首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The study examines the potential genotoxicity of three antiepileptic drugs (phenytoin sodium, pregabalin, gabapentin) using the wing somatic mutation and recombination test (SMART) in Drosophila melanogaster. Trans-heterozygous (two genetic markers mwh and flr) third-instar larvae of D. melanogaster were treated with different concentrations of the test compounds. A positive correlation was observed between total mutations and the number of wings with morphologically detectable mutations. The observed mutations were classified according to size and type of mutation per wing. Phenytoin clearly increased the frequency of total spots at all concentrations above 1.25 μg/ml. Gabapentin also increased the frequency of total spots at concentrations of 40 and 80 μg/ml. This study shows that phenytoin and gabapentin have genotoxic effects according to the SMART test; however, pregabalin displays lower genotoxicity in the SMAR assay when compared with the other two antiepileptics. The results also show that all AED concentrations lower the survival rate of the flies.  相似文献   

2.
In this study, different concentrations of two antiepileptic drugs, carbamazepine (CBZ) and oxcarbazepine (OXC), have been evaluated for genotoxicity in the wing spot test of Drosophila melanogaster. The wing spot test detects different kinds of somatic mutations and allows detection of mitotic recombinations. Third-instar larvae trans-heterozygous for two genetic markers mwh and flr, were treated at different concentrations of the drugs. Oxcarbazepine exposure concentrations were 1.88, 3.75, 7.50 and 15mug/ml. Carbamazepine exposure concentrations were 5, 10, 20 and 40mug/ml. In addition, the observed mutations were classified according to size and type of mutation per wing. CBZ was genotoxic in terms of total mutations per wing in the highest two doses; the same was true for OXC in the highest three doses. Survival rates of flies used in the experiments were significantly lower than that of the control group showing both drugs to have toxic effects to Drosophila melanogaster larvae. Clone formation frequency for 10(5) cells was lower in OXC than CBZ. However this was lower than the critical genotoxicity frequency of 2.0.  相似文献   

3.
In this study, genotoxicity of two mouthwash products (chlorexidin, benzidamine–HCl) were investigated in the Drosophila Wing-Spot Test which makes use of the wing cell markers multiple wing hairs (mwh) and flare (flr) and detects both mitotic recombination and various types of mutational events. Induced mutations are detected as single mosaic spots on the wing blade of surviving adults that show either the multiple wing hairs or flare phenotype. Induced recombination leads to mwh and flr twin spots and also, to some extent, to mwh single spots. Recording of the frequency and the size of different spots is allowed for a quantitative determination of the mutagenic and recombinogenic effects. Trans-heterozygous third-instar larvae were treated at different concentrations of the mouthwash products. Chlorexidin exposure concentrations were 0.5, 1 and 2 mg/ml. Benzidamine–HCl exposure concentrations were 0.38, 0.75 and 1.5 mg/ml. In addition, the observed mutations were classified according to size and type of mutation per wing. Both chlorexidin and benzidamine–HCl were genotoxic in terms of total mutations per wing at the highest doses. Survival rates of flies used in the experiments were significantly lower than those of the control group, with both mouthwash products showing toxic effects on Drosophila melanogaster larvae.  相似文献   

4.
Despite increasing application of zinc oxide nanoparticles (ZnO-NPs) for industrial porpuses, data about potential toxic properties is contradictory. The current study focused on the cyto- and genotoxicity of ZnO-NPs in comparison to ZnO powder in primary human nasal mucosa cells cultured in the air-liquid interface. Additionally, IL-8 secretion as a marker for pro-inflammatory effects was measured. Particle morphology and intracellular distribution were evaluated by transmission electron microscopy (TEM). ZnO-NPs were transferred into the cytoplasm in 10% of the cells, whereas an intranuclear distribution could only be observed in 1.5%. While no cyto- or genotoxicity could be seen for ZnO powder in the dimethylthiazolyl-diphenyl-tetrazolium-bromide (MTT) test, the trypan blue exclusion test, and the single-cell microgel electrophoresis (comet) assay, cytotoxic effects were shown at a ZnO-NP concentration of 50 μg/ml (P < 0.01). A significant enhancement in DNA damage was observed starting from ZnO-NP concentrations of 10 μg/ml (P < 0.05) in comparison to the control. IL-8 secretion into the basolateral culture medium was increased at ZnO-NP concentrations of 5 μg/ml (P < 0.05), as shown by ELISA. Our data indicates cyto- and genotoxic properties as well as a pro-inflammatory potential of ZnO-NPs in nasal mucosa cells. Thus, caution should be taken concerning their industrial and dermatological application. Additionally, further investigation on repetitive NP exposure is needed to estimate the impact of repair mechanisms.  相似文献   

5.
The aim of this laboratory-based study was to investigate some of the toxic effects induced by the venom from Hemiscorpious lepturus (H. lepturus). For this aim, pharmacological, histological, biochemical methods as well as complete blood cell count were used to assess these toxic actions. In addition, in vitro haemolysis studies on human washed blood suspension and cytotoxicity on cultured fibroblasts were also undertaken. In vitro pharmacological test was made on rat isolated ileal segment. To this end, the effects of the venom on the contractile responsiveness to acetylcholine were recorded using F30 transducer and Darco chart recorder. For assessment of the haemolytic potency, varying concentrations (2, 10, 20 and 40 μg/ml) of the venom were added to 0.5 ml of 5% washed human blood and after 30 min, 2, 4, 8, 12 and 24 h of exposure, the degree of lysis (extent of redness developed in the supernatant solution after centrifugation) were measured by ELISA method. Cytotoxicity potential of the venom was assessed by trypan blue exclusion test. The venom (0.1, 1 and 10 μg/ml) was mixed with confluent fibroblast cell culture and the extent cytotoxicity was assessed microscopically. In vivo studies were conducted by a subcutaneous administration of sub-lethal dose (10 μg) of the venom and after 7 days the skin, at the site of injection, and kidney samples were stained by H & E method and examined microscopically. In addition, biochemical assessments including measurement of serum aspartate aminotransferase (AST), alanine transaminase (ALT), alkaline phosphatase (ALP) and amylase levels and urine analysis were made. The results showed that the venom prevented the relaxation phase of the acetylcholine-induced contractions on the isolated ileal segments and finally produced sustained spasmodic contractions. This spasmodic action was abolished by 1 μM atropine. The venom produced haemolysis of red blood cells in a concentration-dependent and duration-of-exposure manner, with 100% of haemolysis produced after 24 h following exposure to 40 μg/ml of venom. While cultured fibroblasts cells were more sensitive and disintegrated after 15 min of exposure to 1 μg/ml of the venom. Histological findings showed evidences of excessive inflammatory responses accompanied with signs of necrosis in the skin at the site of injection as well as structural damage in the nephrones. There was a significant rise in the serum enzymes. In addition, the number of the RBCs were reduced. The urine showed positive readings for proteinuria, blood and intact RBCs. The overall results suggest that the venom from H. lepturus primarily is a cytotoxic agent and has haemolytic, nephrotoxic and to some extent hepatotoxic activity.  相似文献   

6.
The effect of a standardised dry extract from Silybum marianum (HEPAR-PASC®) on the enzyme kinetics of cytochrome-P450 isoenzymes (CYP) was investigated with primary human hepatocytes and human liver microsomes in order to assess the potential for drug-drug interactions. A cytotoxic effect on hepatocytes was observed at concentrations at and above 50 μg/ml. The EC50 value was calculated to be 72.0 μg/ml. Therefore, the chosen test concentrations for CYP induction on human hepatocytes were 50, 10, and 1.5 μg/ml, which allowed for interpretation of the clinical significance of the data with a range of 50-1-fold cmax at maximal recommended doses. No induction was observed at the lowest concentration of 1.5 μg/ml, which is close to cmax. The extract did not induce CYP 3A4 at any of the tested concentrations. A low or marginal induction of 1A2, 2B6, and 2E1 at the maximum concentration of 50 μg/ml was observed. CYP inhibition on human microsomes was tested at concentrations of 150, 15, and 1.5 μg/ml. No or minor CYP inhibition was observed for all CYPs tested at the lowest concentration of 1.5 μg/ml, i.e. CYPs 1A2, 2A6, 2B6, 2C8, 2C9, 2C19, 2D6, 2E1, and 3A4. At concentrations of 15 and 150 μg/ml the extract significantly inhibited CYP 2B6, 2C8, 2C9, 2C19, 2E1, and 3A4. In these cases, Ki values were determined. All Ki values exceeded cmax by at least a factor of 10-fold. According to FDA regulations 1 > cmax/Ki > 0.1 indicates, that drug-drug interactions are possible for CYPs 2C8, and 2C9, but not likely, and are remote for CYPs 2C19, 2D6, and 3A4.  相似文献   

7.
Domoic acid (DA) is a neurotoxicant produced by Pseudo-nitzschia from diatomeae. Although the neurotoxic and genotoxic effects of DA have been well documented, the number of in vivo studies regarding the oxidative stress inducing effects of DA is quite limited. In this study, in vivo toxic effects of DA were investigated on fish Oreochromis niloticus (Fam: Cichlidae), using oxidative stress biomarkers. Fish were exposed to three different concentrations (1, 5 and 10 μg/g body weight) of DA via intraperitoneal injections and the tissues were sampled at 24, 48 and 72 h post-treatment. Changes in the level of lipid peroxidation, and activities of antioxidant enzymes such as superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), and glutathione reductase (GRd) were evaluated in liver and gill tissues. Our results revealed dose and time dependent increases in the oxidative stress parameters. It was also observed that the toxic effects were more pronounced in liver than in gill tissue.  相似文献   

8.
The protective effects of different concentrations of aqueous extract of Rhus coriaria L. fruit (75 and 100 μg/ml) and also gallic acid (100 μM) as one of its main components were examined against oxidative stress toxicity induced by cumene hydroperoxide (CHP) in isolated rat hepatocytes. Both extract concentrations and gallic acid (100 μM) significantly (P < 0.05) protected the hepatocyte against all oxidative stress markers including cell lysis, ROS generation, lipid peroxidation, glutathione depletion, mitochondrial membrane potential decrease, lysosomal membrane oxidative damage and cellular proteolysis. Aqueous extracts of Rhus coriaria L. (75 and 100 μg/ml) were more effective than gallic acid (100 μM) in protecting hepatocytes against CHP induced lipid peroxidation (P < 0.05). On the other hand gallic acid (100 μM) acted more effective than aqueous extracts of Rhus coriaria L. (75 and 100 μg/ml) at preventing hepatocyte membrane lysis (P < 0.05). In addition H2O2 scavenging effect of both extract concentrations (75 and 100 μg/ml) were determined in hepatocytes and compared with gallic acid (100 μM). Gallic acid (100 μM) was more effective than aqueous extracts of Rhus coriaria L. (75 and 100 μg/ml) at H2O2 scavenging activity (P < 0.05).  相似文献   

9.
Solanum lycocarpum St.-Hil (Solanaceae) is a hairy shrub or small much-branched tree of the Brazilian Cerrado, popularly known as “fruit-of-wolf”. Considering that the induction of chromosomal mutations is involved in the process of carcinogenesis, and that S. lycocarpum is often used in folk medicine, it becomes relevant to study its effect on genetic material. In this sense, the aim of present study was to determine the possible cytotoxic, genotoxic and antigenotoxic potentials of S. lycocarpum fruits glycoalkaloid extract (SL) in Chinese hamster lung fibroblasts (V79 cells). The cytotoxicity was evaluated by the colony forming assay, apoptosis and necrosis assay, Trypan blue exclusion dye method and mitotic index. Genotoxic and antigenotoxic potential were evaluated by comet and chromosomal aberrations assays. Four concentrations of SL (4, 8, 16 and 32 μg/mL) were used for the evaluation of its genotoxic potential. The DNA damage-inducing agent methyl methanesulfonate (MMS, 22 μg/mL) was utilized in combination with extract to evaluate a possible protective effect. The results showed that SL was cytotoxic at concentrations above 32 μg/mL by the colony forming assay. For apoptosis and necrosis assay, the concentration of 64 μg/mL of SL showed statistically significant increase in cell death by apoptosis and necrosis, while the concentrations of 128 and 256 μg/mL of SL demonstrated statistically significant increase in cell death by necrosis, compared with the control group. Analysis of cell viability by Trypan blue exclusion indicated >96% viability for treatments with concentrations up to 32 μg/mL of SL. No significant differences in MI were observed between cultures treated with different concentrations of SL (4, 8, 16 and 32 μg/mL) alone or in combination with MMS and the negative control, indicating that these treatments were not cytotoxic. The comet and chromosomal aberrations assays revealed that SL does not display genotoxic activity. Moreover, the different concentrations of SL showed protective effect against both genomic and chromosomal damages induced by MMS.  相似文献   

10.
This study was carried out to evaluate the anticandidal effects of bioconverted product, obtained from the microbial conversion of cabbage (Brassicaoleracea) by a bacterial strain Pseudomonassyringe pv. T1 (Ps-T1) against various isolates of Candida species. The diameters of zones of inhibition of bioconverted product of cabbage (10 μl, corresponding to 500 μg/disc) against Candidaalbicans KACC 30003 and 30062, Candidageochares KACC 30061, Candidasaitoana KACC 41238 and Candidaglabrata P00368 were found between 10 ± 1 and 16 ± 0.8 mm. The bioconverted product was tested for the minimum inhibitory and minimum fungicidal concentration values against the tested pathogens which were found in the range of 125-500 and 125-500 μg/ml, respectively. On the viable counts of the tested fungal pathogens, the bioconverted product showed a remarkable anticandidal effect. Also the study of using scanning electron microscopy on the morphology of C.albicans KACC 30062 revealed potential detrimental effect of bioconverted product at MIC concentration. The results of this study suggest that bioconverted product of cabbage by Ps-T1 holds potential therapeutic value and medicinal significance to control Candida species.  相似文献   

11.
Benzene is a known environmental pollutant with demonstrated leukemogenic activity. Marrow mesenchymal stem cells (MSCs), contribute to skeletal remodeling and repair. They also support haematopoiesis constructing important elements of haematopoietic niche. In the present study, the effects of a range of benzene concentrations along with those of its reactive metabolites, p-benzoquinone (BQ) and hydroquinone (HQ) on the viability of MSCs, apoptosis induction and caspase3/7 activity in these cells were analyzed. Our findings revealed that low concentrations of these chemicals (10 μM of benzene, 5 μM of either of BQ or HQ) significantly increase the number of chemically treated cells. Moreover, applied BQ/HQ concentrations were shown to be able to considerably inhibit caspase3/7 activity. While in benzene exposure experiments, the lowest concentration triggered the greatest increase in caspase3/7 activity during the initial hours of exposure. On the other hand, MSCs exposure to higher concentrations of benzene (100 μM) and its metabolites, BQ/HQ (10 μM and 50 μM), can induce cell death after 24 h of exposure mainly through apoptotic pathways. In addition, changes in the expression of six mRNAs due to being subjected to 10 μM of BQ or HQ and 50 μM of benzene were assessed. The genes under investigation were RUNX2, WNT5A, DKK1, JAG1, KITLG and CXCL12 which are expressed by MSCs playing roles in adipo-osteogenic differentiation of MSCs and the regulation of haematopoiesis. The analysis exhibited a great augmentation in RUNX2 expression associated with DKK1 and KITLG up-regulation. The results also indicated that treatment of cells with all three chemicals gives rise to down-regulation of JAG1 and treatment with both HQ and BQ triggers WNT5A over-expression. With regard to CXCL12, treatment with BQ caused slight up-regulation and treatment with HQ led to down-regulation. The alterations observed in the expression profile of genes could affect/modify the process of differentiation of MSCs into osteoblast. Other expected outcomes involve augmented canonical Wnt signaling activity in exposed cells with RUNX2 overexpression as the indicator which is probably forced to decrease to the normal level via DKK1 and WNT5A up-regulation. RUNX2 overexpression in MSCs can also be indicative of the RUNX2 up-regulation in myeloid progenitors thereby its involvement in AML development due to benzene exposure. Observed changes in the expression of WNT5A, DKK1, KITLG, CXCL12 and JAG1 can lead to the disturbance of HSC niche resulting in haematopoietic failure and leukemia development. It is obvious that increased viability together with caspase3/7 inhibition could aggravate the adverse effects of exposure to these chemicals.  相似文献   

12.
The inhibitory effects and types of inhibition of asiaticoside and madecassoside on human CYPs were studied in vitro using recombinant human CYPs. The median inhibitory concentrations (IC50) of asiaticoside and madecassoside were determined for CYP1A2, CYP2C9, CYP2C19, CYP2D6, CYP2E1 and CYP3A4. Asiaticoside inhibited CYP2C19 (IC50 = 412.68 ± 15.44 μM) and CYP3A4 (IC50 = 343.35 ± 29.35 μM). Madecassoside also inhibited CYP2C19 (IC50 = 539.04 ± 14.18 μM) and CYP3A4 (IC50 = 453.32 ± 39.33 μM). Asiaticoside and madecassoside had no effect on the activities of CYP1A2, CYP2C9 and CYP2D6 and CYP2E1. Assessment of mechanism-based inhibition and the type of inhibition were performed for asiaticoside and madecassoside with CYP2C19 and CYP3A4. These results suggested that madecassoside is a mechanism-based inhibitor of CYP2C19 and CYP3A4. Assessment of mechanism-based inhibition by asiaticoside was limited by its low solubility. Asiaticoside exhibited non-competitive inhibition of CYP2C19 (Ki = 385.24 ± 8.75 μM) and CYP3A4 (Ki = 535.93 ± 18.99 μM). Madecassoside also showed non-competitive inhibition of CYP2C19 (Ki = 109.62 ± 6.14 μM) and CYP3A4 (Ki = 456.84 ± 16.43 μM). These results suggest that asiaticoside and madecassoside could cause drug-drug interactions via inhibition of CYP2C19 and CYP3A4. An in vivo study is needed to examine this further.  相似文献   

13.
Andrographis paniculata is used in the traditional medicine for cold and influenza remedy. The main endeavor in this study was to assess the genotoxicity of the standardized extract of A. paniculata (KalmCold™) through three different in vitro tests: Ames, chromosome aberration (CA), and micronucleus (MN). Ames test was performed at 5000 μg/ml, 1581 μg/ml, 500 μg/ml, 158 μg/ml, 50 μg/ml, 16 μg/ml, while the clastogenicity tests were performed at 80 μg/ml, 26.6 μg/ml, 8.8 μg/ml for short-term treatment without S9; 345 μg/ml, 115 μg/ml, 38.3 μg/ml for short-term treatment with S9; and 46 μg/ml, 15.3 μg/ml, 5.1 μg/ml for long-term without S9 using DMSO as a vehicle control. Results of Ames test confirmed that KalmCold™ did not induce mutations both in the presence and absence of S9 in Salmonella typhimurium mutant strains TA98 and TAMix. In CA and MN, KalmCold™ did not induce clastogenicity in CHO-K1 cells in vitro. Based on our results, it is evident that KalmCold™ is genotoxically safe.  相似文献   

14.
The minor tobacco alkaloid myosmine is implicated in DNA damage through pyridyloxobutylation similar to the tobacco-specific nitrosamines (TSNA). In contrast to TSNA, occurrence of myosmine is not restricted to tobacco. Myosmine is genotoxic to human cells in the comet assay. In this study, the mutagenic effect of myosmine was evaluated using the cloning hypoxanthine-guanine phosphoribosyltransferase (HPRT) gene mutation assay. Four hour exposure of isolated peripheral blood lymphocytes from 14 subjects homozygous for the Leu84 wild-type of the O6-methylguanine-DNA-methyltransferase (MGMT) gene to 1 mM of myosmine increased mutant frequency from 0.73 ± 0.58 × 10−6 in control to 1.14 ± 0.89 × 10−6 lymphocytes (P < 0.05). These new data further confirm the mutagenic effects of myosmine.  相似文献   

15.
Lactobacillus pentosus has a long history of use in cooked and uncooked fermented foods. Viable and heat-killed nonviable preparations of L. pentosus strain b240 were evaluated for short term and subchronic toxicity and genotoxic potential. Dose levels were determined through acute oral toxicity tests with viable (LD50 > 2500 mg/kg) and nonviable (LD50 > 2000 mg/kg) b240. In the short term study, rats received 2500 mg/kg/day (∼1.7 × 1011 cfu/kg/day) viable b240 for 28 days. In the subchronic study, rats received 500, 1000 or 2000 mg/kg/day (up to ∼3.0 × 1012 cfu equivalents/kg/day) nonviable b240 for 91 days followed by a 28-day recovery. No mortalities occurred. No treatment-related effects were identified for general condition, body weight, food-water consumption, ophthalmology, urinalysis, hematology, blood chemistry, organ weights, histopathology and gross pathology. Although statistically significant effects were noted for several endpoints in the short term and subchronic studies, none were related to the test materials. The NOAEL for nonviable b240 was 2000 mg/kg/day, the highest dose tested. Additionally, nonviable b240 (?5000 μg/plate) was not mutagenic in Salmonella typhimurium or Escherichia coli tester strains nor did nonviable b240 orally administered to rats at levels ? 2000 mg/kg/day for two days, induce a clastogenic response.  相似文献   

16.
The pharmacology of Australian box jellyfish, Chironex fleckeri, unpurified (crude) nematocyst venom extract (CVE) was investigated in rat isolated cardiac and vascular tissues and in anaesthetised rats.In small mesenteric arteries CVE (0.01-30 μg/ml) caused contractions (EC50 1.15 ± 0.19 μg/ml) that were unaffected by prazosin (0.1 μM), bosentan (10 μM), CGRP8-37 (1 μM) or tetrodotoxin (1 μM). Box jellyfish antivenom (5-92.6 units/ml) caused rightward shifts of the CVE concentration-response curve with no change in the maximum. In the presence of l-NAME (100 μM) the sensitivity and maximum response to CVE were increased, whilst MgSO4 (6 mM) decreased both parameters. CVE (1-10 μg/ml) caused inhibition of the contractile response to electrical sympathetic nerve stimulation.Left atrial responses to CVE (0.001-30 μg/ml) were bi-phasic, composed of an initial positive inotropy followed by a marked negative inotropy and atrial standstill. CVE (0.3 μg/ml) elicited a marked decrease in right atrial rate followed by atrial standstill at 3 μg/ml. These responses were unaffected by 1 μM of propranolol, atropine or CGRP8-37. Antivenom (54 and 73 units/ml) caused rightward shifts of the CVE concentration-response curve and prevented atrial standstill in left and right atria.The effects of CVE do not appear to involve autonomic nerves, post-synaptic α1- or β1-adrenoceptors, or muscarinic, endothelin or CGRP receptors, but may occur through direct effects on the cardiac and vascular muscle. Box jellyfish antivenom was effective in attenuating CVE-induced responses in isolated cardiac and vascular tissues.  相似文献   

17.
The effects of organophosphate insecticide chlorpyrifos (CPF) on development are currently under discussion. CPF and its metabolites, chlorpyrifos-oxon (CPO) and 3,5,6-trichloro-2-pyridinol (TClP), were more cytotoxic for D3 mouse embryonic stem cells than for differentiated fibroblasts 3T3 cells. Exposure to 10 μM CPF and TClP and 100 μM CPO for 12 h significantly altered the in vitro expression of biomarkers of differentiation in D3 cells. Similarly, exposure to 20 μM CPF and 25 μM CPO and TClP for 3 days also altered the expression of the biomarkers in the same model. These exposures caused no significant reduction in D3 viability with mild inhibition of acetylcholinesterase and neuropathy target esterase by CPF and severe inhibition by CPO. We conclude that certain in vivo exposure scenarios are possible, which cause inhibition of acetylcholinesterase but without clinical symptoms that reach high enough systemic CPF concentrations able to alter the expression of genes involved in cellular differentiation with potentially hazard effects on development. Conversely, the risk for embryotoxicity by CPO and TClP was very low because the required exposure would induce severe cholinergic syndrome.  相似文献   

18.
Tefluthrin is a synthetic pyrethroid and involved in acute neurotoxic effects. How this compound affects ion currents in endocrine or neuroendocrine cells remains unclear. Its effects on membrane ion currents in pituitary tumor (GH3) cells and in hypothalamic (GT1-7) neurons were investigated. Application of Tef (10 μM) increased the amplitude of voltage-gated Na+ current (INa), along with a slowing in current inactivation and deactivation in GH3 cells. The current–voltage relationship of INa was shifted to more negative potentials in the presence of this compound. Tef increased INa with an EC50 value of 3.2 ± 0.8 μM. It also increased the amplitude of persistent INa. Tef reduced the amplitude of L-type Ca2+ current. This agent slightly inhibited K+ outward current; however, it had no effect on the activity of large-conductance Ca2+-activated K+ channels. Under cell-attached voltage-clamp recordings, Tef (10 μM) increased amplitude and frequency of spontaneous action currents, along with appearance of oscillatory inward currents. Tef-induced inward currents were suppressed after further application of tetrodotoxin, riluzole or ranolazine. In GT1-7 cells, Tef also increased the amplitude and frequency of action currents. Taken together, the effects of Tef and its structural related pyrethroids on ion currents can contribute to the underlying mechanisms through which they affect endocrine or neuroendocrine function in vivo.  相似文献   

19.
Wu SN  Chen BS  Lo YC 《Toxicology》2011,289(1):11-18
Aconitine (ACO) is a highly toxic diterpenoid alkaloid and known to exert the immunomodulatory action. However, whether it has any effects on ion currents in immune cells remains unknown. The effects of ACO and other related compounds on ion currents in Jurkat T-lymphocytes were investigated in this study. ACO suppressed the amplitude of delayed-rectifier K+ current (IK(DR)) in a time- and concentration-dependent manner. Margatoxin (100 nM), a specific blocker of KV1.3-encoded current, decreased the IK(DR) amplitude in these cells and the ACO-induced inhibition of IK(DR) was not reversed by 1-ethyl-2-benzimidazolinone (30 μM) or nicotine (10 μM). The IC50 value for ACO-mediated inhibition of IK(DR) was 5.6 μM. ACO accelerated the inactivation of IK(DR) with no change in the activation rate of this current. Increasing the ACO concentration not only reduced the IK(DR) amplitude, but also accelerated the inactivation time course of the current. With the aid of minimal binding scheme, the inhibitory action of ACO on IK(DR) was estimated with a dissociation constant of 6.8 μM. ACO also shifted the inactivation curve of IK(DR) to a hyperpolarized potential with no change in the slope factor. Cumulative inactivation for IK(DR) was enhanced in the presence of ACO. In Jurkat cells incubated with amiloride (30 μM), the ACO-induced inhibition of IK(DR) remained unaltered. In RAW 264.7 murine macrophages, ACO did not modify the kinetics of IK(DR), although it suppressed IK(DR) amplitude. Taken together, these effects can significantly contribute to its action on functional activity of immune cells if similar results are found in vivo.  相似文献   

20.
Nano-sized materials are now being used in medicine, biotechnology, energy, and environmental technology. Although a wide and growing number of applications for nanomaterials exist, there are limited studies available on toxicity of nanoparticles for their human risk and environmental assessment. The aim of this study was to investigate the effects of silver nanoparticles (nano-Ag) on voltage-activated sodium currents in hippocampal CA1 neurons. Nano-Ag was tested at increasing concentrations (10−6, 5 × 10−6, 10−5 g/ml). The research results showed that only nano-Ag (10−5 g/ml) reduced the amplitude of voltage-gated sodium current (INa). The nano-Ag particles produced a hyperpolarizing shift in the activation–voltage curve of INa and also delayed the recovery of INa from inactivation. Action potential properties and the pattern of repetitive firing were examined using whole cell current-clamp recordings. Peak amplitude and overshoot of the evoked single action potential were decreased and half-width was increased in the present of the 10−5 g/ml nano-Ag solution, and the firing rate of repetitive firing had no change. The results suggest that nano-Ag may alter the action potential of hippocampal CA1 neurons by depressing voltage-gated sodium current.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号