首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Isorhamnetin 3-О-β-d-glucopyranoside (1) was isolated from Salicornia herbacea. The inhibitory effects of compound 1 on oxidative stress were evaluated in free-cellular and cellular systems. An increased concentration of compound 1 not only exhibited dose-dependent scavenging activities on the generation of 1,1-diphenyl-2-picrylhydrazyl (DPPH), hydroxyl and carbon-centered radicals, but also significantly decreased levels of intracellular reactive oxygen species (ROS) in a dose-dependent manner. Further, antioxidative mechanisms by compound 1 were examined by measuring the intracellular glutathione (GSH) level and expression levels of antioxidant enzymes such as superoxide dismutase (SOD), catalase, glutathione reductase and heme oxygenase-1 (HO-1). Compound 1 significantly elevated GSH level as well as expression levels of antioxidant enzymes which were closely related with amount of cellular ROS. In addition, it significantly inhibited oxidative damage of purified genomic DNA and suppressed activity of myeloperoxidase (MPO), a generator of potent oxidant (hypochlorous acid), in tumor necrosis factor-α (TNF-α) stimulated human myeloid cells. Therefore, these results suggested that compound 1 has a therapeutic effectiveness in prevention of ROS-induced cellular damage and is a candidate worthy of being developed as a potential natural antioxidant related to oxidative stress.  相似文献   

2.
Acetaminophen (APAP) is a common antipyretic and analgesic drug, but its overdose can induce acute liver failure with lack of effective therapies. Hesperetin, a dihydrogen flavonoid compound, has been revealed to exert multiple pharmacological activities. Here, we explored the protective effects and mechanism of hesperetin on APAP-induced hepatotoxicity. The results showed that pretreatment with hesperetin dose-dependently attenuated APAP-induced acute liver injury in mice, as measured by alleviated serum enzymes activities, hepatic pathological damage and apoptosis. Moreover, hesperetin mitigated APAP-induced oxidative stress and inflammatory response in mice by inhibiting oxidative molecules but increasing antioxidative molecules production, reducing inflammatory cells infiltration and proinflammatory cytokines production, blocking Toll-like receptor (TLR)-4 signal activation. In vitro experiment indicated that hesperetin dose-dependently inhibited APAP-primed cytotoxicity, apoptosis, and reactive oxygen species (ROS) in murine AML12 hepatocytes. Notably, hesperetin up-regulated expression of heme oxygenase-1 (HO-1) mRNA and protein in the liver of mice and AML12 cells exposed to APAP. Furthermore, knockdown of HO-1 by adenovirus-mediated HO-1 siRNA reverted these beneficial effects of hesperetin on APAP-induced hepatocytotoxicity as well as ROS and inflammatory response in vivo and in vitro. These findings demonstrated that hesperetin exerted a protective prophylaxis on APAP-induced acute liver injury by inhibiting hepatocyte necrosis and apoptosis, oxidative stress and inflammatory response via up-regulating HO-1 expression.  相似文献   

3.
Paraquat (1,1′-dimethyl-4,4′-bipyridinium) is a widely used herbicide known to induce skin toxicity. This is thought to be due to oxidative stress resulting from the generation of cytotoxic reactive oxygen intermediates (ROI) during paraquat redox cycling. The skin contains a diverse array of antioxidant enzymes which protect against oxidative stress including superoxide dismutase (SOD), catalase, glutathione peroxidase-1 (GPx-1), heme oxygenase-1 (HO-1), metallothionein-2 (MT-2), and glutathione-S-transferases (GST). In the present studies we compared paraquat redox cycling in primary cultures of undifferentiated and differentiated mouse keratinocytes and determined if this was associated with oxidative stress and altered expression of antioxidant enzymes. We found that paraquat readily undergoes redox cycling in both undifferentiated and differentiated keratinocytes, generating superoxide anion and hydrogen peroxide as well as increased protein oxidation which was greater in differentiated cells. Paraquat treatment also resulted in increased expression of HO-1, Cu,Zn-SOD, catalase, GSTP1, GSTA3 and GSTA4. However, no major differences in expression of these enzymes were evident between undifferentiated and differentiated cells. In contrast, expression of GSTA1-2 was significantly greater in differentiated relative to undifferentiated cells after paraquat treatment. No changes in expression of MT-2, Mn-SOD, GPx-1, GSTM1 or the microsomal GST's mGST1, mGST2 and mGST3, were observed in response to paraquat. These data demonstrate that paraquat induces oxidative stress in keratinocytes leading to increased expression of antioxidant genes. These intracellular proteins may be important in protecting the skin from paraquat-mediated cytotoxicity.  相似文献   

4.
Phytoestrogens are polyphenolic non-steroidal plant compounds with estrogen-like biological activity. Ginseng, the root of Panax ginseng C.A. Meyer (Araliaceae), is a popular traditional herbal medicine. Ginsenoside Rb1 (Rb1), an active component commonly found in ginseng root, is a phytoestrogen that exerts estrogen-like activity. In this study, we demonstrate that the phytoestrogen Rb1 inhibits 6-hydroxydopamine (6-OHDA)-induced oxidative injury via an ER-dependent Gβ1/PI3K/Akt and heme oxygenase-1 (HO-1) pathway. Pretreatment of SH-SY5Y cells with Rb1 significantly reduced 6-OHDA-induced caspase-3 activation and subsequent cell death. Rb1 also up-regulated HO-1 expression, which conferred cytoprotection against 6-OHDA-induced oxidative injury. Moreover, Rb1 induced both Nrf2 nuclear translocation, which is upstream of HO-1 expression and PI3K activation, a pathway that is involved in induced Nrf2 nuclear translocation, HO-1 expression and cytoprotection. Also, Rb1-mediated increases in PI3K activation and HO-1 induction were reversed by co-treatment with ICI 182,780 and pertussis toxin. Taken together, these results suggest that Rb1 augments the cellular antioxidant defenses through ER-dependent HO-1 induction via the Gβ1/PI3K/Akt-Nrf2 signaling pathway, thereby protecting cells from oxidative stress. Thus our study indicates that Rb1 has a partial cytoprotective role in dopaminergic cell culture systems.  相似文献   

5.
Resveratrol (trans-3,5,4’-trihydroxystilbene) has received considerable attention recently for the potential neuroprotective effects in neurodegenerative disorders where heme oxygenase-1 (HO-1) and sirtuin 1 (SIRT1) represent promising therapeutic targets. Resveratrol has been known to increase HO-1 expression and SIRT1 activity. In this study, the effects of resveratrol and trans-3,5,4’-trimethoxystilbene (TMS), a resveratrol derivative, on cytotoxicity caused by glutamate-induced oxidative stress, HO-1 expression, and SIRT1 activation have been investigated by using murine hippocampal HT22 cells, which have been widely used as an in vitro model for investigating glutamate-induced neurotoxicity. Resveratrol protected HT22 neuronal cells from glutamateinduced cytotoxicity and increased HO-1 expression as well as SIRT1 activity in a concentration-dependent manner. Cytoprotec-tion afforded by resveratrol was partially reversed by the specific inhibition of HO-1 expression by HO-1 small interfering RNA and the nonspecific blockage of HO-1 activity by tin protoporphyrin IX, but not by SIRT1 inhibitors. Surprisingly, TMS, a resveratrol derivative with methoxyl groups in lieu of the hydroxyl groups, and trans-stilbene, a non-hydroxylated analog, failed to protect HT22 cells from glutamate-induced cytotoxicity and to increase HO-1 expression and SIRT1 activity. Taken together, our findings suggest that the cytoprotective effect of resveratrol was at least in part associated with HO-1 expression but not with SIRT1 activation and, importantly, that the presence of hydroxyl groups on the benzene rings of resveratrol appears to be necessary for cytoprotection against glutamate-induced oxidative stress, HO-1 expression, and SIRT1 activation in HT22 neuronal cells.  相似文献   

6.
7.
Oxidative stress plays an important role in the pathophysiology of several vascular diseases such as atherosclerosis, and great attention has been placed on the protective role of heme oxygenase-1 (HO-1) for vasculature against oxidant-induced injury. We tested whether the protective effects of YS 51, 1-(β-naphtyl-methyl)-6,7-dihydroxy-1,2,3,4,-tetrahydroisoquinoline, against hydrogen peroxide (H2O2)-induced cell injury is associated with HO-1 activity in bovine aortic endothelial cells (BAEC). YS 51 increased HO-1 expression and activity in concentration-dependent manners (10-100 μM) and time-dependent manners (1, 3, 6, 18 h), which were correlated well with its protective effect against H2O2-induced injury. Zinc protoporphyrin IX (ZnPP IX), a HO inhibitor, significantly inhibited the effect of YS 51 (50 μM). In contrast, [Ru(CO)3(Cl)2]2 (CORM-2, a CO releasing molecule) but not bilirubin protected against H2O2-induced injury. Oxyhemoglobin (HbO2) used as a CO scavenger significantly inhibited the protective effect of both YS 51 and CORM-2. Furthermore, both YS 51 and CORM-2 significantly reduced H2O2-induced intracellular reactive oxygen species (ROS) production; however, this was counteracted by ZnPP IX, HbO2 and deferoxamine. We found evidence for the involvement of PI3/Akt kinase and ERK1/2 pathways in HO-1 induction by YS-51. Taken together, we conclude that CO is, at least, responsible for the YS 51-mediated protective action of endothelial cells against oxidant stress via HO-1 gene induction, involving the activation of the PI3/Akt and ERK1/2 kinase pathways. Thus, YS 51 may be useful in oxidative stress-induced vascular disorders.  相似文献   

8.
Phytoestrogens are polyphenolic non-steroidal plant compounds with estrogen-like biological activity. The phytoestrogen puerarin, the main isoflavone glycoside found in the root of Pueraria lobata, has been used for various medicinal purposes in traditional Chinese medicines for thousands of years. Recent studies have indicated that the estrogen receptor (ER), through interaction with p85, regulates phosphoinositide 3-kinase (PI3K) activity, revealing a physiologic, non-nuclear function of ER that may be relevant in cytoprotection. In this study, we demonstrate that the phytoestrogen puerarin inhibits tert-butyl hydroperoxide (t-BHP)-induced oxidative injury via an ER-dependent Gβ1/PI3K/Akt and heme oxygenase-1 (HO-1) pathway. Pretreatment of Hepa1c1c7 and HepG2 cells with puerarin significantly reduced t-BHP-induced caspase-3 activation and subsequent cell death. Also, puerarin up-regulated HO-1 expression and this expression conferred cytoprotection against oxidative injury induced by t-BHP. Moreover, puerarin induced Nrf2 nuclear translocation, which is upstream of puerarin-induced HO-1 expression, and PI3K activation, a pathway that is involved in induced Nrf2 nuclear translocation, HO-1 expression and cytoprotection. Puerarin-induced up-regulation of HO-1 and cytoprotection against t-BHP were abolished by silencing Nrf2 expression with specific siRNA. Also, puerarin-mediated increases in PI3K activation and HO-1 induction were reversed by co-treatment with ICI 182,780 and pertussis toxin. Taken together, these results suggest that puerarin augments cellular antioxidant defense capacity through ER-dependent HO-1 induction via the Gβ1/PI3K/Akt-Nrf2 signaling pathway, thereby protecting cells from oxidative stress.  相似文献   

9.
Increasing evidence regarding free radical generating agents and the inflammatory process suggest that accumulation of reactive oxygen species (ROS) could involve hepatotoxicity. Hesperidin, a naturally occurring flavonoid presents in fruits and vegetables, has been reported to exert a wide range of pharmacological effects that include antioxidant, anti-inflammatory, antihypercholesterolemic, and anticarcinogenic actions. However, the cytoprotection and mechanism of hesperidin to neutralize oxidative stress in human hepatic L02 cells remain unclear. In this work, we assessed the capability of hesperidin to prevent tert-butyl hydroperoxide (t-BuOOH)-induced cell damage by augmenting cellular antioxidant defense. Hesperidin significantly protected hepatocytes against t-BuOOH-induced cell cytotoxicity, such as mitochondrial membrane potential (MMP) deplete and lactate dehydrogenase (LDH) release. Hesperidin also remarkably prevented indicators of oxidative stress, such as the ROS and lipid peroxidation level in a dose-dependent manner. Western blot showed that hesperidin facilitated ERK/MAPK phosphorylation which appeared to be responsible for nuclear translocation of Nrf2, thereby inducing cytoprotective heme oxygenase-1 (HO-1) expression. Based on the results described above, it suggested that hesperidin has potential as a therapeutic agent in the treatment of oxidative stress-related hepatocytes injury and liver dysfunctions.  相似文献   

10.
11.
The naturally occurring cytokinin, ortho-topolin riboside (oTR), has been recently reported to have a strong anticancer effect. However, the molecular mechanism has not been elucidated. From our research we found that oTR strongly inhibited the proliferation of SMMC-7721 cells inducing apoptosis. After oTR treatment, up-regulation of the protein levels of pro-apoptotic Bax and the down-regulation of the anti-apoptotic proteins, Bcl-2 and Bcl-xL was observed, leading to the loss of mitochondrial membrane potential, the release of cytochrome c from the mitochondria into the cytosol, the downstream activation of caspase-9 and caspase-3, as well as the cleavage of poly ADP-ribose-polymerase (PARP), the effect of apoptosis could be blocked by the pan-specific caspase inhibitor z-VAD-fmk and caspase-9-specific inhibitor z-LEHD-fmk. Moreover, oTR was shown to inhibit the activation of the extracellular signal-regulated kinase-1/2 (ERK1/2) as well as the Akt pathway. These results suggest that oTR interferes with the mitogen-activated protein kinase (MAPK) and Akt pathways and induces the apoptosis of human SMMC-7721 cells through the activation of intrinsic mitochondria-mediated pathways. However, the apoptosis was completely prevented when cells were treated with A-134974, an inhibitor of adenosine kinase, it indicated that the intracellular phosphorylation of oTR is necessary for its cytotoxic effects to SMMC-7721 cells.  相似文献   

12.
The pathophysiological relevance of S-nitrosoglutathione (GSNO)-induced endothelial cell injury remains unclear. The main objective of this study was to elucidate the molecular mechanisms of GSNO-induced oxidative stress in endothelial cells. Morphological evaluation through DAPI staining and propidium iodide (PI) flow cytometry was used to detect apoptosis. In cultured EA.hy926 endothelial cells, exposure to GSNO led to a time- and dose-dependent apoptotic cascade. When intracellular reactive oxygen species (ROS) production was measured in GSNO-treated cells with the fluorescent probes 5-(and-6)-carboxy-2′,7′-dichlorofluorescein diacetate, we observed elevated ROS levels and a concomitant loss in mitochondrial membrane potential, indicating that GSNO-induced death signaling is mediated through a ROS-mitochondrial pathway. Importantly, we found that peroxynitrite formation and Omi/HtrA2 release from mitochondria were involved in this phenomenon, whereas changes of death-receptor dependent signaling were not detected in the same context. The inhibition of NADPH oxidase activation and Omi/HtrA2 by a pharmacological approach provided significant protection against caspase-3 activation and GSNO-induced cell death, confirming that GSNO triggers the death cascade in endothelial cells in a mitochondria-dependent manner. Taken together, our results indicate that ROS overproduction and loss of mitochondrial Omi/HtrA2 play a pivotal role in reactive nitrogen species-induced cell death, and the modulation of these pathways can be of significant therapeutic benefit.  相似文献   

13.
Heme oxygenase (HO)-1 is an oxidative stress-response enzyme which catalyzes the degradation of heme into bilirubin, ferric ion, and carbon monoxide (CO). Induction of HO-1 was reported to have antitumor activity; the inhibitory mechanism, however, is still unclear. In the present study, we found that treatment with [Ru(CO)3Cl2]2 (RuCO), a CO-releasing compound, reduced the growth of human MCF7 and MDA-MB-231 breast cancer cells. Analysis of growth-related proteins showed that treatment with RuCO down-regulated cyclinD1, CDK4, and hTERT protein expressions. Interestingly, RuCO treatment resulted in opposite effects on wild-type and mutant p53 proteins. These results were similar to those of cells treated with geldanamycin (a heat shock protein (HSP)90 inhibitor), suggesting that RuCO might affect HSP90 activity. Moreover, RuCO induced mutant p53 protein destabilization accompanied by promotion of ubiquitination and proteasome degradation. The induction of HO-1 by cobalt protoporphyrin IX (CoPP) showed consistent results, while the addition of tin protoporphyrin IX (SnPP), an HO-1 enzymatic inhibitor, diminished the RuCO-mediated effect. RuCO induction of HO-1 expression was reduced by a p38 mitogen-activated protein kinase inhibitor (SB203580). Additionally, treatment with a chemopreventive compound, curcumin, induced HO-1 expression accompanied with reduction of HSP90 client protein expression. The induction of HO-1 by curcumin inhibited 12-O-tetradecanoyl-13-acetate (TPA)-elicited matrix metalloproteinase-9 expression and tumor invasion. In conclusion, we provide novel evidence underlying HO-1's antitumor mechanism. CO, a byproduct of HO-1, suppresses HSP90 protein activity, and the induction of HO-1 may possess potential as a cancer therapeutic.  相似文献   

14.
15.
16.
Astaxanthin (AST) is a powerful antioxidant that occurs naturally in a wide variety of living organisms. We have investigated the role of AST in preventing 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced apoptosis of the substantia nigra (SN) neurons in the mouse model of Parkinson’s disease (PD) and 1-methyl-4-phenylpyridinium (MPP+)-induced cytotoxicity of SH-SY5Y human neuroblastoma cells. In in vitro study, AST inhibits MPP+-induced production of intracellular reactive oxygen species (ROS) and cytotoxicity in SH-SY5Y human neuroblastoma cells. Preincubation of AST (50 μM) significantly attenuates MPP+-induced oxidative damage. Furthermore, AST is able to enhance the expression of Bcl-2 protein but reduce the expression of α-synuclein and Bax, and suppress the cleavage of caspase-3. Our results suggest that the protective effects of AST on MPP+-induced apoptosis may be due to its anti-oxidative properties and anti-apoptotic activity via induction of expression of superoxide dismutase (SOD) and catalase and regulating the expression of Bcl-2 and Bax. Pretreatment with AST (30 mg/kg) markedly increases tyrosine hydroxylase (TH)-positive neurons and decreases the argyrophilic neurons compared with the MPTP model group. In summary, AST shows protection from MPP+/MPTP-induced apoptosis in the SH-SY5Y cells and PD model mouse SN neurons, and this effect may be attributable to upregulation of the expression of Bcl-2 protein, downregulation of the expression of Bax and α-synuclein, and inhibition of the activation of caspase-3. These data indicate that AST may provide a valuable therapeutic strategy for the treatment of progressive neurodegenerative disease such as Parkinson’s disease.  相似文献   

17.
Oxidative stress is an important factor in drug induced hepatotoxicity and antioxidants from natural sources have potential to ameliorate it. The present study was aimed to investigate cyto-protective potential of probiotic Enterococcus lactis IITRHR1 (ElSN) and Lactobacillus acidophilus MTCC447 (LaSN) lysate against acetaminophen (APAP) induced hepatotoxicity. Cultured rat hepatocytes pretreated with ElSN/LaSN showed higher cell viability under APAP stress. Pre-treatment with ElSN, restored glutathione level and reduced ROS generation significantly which are major biomarkers of oxidative stress. It also reduced NO level, MDA formation and enhanced SOD activity. Pre-treatment with probiotic lysates significantly inhibited the translocation of pro-apoptotic protein (Bax), enhanced anti-apoptotic (Bcl-2) protein levels and prevented release of cyt c to cytosol; suggesting involvement of mitochondrial proteins in protection against APAP induced oxidative cellular damage. Loss in mitochondrial membrane potential due to APAP treatment was prevented in the presence of probiotic lysates. Protective action of ElSN/LaSN pretreatment was further supported by prevention of procaspase-3 activation, DNA fragmentation and chromatin condensation, in turn inhibiting APAP induced apoptotic cell death. The results indicate that probiotic preparations modulate crucial end points of oxidative stress induced apoptosis and may be used for management of drug induced liver injury.  相似文献   

18.
Altered redox homeostasis involved in the control of cancer cell survival and proliferative signaling represents a chemical vulnerability that can be targeted by prooxidant redox intervention. Here, we demonstrate that the redox dye 2,6-dichlorophenolindophenol (DCPIP) may serve as a prooxidant chemotherapeutic targeting human melanoma cells in vitro and in vivo. DCPIP-apoptogenicity observed in the human melanoma cell lines A375 and G361 was inversely correlated with NAD(P)H:quinone oxidoreductase (NQO1) expression levels. In A375 cells displaying low NQO1 activity, DCPIP induced apoptosis with procaspase-3 and PARP cleavage, whereas G361 cells expressing high levels of enzymatically active NQO1 were resistant to DCPIP-cytotoxicity. Genetic (siRNA) or pharmacological (dicoumarol) antagonism of NQO1 strongly sensitized G361 cells to DCPIP apoptogenic activity. DCPIP-cytotoxicity was associated with the induction of oxidative stress and rapid depletion of glutathione in A375 and NQO1-modulated G361 cells. Expression array analysis revealed a DCPIP-induced stress response in A375 cells with massive upregulation of genes encoding Hsp70B’ (HSPA6), Hsp70 (HSPA1A), heme oxygenase-1 (HMOX1), and early growth response protein 1 (EGR1) further confirmed by immunodetection. Systemic administration of DCPIP displayed significant antimelanoma activity in the A375 murine xenograft model. These findings suggest feasibility of targeting tumors that display low NQO1 enzymatic activity using DCPIP.  相似文献   

19.
Polychlorinated biphenyls (PCBs) are ubiquitous environmental contaminants. Much of the research has focused on the carcinogenic potential of higher chlorinated PCBs, but accumulative evidence has shown that lower chlorinated PCB congeners have initiating and promoting activities. The goal of this study was to examine the potential of lower chlorinated PCBs, including 2,2′,5,5′-tetrachlorobiphenyl (PCB52) and 3,3′,4,4′-tetrachlorobiphenyl (PCB77), to induce DNA damage and apoptosis in human MDA-MB-231 (MDA) and MCF-7 breast cancer cells. Results confirmed that treatment of cells with PCB52 and PCB77 resulted in oxidative stress and caspase-dependent apoptosis in both MDA and MCF-7 cells. We noticed that at non-cytotoxic concentrations PCB52 and PCB77-induced decreases in intracellular NAD(P)H in MDA cells but not in MCF-7 cells. Further investigation confirmed that decreases in intracellular NAD(P)H in PCB-treated MDA cells are primarily due to reduction in intracellular NAD+ pool mediated by poly(ADP-ribose)polymerase-1 activation through formation of DNA strand breaks. Antagonism was observed between PCB52 and PCB77 for the effect on induction of DNA strand breaks in MDA cells. Overall, this evidence demonstrates that at non-cytotoxic concentrations, lower chlorinated PCB congeners are capable of inducing oxidative DNA lesions in ERα(−)/MDA cells but not in ERα(+)/MCF-7 cells and that functional ERα plays a protective role in modulating the PCB-induced DNA damage in human breast cancer cells.  相似文献   

20.
Oxidative stress plays an important role in the pathogenesis of Parkinson’s disease (PD). Salidroside (SAL), a phenylpropanoid glycoside isolated from Rhodiola rosea L., can exert potent antioxidant properties. In this study, we investigated the protective effects, and the possible mechanism of action, of SAL against 1-methyl-4-phenylpyridinium (MPP+)-induced cell damage in rat adrenal pheochromocytoma PC12 cells. Pretreatment of PC12 cells with SAL significantly reduced the ability of MPP+ to induce apoptosis in a dose and time-dependent manner. SAL significantly and dose-dependently inhibited MPP+-induced chromatin condensation and MPP+-induced release of lactate dehydrogenase by PC12 cells. SAL enhanced Akt phosphorylation in PC12 cells, and the protective effects of SAL against MPP+-induced apoptosis were abolished by LY294002, a specific inhibitor of phosphatidylinositol 3-kinase (PI3K) phosphorylation. These findings suggest that SAL prevents MPP+-induced apoptosis in PC12 cells, at least in part through activation of the PI3K/Akt pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号