treatment only [anteroventral periventricular nucleus and dorsomedial nucleus]; and 3) responses to excitatory amino acid only [arcuate nucleus, suprachiasmatic nucleus, and paraventricular nucleus]. These data identify possible circuits by which vaginocervical stimulation, via activation of posterodorsal medial amygdala glutamate-type receptors, initiates and coordinates a series of events within a larger neuroendocrine circuit important for pregnancy.  相似文献   

6.
C S Li  H Kaba  H Saito  K Seto 《Neuroscience》1990,36(3):773-778
Our electrophysiological experiments in female mice have provided evidence that electrical stimulation of the accessory olfactory bulb orthodromically excites a subpopulation of tuberoinfundibular arcuate neurons by way of the amygdala. The present study shows that half of such neurons are identified as dopaminergic by examining the effectiveness of infusing 6-hydroxydopamine and 5,7-dihydroxytryptamine locally into the median eminence in blocking their antidromic response. Further attention is focused on excitatory amino acid receptors within the amygdala and the amygdaloid pathway that mediate the accessory bulb-induced excitation of tuberoinfundibular arcuate neurons. The excitatory transmission was reversibly blocked by intra-amygdala infusion (3 nmol) of the excitatory amino acid antagonists kynurenic acid, D,L-2-amino-5-phosphonovalerate, gamma-D-glutamylaminomethylsulphonate and D,L-2-amino-4-phosphonobutyrate. Intra-amygdala infusions (3 nmol) of N-methyl-D-aspartate and kainate markedly enhanced the firing activity of tuberoinfundibular arcuate neurons with excitatory inputs from the accessory bulb, whereas similar infusions of quisqualate were without effect Intra-stria terminalis infusions of the local anaesthetic lignocaine completely abolished the excitatory transmission in all the cells tested. Furthermore, tuberoinfundibular arcuate neurons stimulated from the accessory bulb were also orthodromically stimulated from the stria terminalis with a shorter latency. These studies demonstrate that the projections of the accessory olfactory bulb activate excitatory amino acid receptors within the amygdala and subsequently the stria terminalis route, thereby causing excitation of tuberoinfundibular dopaminergic arcuate neurons. This functional pathway can account for the reproductive effects so far described as a consequence of vomeronasal chemoreception.  相似文献   

7.
Ifenprodil is a selective blocker of NMDA receptors that are heterodimers composed of GluN1/GluN2B subunits. This pharmacological profile has been extensively used to test the role of GluN2B-containing NMDA receptors in learning and memory formation. However, ifenprodil has also been reported to have actions at a number of other receptors, including high voltage-activated calcium channels. Here we show that, in the basolateral amygdala, ifenprodil dose dependently blocks excitatory transmission to principal neurons by a presynaptic mechanism. This action of ifenprodil has an IC(50) of ~10 μM and is fully occluded by the P/Q type calcium channel blocker ω-agatoxin. We conclude that ifenprodil reduces synaptic transmission in the basolateral amygdala by partially blocking P-type voltage-dependent calcium channels.  相似文献   

8.
At glutamatergic synapses, calcium influx through NMDA receptors (NMDARs) is required for long-term potentiation (LTP); this is a proposed cellular mechanism underlying memory and learning. Here we show that in lateral amygdala pyramidal neurons, SK channels are also activated by calcium influx through synaptically activated NMDARs, resulting in depression of the synaptic potential. Thus, blockade of SK channels by apamin potentiates fast glutamatergic synaptic potentials. This potentiation is blocked by the NMDAR antagonist AP5 (D(-)-2-amino-5-phosphono-valeric acid) or by buffering cytosolic calcium with BAPTA. Blockade of SK channels greatly enhances LTP of cortical inputs to lateral amygdala pyramidal neurons. These results show that NMDARs and SK channels are colocalized at glutamatergic synapses in the lateral amygdala. Calcium influx through NMDARs activates SK channels and shunts the resultant excitatory postsynaptic potential. These results demonstrate a new role for SK channels as postsynaptic regulators of synaptic efficacy.  相似文献   

9.
10.
C De Montigny  J P Lund 《Neuroscience》1980,5(9):1621-1628
The ‘excitotoxic’ hypothesis proposes that neurotoxic amino acids exert their effect through neuronal excitation (Olney, Ho &;Rhee, 1971).Colonnier, Steriade &;Landry (1979) have found that trigeminal mesencephalic neurons in the cat are resistant to the neurotoxic effect of kainic acid. In the present study it was found that the same neurons in the rat also resist the cytotoxic action of this amino acid. In addition, kainic acid, applied iontophoretically onto these neurons failed to alter their firing frequency. The resistance of these neurons to both neurotoxic and excitatory actions of kainic acid is consistent with the ‘excitotoxic’ hypothesis.Other putative neurotransmitters were applied by microiontophoresis on these neurons and none were found to alter their rate of discharge. Procaine however applied with relatively low ejecting currents consistently reduced their firing rates. The failure of the putative neurotransmitters tested to influence the rate of discharge of the trigeminal mesencephalic neurons suggests that the chemical synapses present on these neurons in the rat (Hinrichsen &;Larramendi, 1970) utilize another neurotransmitter from those tested. Alternatively the synapses might have a role other than the direct regulation of the firing frequency of these primary afferent neurons.  相似文献   

11.
Exogenous opioids influence male rat sexual behavior, suggesting that endogenous opioid peptides are released during mating. Supporting this hypothesis, the authors recently showed that mating induced activation of mu opioid receptors. However, it is unknown which ligand(s) is acting on these receptors during mating. The current set of experiments tested the hypothesis that beta-endorphin-producing neurons, that is, proopiomelanocortin (POMC) neurons, are activated during sexual behavior. Mating-induced activation of POMC neurons was investigated during either the dark phase or the light phase, following different components of male rat sexual behavior or following control manipulations that resulted in general arousal. Results show activation of POMC neurons in the mediobasal hypothalamus following general arousal but not specifically related to sexual behavior per se. In addition, mating did not activate the subpopulation of POMC neurons that project to the medial preoptic nucleus. These results suggest that it is unlikely that POMC neurons contribute to the action of endogenous opioids in the brain area during sexual behavior but instead may contribute to the change in arousal state essential for the expression of sexual behavior.  相似文献   

12.
We examined whether the NMDA class of excitatory amino acid receptors contribute to synaptic transmission in the pathway connecting the medial geniculate body (MGB) with the lateral nucleus of the amygdala (LA) using extracellular single unit recordings and microiontophoresis. Cells were identified in LA on the basis of responsivity to electrical stimulation of the MGB. For each cell, a level of current was found for the iontophoretic ejection of the NMDA antagonist AP5 that blocked responses elicited by iontophoresis of NMDA, but had no effect on responses elicited by AMPA. Iontophoresis of AP5 with this level of current blocked the excitatory response elicited by MGB stimulation in most cells tested. Microinfusion of AP5 (25, 50, or 100 M) also blocked the responses. Additional studies tested individual cells with both AP5 and the AMPA antagonist CNQX and showed that blockade of either NMDA or AMPA receptors interferes with synaptic transmission. Finally, iontophoretic ejection of either AP5 or CNQX blocked short-latency (<25 ms) responses elicited in LA by peripheral auditory stimulation. Together, these results suggest that the synaptic evocation of action potentials in the thalamo-amygdala pathway depends on both NMDA and non-NMDA receptors. We hypothesize that non-NMDA receptors are most likely required to depolarize the cell sufficiently to remove the blockade of NMDA channels by magnesium and NMDA receptors are required to further depolarize the membrane to the level required for action potential generation.  相似文献   

13.
Neocortical cholinergic activity plays a fundamental role in sensory processing and cognitive functions, but the underlying cellular mechanisms are largely unknown. We analyzed the effects of acetylcholine (ACh) on synaptic transmission and cell excitability in rat "barrel cortex" layer V (L5) pyramidal neurons in vitro. ACh through nicotinic and M1 muscarinic receptors enhanced excitatory postsynaptic currents and through nicotinic and M2 muscarinic receptors reduced inhibitory postsynaptic currents. These effects increased excitability and contributed to the generation of Ca(2+) spikes and bursts of action potentials (APs) when inputs in basal dendrites were stimulated. Ca(2+) spikes were mediated by activation of NMDA receptors (NMDARs) and L-type voltage-gated Ca(2+) channels. Additionally, we demonstrate in vivo that basal forebrain stimulation induced an atropine-sensitive increase of L5 AP responses evoked by vibrissa deflection, an effect mainly due to the enhancement of an NMDAR component. Therefore, ACh modified the excitatory/inhibitory balance and switched L5 pyramidal neurons to a bursting mode that caused a potent and sustained response enhancement with possible fundamental consequences for the function of the barrel cortex.  相似文献   

14.
The peptides of the tachykinin family are widely distributed within the mammalian peripheral and central nervous systems and play a well-recognized role as neuromodulators, although their direct action on cerebellum granule cells have not yet been demonstrated. We have examined the effect of the best known members of the family, substance P (SP), neurokinin A (NKA), and neurokinin B (NKB) on alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors from rat cerebellar granule cells in culture to assess the ability of these peptides to regulate the glutamatergic input. Both NKA and NKB, but not SP, produce a significant enhancement of ionic current through AMPA receptors activated by the agonist kainate in 53.5 and 46% of patched neurons, respectively. This effect was not observable in the presence of MEN 10,627 and Trp(7)betaAla(8), NKA and NKB competitive antagonist receptors, respectively, indicating that the current modulations were mediated by the respective receptors. NKB also produces a significant enhancement of ionic current through the AMPA receptors activated directly by its agonist AMPA and cyclothiazide, an allosteric modulator that selectively suppresses desensitization of AMPA receptors. The presence of NK3 receptors was demonstrated in these neurons by RT-PCR amplification of total RNA extracted from cerebellar granule cells, using NK3-specific primer pairs. Immunocytochemistry experiments, using a specific polyclonal antibody directed against NK3, also confirmed the presence of NK3 receptors and their co-localization with the GLUR2 AMPA subunit in about 54% of cerebellar granule neurons. This study adds the tachykinins to the list of neuromodulators capable of exerting a excitatory action on cerebellar granule cells.  相似文献   

15.
McDonald AJ  Betette RL 《Neuroscience》2001,102(2):413-425
Parvalbumin is a calcium-binding protein that is contained in certain neuronal populations in the brain. Although the exact function of parvalbumin is not clear, it has been found to be a useful marker for studying the connections of specific cell types in immunohistochemical studies. In the present investigation immunohistochemical techniques were used to study the morphology of parvalbumin-containing neurons in the rat basolateral amygdala. These neurons were found to be a morphologically heterogeneous subpopulation of non-pyramidal interneurons. Parvalbumin-positive axons in the basolateral amygdala were observed to form "pericellular baskets" that enveloped the perikarya of pyramidal neurons. In addition, some parvalbumin-immunoreactive axons formed "cartridges" that appeared to surround non-immunoreactive processes. The morphology of parvalbumin-positive neurons closely resembled that of neurons containing calbindin, a related calcium-binding protein. Analysis of adjacent sections stained for each protein using the mirror technique revealed that approximately 80% of parvalbumin neurons also contained calbindin, and that approximately 60% of calbindin neurons also contained parvalbumin.This study demonstrates that parvalbumin-containing neurons constitute an important subpopulation of non-pyramidal interneurons in the rat basolateral amygdala. The axonal configurations of these cells indicate that they may exert a potent inhibitory influence over pyramidal projection neurons. We suggest that parvalbumin-containing neurons can control emotional responses mediated by the basolateral amygdala by controlling the output from this important brain region.  相似文献   

16.
A postsynaptic mechanism for the influences of various neuromodulators and modifiable disynaptic inhibition on long-term potentiation and depression of the excitatory inputs to granule and pyramidal neurons in the hippocampus is described. According to this mechanism, facilitation of the induction of long-term depression/potentiation at the excitatory input to the inhibitory interneuron induced by the action of a neuromodulator on a receptor bound to a Gi/0/(Gs or Gq/11) protein can lead to decreases/increases in GABA release, weakening/strengthening of the inhibitory action on the target cell, and improvement in the conditions for induction of long-term potentiation/depression of the excitatory input to this cell. In the absence of inhibition, the same neuromodulator, activating the same type of receptors on the target cell, would facilitate induction of long-term depression/potentiation in that cell. The resultant effect of the action of the neuromodulator on the target cell depends on the ratio of the strengths of the excitatory and inhibitory inputs to the cell, on the presence on the interneuron and the target cell of the same or different types of receptors sensitive to this neurumodulator, and on the concentration of the neurumodulator, because of its different affinities for the receptors through which its differently directed effects on postsynaptic processes are mediated. Predictions based on this mechanism are in agreement with known experimental data.  相似文献   

17.
The amygdala has a well-established role in stress, anxiety, and aversive learning, and anxiolytic and anxiogenic agents are thought to exert their behavioral actions via the amygdala. However, despite extensive behavioral data, the effects of noradrenergic anxiogenic drugs on neuronal activity within the amygdala have not been examined. The present experiments examined how administration of the anxiogenic drug yohimbine affects spontaneous and evoked neuronal activity in the basolateral amygdala (BLA) of rats. Yohimbine produced both excitatory and inhibitory effects on neurons of the BLA, with an increase in spontaneous activity being the predominant response in the lateral and basomedial nuclei of the BLA. Furthermore, yohimbine tended to facilitate neuronal responses evoked by electrical stimulation of the entorhinal cortex, with this facilitation seen more often in lateral and basomedial nuclei of the BLA. These data are the first to examine the effects of the anxiogenic agent yohimbine on BLA neuronal activity, and suggest that neurons in specific subnuclei of the amygdala exhibit unique responses to administration of such pharmacological agents.  相似文献   

18.
Faber ES  Sedlak P  Vidovic M  Sah P 《Neuroscience》2006,137(3):781-794
Classical mammalian transient receptor potential channels form non-selective cation channels that open in response to activation of phospholipase C-coupled metabotropic receptors, and are thought to play a key role in calcium homeostasis in non-excitable cells. Within the nervous system transient receptor potential channels are widely distributed but their physiological roles are not well understood. Here we show that in the rat lateral amygdala transient receptor potential channels mediate an excitatory synaptic response to glutamate. Activation of group I metabotropic glutamate receptors on pyramidal neurons in the lateral amygdala with either exogenous or synaptically released glutamate evokes an inward current at negative potentials with a current voltage relationship showing a region of negative slope and steep outward rectification. This current is blocked by inhibiting G protein function with GTP-beta-S, by inhibiting phospholipase C or by infusing transient receptor potential antibodies into lateral amygdala pyramidal neurons. Using RT-PCR and Western blotting we show that transient receptor potential 1, transient receptor potential 4 and transient receptor potential 5 are present in the lateral amygdala. Single cell PCR confirms the presence of transient receptor potential 1 and transient receptor potential 5 in pyramidal neurons and we show by co-immunoprecipitation that transient receptor potential 1 and transient receptor potential 5 co-assemble as a heteromultimers in the amygdala. These results show that in lateral amygdala pyramidal neurons synaptically released glutamate activates transient receptor potential channels, which we propose are likely to be heteromultimeric channels containing transient receptor potential 1 and transient receptor potential 5/transient receptor potential 4.  相似文献   

19.
Neurons in the lateral hypothalamus (LH) that contain hypocretin/orexin have been established as important promoters of arousal. Deficiencies in the hypocretin/orexin system lead to narcolepsy. The inhibition of hypocretin/orexin neurons by sleep-promoting neurotransmitters has been suggested as one part of the sleep regulation machinery. Adenosine has been identified as a sleep promoter and its role in sleep regulation in the basal forebrain has been well documented. However, the effect of adenosine on arousal-promoting hypocretin/orexin neurons has not been addressed, despite recent evidence that immunocytochemical visualization of adenosine receptors was detected in these neurons. In this study, we examined the hypothesis that adenosine inhibits the activity of hypocretin/orexin neurons by using electrophysiological methods in brain slices from mice expressing green fluorescent protein in hypocretin/orexin neurons. We found that adenosine significantly attenuated the frequency of action potentials without a change in membrane potential in hypocretin/orexin neurons. The adenosine-mediated inhibition arises from depression of excitatory synaptic transmission to hypocretin/orexin neurons because adenosine depresses the amplitude of evoked excitatory postsynaptic potential and the frequency of spontaneous and miniature excitatory postsynaptic currents in these neurons. At the cell body of the hypocretin/orexin neurons, adenosine inhibits voltage-dependent calcium currents without the induction of GIRK current. The inhibitory effect of adenosine is dose dependent, pertussis toxin sensitive, and mediated by A1 receptors. In summary, our data suggest that in addition to its effect in the basal forebrain, adenosine exerts its sleep-promoting effect in the LH by inhibition of hypocretin/orexin neurons.  相似文献   

20.
Hypocretin/orexin (hcrt) neurons play an important role in hypothalamic arousal and energy homeostasis. ATP may be released by neurons or glia or by pathological conditions. Here we studied the effect of extracellular ATP on hypocretin cells using whole cell patch-clamp recording in hypothalamic slices of transgenic mice expressing green fluorescent protein (GFP) exclusively in hcrt-producing cells. Local application of ATP induced a dose-dependent increase in spike frequency. In the presence of TTX, ATP (100 microM) depolarized the cells by 7.8 +/- 1.2 mV. In voltage clamp under blockade of synaptic activity with the GABA(A) receptor antagonist bicuculline, and ionotropic glutamate receptor antagonists DL-2-amino-5-phosphonopentanoic acid (AP-5) and 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX), ATP (100 microM) evoked an 18 pA inward current. The inward current was blocked by extracellular choline substitution for Na+, had a reversal potential of -27 mV, and was not affected by nominally Ca2+-free external buffer, suggesting that ATP activated a nonselective cation current. All excitatory effects of ATP showed rapid attenuation. ATP-induced excitatory actions were mimicked by nonhydrolyzable ATP-gamma-S but not by alpha,beta-MeATP and inhibited by the purinoceptor antagonists suramin and pyridoxal phosphate-6-azo(benzene-2,4-disulfonic acid) tetrasodium salt (PPADS). The current was potentiated by a decrease in bath pH, suggesting P2X2 subunit involvement. Frequency and amplitude of spontaneous and miniature synaptic events were not altered by ATP. Suramin, but not PPADS, caused a small suppression of evoked excitatory synaptic potentials. Together, these results show a depolarizing response to extracellular ATP that would lead to an increased activity of the hypocretin arousal system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号