首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Bee's wax produced by honeybees is rich in polyphenols. As the polyphenols are thought to protect cell constituents against oxidative damage through scavenging of free radicals, the present work was undertaken to evaluate the effects of polyphenols extracted from bees wax on the oxidative stress induced by carbon tetrachloride (CCl4) in rats. The polyphenols extracted by 80% methanol from bee wax (PBW) were fed to Wistar rats at 100 mg/kg body weight and 200 mg/kg body weight for 14 days in order to study its antioxidative and antihepatotoxic effects against CCl4 (1.5 ml/kg body weight)-induced stress. On 15th day all the rats were sacrificed, blood was collected for serum and organs/tissues were excised for biochemical analysis. The results showed a significant decrease in hepatic antioxidant enzyme activities viz. catalase, glucose-6-phosphate dehydrogenase (G-6-PDH), glutathione peroxidase (GSH-Px), glutathione reductase, superoxide dismutase (SOD) and a significant increase in glutathione S-transferase (GST) and gamma-glutamyl transpeptidase (GGT) by CCl4, probably due to the peroxidative effects. The prophylactic use of PBW at 200 mg/kg level resulted in a significant increase in CCl4-induced reduction in catalase, G-6-PDH, GSSGR and SOD. The hepatic levels of lipid peroxides viz. malondialdehyde, conjugated dienes and lipid hydroperoxides, enhanced by the administration of CCl4 were brought down by the ingestion of PBW at a level of 200 mg/kg. The hepatotoxicity caused by the administration of CCl4 was reduced significantly. Hence, it is concluded that the polyphenols from bees wax exhibit hepatoprotective and antioxidative properties in  相似文献   

2.
3.
The biochemical effects of the 2-nitroimidazole hypoxic cell radiosensitizers KIN-804, KIN-806, and their analogues KIN-844 and TX-1877 on brain acetylcholinesterase (AChE) and hepatic free radical scavenging systems, such as reduced glutathione (GSH) and glucose-6-phosphate dehydrogenase (G-6-PDH) levels, and hepatic antioxidants, such as superoxide dismutase (SOD) and catalase, were evaluated in Ehrlich ascites carcinoma (EAC)-bearing Swiss albino mice. The assay of brain AChE revealed nonsignificant changes with all drugs examined. To evaluate the hepatic metabolic capacity, groups of mice were divided into control, EAC-inoculated, 10-Gy local gamma-irradiated, and KIN-804, KIN-844, KIN-806, or TX-1877 (50 mg/kg body weight, i.p.) groups, and gamma-irradiation was combined with each drug. EAC inoculation markedly suppressed GSH, G-6-PDH, SOD, and catalase levels. On the other hand, treatment with gamma-irradiation significantly enhanced them. The treatment of EAC-bearing mice with each drug alone in the absence of gamma-irradiation revealed that KIN-806 and its derivative TX-1877 showed antitumor activity through their significant recovery of GSH and SOD levels, respectively, in the EAC-bearing mice group. Similarly, the combined treatment of EAC-bearing mice with gamma-irradiation with each of the drugs tested showed that KIN-806 and TX-1877 significantly increased GSH and SOD, and to a lesser extent G-6-PDH and catalase levels. On the other hand, KIN-804 and KIN-844 had only a nonsignificant effect on all parameters examined. In conclusion, these data reveal that the administration of KIN-806 and TX-1877 with or without subsequent gamma-irradiation, resulted in significant recovery of GSH and SOD activities that were inhibited by EAC inoculation.  相似文献   

4.
Present study was aimed to investigate antioxidant and hepatoprotective activities of phenolic rich fraction (PRF) of Seabuckthorn leaves on CCl4 induced oxidative stress in Sprague Dawley rats. Total phenolic content was found to be 319.33 mg gallic acid equivalent (GAE)/g PRF and some of its phenolic constituents, such as gallic acid, myricetin, quercetin, kaempferol and isorhamnetin were found to be in the range of 1.935-196.89 mg/g of PRF as determined by reverse-phase high-performance liquid chromatography (RP-HPLC).Oral administration of PRF at dose of 25-75 mg/kg body weight significantly protected from CCl4 induced elevation in aspartate aminotransferase (AST), alanine aminotransferase (ALT), γ-glutamyl transpeptidase (GGT) and bilirubin in serum, elevation in hepatic lipid peroxidation, hydroperoxides, protein carbonyls, depletion of hepatic reduced glutathione (GSH) and decrease in the activities of hepatic antioxidant enzymes; superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPX), glutathione reductase (GR) and glutathione-S-transferase (GST). The PRF also protected against histopathological changes produced by CCl4 such as hepatocytic necrosis, fatty changes, vacuolation, etc. The data obtained in the present study suggests that PRF has potent antioxidant activity, prevent oxidative damage to major biomolecules and afford significant protection against CCl4 induced oxidative damage in the liver.  相似文献   

5.
Altered copper metabolism plays a pivotal role in the onset of several hepatic disorders and glutathione (GSH) plays an important role in its homeostasis. Hepatic diseases are often implicated with decreased content of intracellular GSH. GSH depleted cells are prone to increased oxidative damage eventually leading to its death. Liv.52 is used to treat hepatic ailments since long time. Hence, in the present study the potential cytoprotective effect of Liv.52 against toxicity induced by copper (Cu2+) was evaluated in HepG2 cells. Cu2+ at 750 μM induced cytotoxicity to HepG2 cells as determined by MTT assay. The toxicity was brought about by increased lipid peroxidation, DNA fragmentation and decreased GSH content. But, upon treatment with Liv.52 cell death induced by Cu2+ was significantly abrogated by inhibition of lipid peroxidation by 58% and DNA fragmentation by 37%. Liv.52 increased the GSH content by 74%. Activities of the antioxidant enzymes catalase, glutathione peroxidase and superoxide dismutase were increased by 46%, 22% and 81% respectively in Liv.52 treated cells. Thus, it is apparent from these results that Liv.52 abrogates Cu2+ induced cytotoxicity in HepG2 cells by inhibiting lipid peroxidation and increased GSH content and antioxidant enzyme activity.  相似文献   

6.
Alleviative effects of s-allyl cysteine (SAC) and s-ethyl cysteine (SEC) upon methionine and choline deficient (MCD) diet-induced hepatotoxicity in mice were examined. SAC or SEC at 1 g/L was added into drinking water for 7 weeks with MCD diet. MCD feeding significantly increased hepatic triglyceride and cholesterol levels, and elevated the activity of glucose-6-phosphate dehydrogenase (G6PDH), malic enzyme, fatty acid synthase (FAS) and 3-hydroxy-3-methylglutaryl coenzyme A reductase (P < 0.05). However, the intake of SAC or SEC significantly decreased hepatic triglyceride accumulation, and reduced G6PDH and FAS activities (P < 0.05). MCD feeding significantly lowered serum and hepatic glutathione (GSH) levels, increased malondialdehyde (MDA) and oxidized glutathione (GSSG) formation, and suppressed the activity and mRNA expression of glutathione peroxidase (GPX), superoxide dismutase (SOD) and catalase (P < 0.05). The intake of SAC or SEC significantly increased serum and hepatic GSH levels, decreased MDA and GSSG formation, restored the activity and mRNA expression of GPX, SOD and catalase (P < 0.05). MCD feeding significantly enhanced the mRNA expression of interleukin (IL)-1beta, IL-6, tumor necrosis factor (TNF)-alpha, transforming growth factor (TGF)-beta1, matrix metalloproteinases-9 (MMP-9) and collagen-alpha1 (P < 0.05). The intake of SAC and SEC significantly blunted the mRNA expression of IL-1beta, IL-6, TNF-alpha, TGF-beta1 and collagen-alpha1 (P < 0.05). SEC was greater than SAC in suppressing IL-6 and TNF-alpha expression (P < 0.05), but SAC was greater than SEC in suppressing collagen-alpha1 and TGF-beta1 expression (P < 0.05). These data suggest that SAC and SEC are potent agents against MCD-induced hepatotoxicity.  相似文献   

7.
The purpose of the present study was to investigate the preventive effect of grape seed extract (GSE) on insulin resistance and oxidative stress in rats fed a high-fructose diet. After 8 weeks of the experiment, the fasting plasma glucose, insulin concentrations, and the homeostasis model assessment of basal insulin resistance (HOMA-IR) of rats fed a high-fructose diet supplemented with 1% GSE were significantly lower than that of a high-fructose diet group. In the oral glucose tolerance test, rats fed a high-fructose diet supplemented with 1% GSE had a significantly reduced plasma glucose and insulin concentrations after 15 min of glucose loading, indicating that GSE improved glucose intolerance. In addition, fed rats fed a high-fructose diet supplemented with 1% GSE markedly increased activity of hepatic superoxide dismutase, catalase, and suppressed lipid peroxidation when compared to rats fed a high-fructose diet. However, rats fed a high-fructose diet supplemented with GSE were not found to have a significant change in the activity of hepatic glutathione peroxidase. In conclusion, intake of GSE may be a feasible therapeutic strategy for prevention of a high-fructose diet-induced insulin resistance and oxidative stress.  相似文献   

8.
The bromobenzene (BB)-induced hepatotoxicity comes from its reactive metabolites. The efficacy of different doses of ginger (Zingiber officinalesRose) extract in alleviating hepatotoxicity was investigated in male albino rats. Oxidative stress parameters were monitored. The drugs metabolizing enzymes; cytochrome P450 and GST, pro-inflammatory marker; COX-2 and the apoptotic marker; caspase-3 were assessed. Animals were assigned to 1 of 5 groups: control group; bromobenzene (460 mg/kg BW) alone, three animal groups 3–5 treated with different doses of ethanolic ginger extract (100, 200, 300 mg/kg BW, respectively) 2 weeks prior bromobenzene (460 mg/kg BW) treatment. Rats received orally ginger extract daily for 21 days whereas bromobenzene treatment for 7 days starting from 15th day of treatment. Oral treatment of BB was found to elicit a significant decrease in the activities of the antioxidant enzymes; SOD, GPx and the GSH level, while the activities of GR and drug metabolizing enzymes; GSTs and Cyt P450 were enhanced. Also, BB-treatment resulted in a great enhanced production of nitric oxide products and activation of COX-2 and caspase-3. Pre-treatment with different doses of ginger extract prior to BB-treatment alleviated its toxic effects on the tested parameters in the three animal groups.  相似文献   

9.
The present study investigated the effects of Punica granatum aqueous extract (PgAq) on streptozotocin (STZ) induced diabetic rats by measuring fasting blood glucose, lipid profiles (atherogenic index), lipid peroxidation (LPO) and activities of both non-enzymatic and enzymatic antioxidants. Diabetes was induced by single intraperitoneal injection of STZ (60 mg/kg) to albino Wistar rats. The increase in blood glucose level, total cholesterol (TC), triglycerides (TG), low-density lipoprotein cholesterol (LDL-C), very low density lipoprotein (VLDL), LPO level with decrease in high density lipoprotein cholesterol (HDL-C), reduced glutathione (GSH) content and antioxidant enzymes namely, glutathione peroxidase (GPx), glutathione reductase (GR), glutathione-S-transferase (GST), superoxide dismutase (SOD) and catalase (CAT) were the salient features observed in diabetic rats. On the other hand, oral administration of PgAq at doses of 250 mg/kg and 500 mg/kg for 21 days resulted in a significant reduction in fasting blood glucose, TC, TG, LDL-C, VLDL-C and tissue LPO levels coupled with elevation of HDL-C, GSH content and antioxidant enzymes in comparison with diabetic control group.  相似文献   

10.
Methiocarb, is used worldwide in agriculture and health programs. Besides its advantages in the agriculture, it causes several toxic effects. In this study, we aimed to investigate subacute effects of methiocarb on lipid peroxidation, reduced glutathione (GSH), antioxidant enzymes such as superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GSH-Px) and glutathione reductase (GSH-Rd) and histopathological changes in rat tissues. Moreover, we examined the possible protective effects of vitamin E and taurine on methiocarb-induced oxidative damage in rat tissues. Rats were randomly divided into six groups as follows; I-control group; II-methiocarb group; III-vitamin E group; IV-vitamin E + methiocarb group; V-taurine group and VI-taurine + methiocarb group. Methiocarb significantly increased lipid peroxidation in liver and kidney when compared to control groups. Levels of GSH and activities of SOD, CAT and GSH-Px were found to be decreased, while GSH-Rd remained unchanged in rat liver and kidney treated with methiocarb. Pretreatment of vitamin E and taurine resulted in a significant decrease on lipid peroxidation, alleviating effects on GSH and antioxidant enzymes. The degenerative histological changes were less in liver than kidney of rats treated with methiocarb. Pretreatment of vitamin E and taurine showed a protective effect on the histological changes in kidney comparing to the liver of rats treated with methiocarb.  相似文献   

11.
Mechanism of rhodiola root extract adaptogenic activity was studied in rats. The extract was orally administered in rats (100 mg/kg body weight), 30 min prior to cold (5 °C)-hypoxia (428 mmHg)-restraint (C-H-R) exposure up to fall of Trec23 °C and recovery (Trec37 °C) from hypothermia. In untreated control rats serum lactate and non-esterified fatty acids (NEFA) increased on attaining Trec23 °C with decreased blood enzyme activities hexokinase (HK), phosphofructokinase (PFK), citrate synthase (CS) and glucose-6-phosphate dehydrogenase (G-6-PD), on attaining Trec23 °C and Trec37 °C. Decreases were also observed in liver and muscle tissues HK and G-6-PD enzyme activities and liver glycogen and CS on attaining Trec23 °C and recovery; muscle PFK during recovery; muscle CS on attaining Trec23 °C. Single and five doses of extract administration restricted increase in serum lactate values of rats on attaining Trec23 °C and maintained blood NEFA in single dose extract treated animals, indicating improved utilization of NEFA as energy fuel. The single and five doses extract treatment decreased or better maintained tissue glycogen and enzyme activities, viz. HK, PFK, CS and G-6-PD, in blood, liver and muscle, on attaining Trec23 °C and recovery. The results suggest that rhodiola extract treatment in rats shifted anaerobic metabolism to aerobic, during C-H-R exposure and post stress recovery.  相似文献   

12.
The present study was undertaken to evaluate the ameliorative role of α-eleostearic acid and punicic acid, isomers of conjugated linolenic (CLnA) acid, against oxidative stress induced DNA damage. Male albino rats were divided into six groups. Group 1 and 2 were normal control and sodium arsenite treated (Sa; 10 mg/kg BW) control respectively. Group 3–6 were orally treated with different doses of two fatty acids (0.5% and 1.0% of total lipid given for each isomer) along with sodium arsenite (Sa; 10 mg/kg BW). Comet assay of blood leukocytes showed that administration of CLnA reduced DNA damage significantly (P < 0.05) which was determined by tail DNA percent and olive tail moment. Results showed that activity of antioxidant enzymes viz. catalase, superoxide dismutase (SOD), glutathione peroxidase (GPx) and reduced glutathione (GSH) in plasma, liver and erythrocyte lysate decreased and activity of nitric oxide synthase in plasma and liver increased significantly due to oxidative stress generated by sodium arsenite. Administration of CLnA isomers restored all the altered parameters and also reduced lipid peroxidation and leakage of transaminase enzymes from liver to blood due to liver injury. α-Eleostearic acid was more efficient antioxidant than punicic acid against oxidative DNA damage.  相似文献   

13.
Oxidative stress has been proven to be involved in cisplatin (CP)-induced toxicity. The present study was designed to evaluate the antioxidant activity of Vit C, N,N′-diphenyl-p-phenylenediamine (DPPD) and l-cysteine against CP-induced testicular oxidative damage in rats. Our data indicated significant increases in lipid peroxides (LPO), total peroxides and superoxide anion levels in testes of rats treated with CP (2 mg/kg/week, for 4 weeks) that was associated with a significant reduction in the activity of the antioxidant enzymes superoxide dismutase (SOD), catalase (CAT) and glutathione S-transferase (GST). The contents of glutathione (GSH), Vit E and Vit C were significantly lower in CP treated testes compared with these of control. The co-administration of CP with DPPD or l-cysteine significantly reduced the elevation in LPO, however the co-administration of CP with Vit C, DPPD or l-cysteine reduced the effect of CP on superoxide anion and antioxidant enzymes and also on the antioxidants contents. The administration of Vit C, DPPD or l-cysteine before CP injection improved the histological pictures and reduced the number of apoptotic cells and DPPD was more efficient. In conclusion, DPPD is a potent antioxidant, against CP-induced testicular oxidative damage, as compared with Vit C and l-cysteine.  相似文献   

14.
Effects of ethanol on glutathione conjugation in rat liver and lung   总被引:2,自引:0,他引:2  
The ability of ethanol to alter glutathione (GSH) conjugation and its dependence upon duration of administration were investigated in rats in correlation with lipid peroxidation and the induction of microsomal enzymes. Significant decreases in hepatic GSH and glutathione-S-transferase (GST) activity in both liver and lung were found in rats treated acutely with ethanol (4 g/kg body weight 6 hr prior to killing). These decreases were accompanied by an increased loss of both GSH and GST into the plasma and increased hepatic lipid peroxidation. On the other hand, there was a dose-dependent increase in hepatic GSH after chronic administration of ethanol in drinking water (5 and 10%) for 3 weeks. This increase in hepatic GSH may be due to increased synthesis of GSH in the liver. No significant induction of GST by chronic ethanol treatment was observed in either organ. Ethanol was compared with the well-known inducers phenobarbital and beta-naphthoflavone. Although there was some evidence of increases in lipid peroxidation and/or microsomal enzyme activity with the inducers, no simple link between these increases and the induction of GST activity was identified.  相似文献   

15.
We evaluated the modifying effects of ethanolic extract of neem leaves (Azadirachta indica A. Juss) on oxidative stress induced by the potent gastric carcinogen N-methyl-N'-nitro-N-nitrosoguanidine (MNNG) in male Wistar rats. The extent of lipid peroxidation and the status of the antioxidants superoxide dismutase (SOD), catalase (CAT), reduced glutathione (GSH), glutathione peroxidase (GPx) and glutathione S-transferase (GST) were used as intermediate endpoints of chemoprevention. Three different concentrations of ethanolic neem leaf extract (100, 200 and 400 mg kg(-1) body weight) were administered by intragastric intubation (i.g) for five consecutive days followed by MNNG (i.g) 1.5 h after the final administration. Enhanced lipid peroxidation was accompanied by compromised antioxidant defences in the stomach, liver and erythrocytes of MNNG-treated rats. Pretreatment with ethanolic neem leaf extract at a dose of 200 mg/kg body weight (bw) significantly lowered the concentration of lipid peroxides and increased antioxidant levels. Our results demonstrate that neem leaf exerts its chemoprotective effects on MNNG- induced oxidative stress by decreasing lipid peroxidation and enhancing the antioxidant status.  相似文献   

16.
The present study was carried to evaluate the hepatoprotective effect and antioxidant role of sun, sulphited-dried apricot and its kernel against ethanol-induced oxidative stress. The hepatopreventive and antioxidant potential of the plant’s supplementations were evaluated by measuring level of serum liver damage marker enzymes (AST, ALT, GGT and LDH), antioxidant defense systems (GSH, GR, SOD, GST and GPX) and MDA content in various tissues of rats. Eight experimental groups: I (control), II (20% ethanol), III (ethanol + 15% sun-dried apricot), IV (ethanol + 30% sun dried). V (ethanol + 15% sulphited-dried), VI (ethanol + 30% sulphited-dried), VII (ethanol + 15% kernel) and VIII (ethanol + 30% kernel). According to the results, the levels of serum enzymes increased significantly in the II group as compared to those of I group, but they decreased in the III, IV, V and VI groups as compared to those of II group. Also, administration of sun and sulphited-dried apricot supplementation restored the ethanol-induced imbalance between MDA and antioxidant system towards near normal particularly in tissues but not its kernel. It is concluded that apricot has a hepatoprotective effect in rats with ethanol, probably acting by promoting the antioxidative defense systems.  相似文献   

17.
Weanling male albino rats were fed 100, 750 and 1500 p.p.m. of technical HCH for 90 days. There was marked testicular atrophy with reduced tubule size and spermatogenetic arrest at 1500 p.p.m. Histochemically, there was accumulation of cholesterol-positive lipids in the Sertoli cells and the Leydig cells of the atrophied testis and biochemical estimation revealed significant increase of total lipid and cholesterol contents. Activities of delta 5 3 beta hydroxysteroid dehydrogenase (delta 5 3 beta HSDH), 17 beta hydroxysteroid dehydrogenase (17 beta HSDH) and glucose-6-phosphate dehydrogenase (G-6-PDH) in the interstitial cells were markedly decreased suggesting steroidogenic inhibition in the Leydig cells of the atrophied testis due to HCH feeding.  相似文献   

18.
The acinar distribution of glutathione S-transferase (GST), glutathione peroxidase (GPx), glutathione reductase (GR), and glucose-6-phosphate dehydrogenase (G-6-PDH) was examined by analyzing periportal (p.p.) and perivenous (p.v.) rat hepatocytes selectively isolated by the digitonin-collagenase perfusion. The cytosolic GST activity was higher in p.v. cells, but the microsomal GST and cytosolic GR were found to be evenly distributed in the acinus. In contrast, the activity of both the Se-dependent GPx and the microsomal (Se-independent) GPx, as well as G-6-PDH, was much lower in the p.v. than in the p.p. cells. The heterogeneous distribution of GST, GPx and G-6-PDH was confirmed by analyzing liver perfusion effluents collected after ante- or retrograde digitonin infusion. The relatively low activities of GPx and G-6-PDH in the p.v. cells could partly explain the susceptibility of this region to chemical injury.  相似文献   

19.
The beneficial action of moderate wine consumption is increasingly being attributed to resveratrol (trans-3,4′,5-trihydroxystilbene). To test the safety of resveratrol use as a dietary supplement, 24 male Wistar rats were initially divided into three groups: (C, n = 6) was given standard chow and water; (R, n = 6) received standard chow and 6 mg/l resveratrol in its drinking water (1 mg/kg/day), and (HFD, n = 12) received high-fat diet and water. In order to more appropriately study the effects of resveratrol on high-fat diet, after 30 days of treatments, HFD-rats were divided into two subgroups (n = 6/group):(HFD) remained receiving high-fat diet and water; (HFD-R) given high-fat diet and 6 mg/l resveratrol in its drinking water (1 mg/kg/day). The total experimental period was 45 days. The resveratrol dose took into account its average concentration in wine, the time variability of wine ingestion, and so of resveratrol consumption in humans. HFD-rats had hyperglycaemia, dyslipidemia, increased serum oxidized-LDL (ox-LDL) and hepatic oxidative stress. Comparing HFD-R and HFD-rats, resveratrol improved lipid profile and glucose level, enhanced superoxide dismutase, thus reducing ox-LDL and hepatic oxidative stress. Resveratrol, in standard-fed-rats reduced glutathione-antioxidant defense system and enhanced hepatic lipid hydroperoxide. In conclusion, based on the results of this single dose preliminary study with resveratrol in the drinking water of male Wistar rats for 30 days, it may be concluded that resveratrol may have beneficial effects in high-fat diets (e.g. ox-LDL, decreased serum and hepatic oxidative stress), but not in standard-fed diets (effects produced include enhanced hepatic oxidative stress). Further studies are indicated.  相似文献   

20.
The aim of the study was to investigate the effect of ethanol and ethyl acetate extract obtained from Aquilegia vulgaris L. on microsomal lipid peroxidation, reduced glutathione level and antioxidant enzymes activity in the liver of rats intoxicated with aflatoxin B(1) (AFB(1)). Animals were pretreated with 12 daily p.o. doses of the extracts tested (100mg/kg body weight). Then AFB(1) was administered intraperitoneally at a single dose of 1.5mg/kg b.w. to evoke the liver damage. α-Tocopherol was used as a positive control. Reduced glutathione (GSH) was depleted in aflatoxin-treated rats by 80% in comparison with that in the controls. The extracts restored the GSH concentration up to the basal level. Microsomal lipid peroxidation stimulated by Fe(2+)/ascorbate (assessed by measuring TBARS) was enhanced in AFB(1)-treated rats by 28% as compared to that in the control group. The extracts caused a decrease in TBARS level by 40% and 27%. Only two antioxidant enzymes were affected by AFB(1) administration. The activity of catalase was reduced by 24% and the activity of glutathione-S-transferase (GST) was increased by 33%. The pretreatment with ethyl acetate and ethanol extract reduced the GST activity by 76% and 30%, respectively. No significant changes in the activity of other antioxidant enzymes were observed in rats treated with the extracts and AFB(1). It can be concluded that multiple pretreatment with the extracts obtained from A. vulgaris attenuated aflatoxin B(1)-induced hepatic damage as evidenced by inhibition of lipid peroxidation and preventing reduced glutathione depletion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号