首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Schinus molle L. (Anacardiaceae), among other uses, is popularly employed for the treatment of depression. In this study, the antidepressant-like effect of the hexanic extract from leaves of S. molle was investigated in the mouse tail suspension test (TST), a predictive model of depression. The immobility time in the TST was significantly reduced by the extract (dose range 30-600 mg/kg, p.o.), without accompanying changes in ambulation when assessed in an open-field test. The efficacy of extract was found to be comparable to that of fluoxetine (10 mg/kg, p.o.). The anti-immobility effect of the extract (100 mg/kg, p.o.) was prevented by pretreatment of mice with p-chlorophenylalanine methyl ester (PCPA, 100 mg/kg, i.p., an inhibitor of serotonin synthesis, for four consecutive days), NAN-190 (0.5 mg/kg, i.p., a 5-HT(1A) receptor antagonist), WAY100635 (0.1 mg/kg, s.c., a selective 5-HT(1A) receptor antagonist), ketanserin (5 mg/kg, i.p., a 5-HT(2A/2C) receptor antagonist), MDL72222 (0.1 mg/kg, i.p., a 5-HT(3) receptor antagonist), prazosin (1 mg/kg, i.p., an alpha(1)-adrenoceptor antagonist), yohimbine (1 mg/kg, i.p., an alpha(2)-adrenoceptor antagonist), SCH23390 (0.05 mg/kg, s.c., a D(1) receptor antagonist) or sulpiride (50 mg/kg, i.p., a D(2) receptor antagonist). It may be concluded that the hexanic extract of S. molle produces an antidepressant-like effect that seems to be dependent on its interaction with the serotonergic, noradrenergic and dopaminergic systems. These results provide evidence that the extract from S. molle shares with established antidepressants some pharmacological effects, at least at a preclinical level.  相似文献   

2.
The antidepressant-like effect of the ethanolic extract obtained from barks of Tabebuia avellanedae, a plant widely employed in folk medicine, was investigated in two predictive models of depression: forced swimming test (FST) and tail suspension test (TST) in mice. Additionally, the mechanisms involved in this antidepressant-like action and the effects of the association of the extract with the antidepressants fluoxetine, desipramine and bupropion in the TST were investigated. The extract from T. avellanedae produced an antidepressant-like effect, in the FST (100 mg/kg, p.o.) and in the TST (10–300 mg/kg, p.o.), without accompanying changes in ambulation when assessed in the open-field test. The anti-immobility effect of the extract (30 mg/kg, p.o.) in the TST was prevented by pre-treatment of mice with ketanserin (5 mg/kg, i.p., a preferential 5-HT2A receptor antagonist), prazosin (1 mg/kg, i.p., an α1-adrenoceptor antagonist), yohimbine (1 mg/kg, i.p., an α2-adrenoceptor antagonist), propranolol (2 mg/kg, i.p., a β-adrenoceptor antagonist), sulpiride (50 mg/kg, i.p., a dopamine D2 receptor antagonist) and SCH23390 (0.05 mg/kg, s.c., a dopamine D1 receptor antagonist). The combined administration of a subeffective dose of WAY100635 (0.1 mg/kg, s.c., a selective 5-HT1A receptor antagonist) and a subeffective dose of the extract (1 mg/kg, p.o.) produced a significant reduction in the immobility time in the TST. In addition, the combination of fluoxetine (1 mg/kg, p.o.), desipramine (0.1 mg/kg, p.o.), or bupropion (1 mg/kg, p.o.) with a subeffective dose of the extract (1 mg/kg, p.o.) produced a synergistic antidepressant-like effect in the TST, without causing hyperlocomotion in the open-field test. It may be concluded that the extract from T. avellanedae produces an antidepressant-like effect in the FST and in the TST that is dependent on the monoaminergic system. Taken together, our results suggest that T. avellanedae deserves further investigation as a putative alternative therapeutic tool that could help the conventional pharmacotherapy of depression.  相似文献   

3.
Ascorbic acid is highly concentrated in the brain, being considered as a neuromodulator. This study investigated the effect of ascorbic acid in the tail suspension test (TST) and in the forced swimming test (FST) in mice and the contribution of the monoaminergic system to its antidepressant-like effect. Moreover, the effects of fluoxetine, imipramine and bupropion in combination with ascorbic acid in the TST were investigated. Ascorbic acid (0.1–10 mg/kg, i.p., 1–10 mg/kg p.o. or 0.1 nmol/mice i.c.v.) produced an antidepressant-like effect in the TST, but not in the FST, without altering the locomotor activity. The effect of ascorbic acid (0.1 mg/kg, i.p.) in the TST was prevented by i.p. pre-treatment with NAN-190 (0.5 mg/kg), ketanserin (5 mg/kg), MDL72222 (0.1 mg/kg), prazosin (62.5 µg/kg), yohimbine (1 mg/kg), propranolol (2 mg/kg), haloperidol (0.2 mg/kg), sulpiride (50 mg/kg), but not with SCH23390 (0.05 mg/kg, s.c.). Additionally, ascorbic acid (1 mg/kg, p.o.) potentiated the effect of subeffective doses (p.o. route) of fluoxetine (1 mg/kg), imipramine (0.1 mg/kg), or bupropion (1 mg/kg) in the TST. The combined treatment of ascorbic acid with antidepressants produced no alteration in the locomotion in the open-field test. In conclusion, our results show that administration of ascorbic acid produces an antidepressant-like effect in TST, which is dependent on its interaction with the monoaminergic system. Moreover, ascorbic acid caused a synergistic antidepressant-like effect with conventional antidepressants. Therefore, the present findings warrant further studies to evaluate the therapeutical relevance of ascorbic acid for the treatment of depression and as a co-adjuvant treatment with antidepressants.  相似文献   

4.
Rosemary, Rosmarinus officinalis L. (Labiatae) has several therapeutic applications in folk medicine in curing or managing a wide range of diseases, including depression. In this study, the effect of the hydroalcoholic extract of the stems and leaves of this plant was investigated in two behavioral models, the forced swimming test (FST) and tail suspension test (TST) in mice. The extract of R. officinalis produced an antidepressant-like effect, since the acute treatment of mice with the extract by p.o. route significantly reduced the immobility time in the FST (100 mg/kg) and TST (10–100 mg/kg), as compared to a control group, without accompanying changes in ambulation in the open-field test. Moreover, the repeated administration (14 days) of the hydroalcoholic extract of R. officinalis by p.o. route also produced an antidepressant-like effect in the TST (100–300 mg/kg). The pretreatment of mice with p-chlorophenylalanine (PCPA, 100 mg/kg, i.p., an inhibitor of serotonin synthesis, for 4 consecutive days), NAN-190 (0.5 mg/kg, i.p., a 5-HT1A receptor antagonist), ketanserin (5 mg/kg, i.p., a 5-HT2A receptor antagonist), 1-(m-chlorophenyl) biguanide (mCPBG, 10 mg/kg, i.p., a 5-HT3 receptor agonist), prazosin (1 mg/kg, i.p., an α1-adrenoceptor antagonist), SCH23390 (0.05 mg/kg, s.c., a dopamine D1 receptor antagonist) or sulpiride (50 mg/kg, i.p., a dopamine D2 receptor antagonist), but not yohimbine (1 mg/kg, i.p., an α2-adrenoceptor antagonist) was able to reverse the anti-immobility effect of the extract (10 mg/kg, p.o.) in the TST. The combination of MDL72222, (0.1 mg/kg, i.p., a 5-HT3 receptor antagonist) with a sub-effective dose of the extract of R. officinalis (1 mg/kg, p.o.) produced an anti-immobility effect in the TST. The results suggest that the antidepressant action of the extract of R. officinalis is mediated by an interaction with the monoaminergic system and that this plant should be further investigated as an alternative therapeutic approach for the treatment of depression.  相似文献   

5.
The present study investigated a possible antidepressant-like activity of bis selenide using two predictive tests for antidepressant effect on rodents: the forced swimming test (FST) and the tail suspension test (TST). Bis selenide (0.5–5 mg/kg, p.o.) decreased the immobility time in the mouse FST and TST. The anti-immobility effect of bis selenide (1 mg/kg, p.o.) in the TST was prevented by the pretreatment of mice with p-chlorophenylalanine methyl ester (PCPA; 100 mg/kg, i.p., an inhibitor of serotonin synthesis), ketanserin (1 mg/kg, i.p., a 5-HT2A/2C receptor antagonist), and ondasentron (1 mg/kg, i.p., a 5-HT3 receptor antagonist). Pretreatment of mice with prazosin (1 mg/kg, i.p., an α1-adrenoceptor antagonist), yohimbine (1 mg/kg, i.p., an α2-adrenoceptor antagonist), propranolol (2 mg/kg, i.p., a β-adrenoceptor antagonist), SCH23390 (0.05 mg/kg, s.c., a dopamine D1 receptor antagonist), sulpiride (50 mg/kg, i.p., a dopamine D2 receptor antagonist), or WAY 100635 (0.1 mg/kg, s.c., a selective 5-HT1A receptor antagonist) did not block the antidepressant-like effect of bis selenide (1 mg/kg, p.o.) in the TST. Administration of bis selenide (0.1 mg/kg, p.o.) and fluoxetine (1 mg/kg), at subeffective doses, produced an antidepressant-like effect in the TST. Bis selenide did not alter Na+ K+ ATPase, MAO-A and MAO-B activities in whole brains of mice. Bis selenide produced an antidepressant-like effect in the mouse TST and FST, which may be related to the serotonergic system (5-HT2A/2C and 5-HT3 receptors).  相似文献   

6.
Our previous study described the synthesis of 4-amine derivatives of 10,11-dihydro-5H-dibenzo-alkylamine-cycloheptane, 4-amine (3-N,N-dimethylpropylamine)-10,11-dihydro-5H-dibenzo[a,d] cycloheptane-5-one (ADDCH1), and 1,2,3,4,8,9-hexahydro-dibenzocycloheptane[4,4a,5-ef]1,4-diazepin (ADDCH2), and the characterization of their antidepressant-like effect in the forced swimming test in mice. This study investigated the involvement of monoaminergic pathways in the antidepressant-like effect of these compounds in mice evaluated in the tail suspension test (TST), another animal model to screen antidepressant drugs. Our results show that the immobility time in the TST was significantly reduced by ADDCH1 (15 to 50 mg/kg, i.p.) or ADDCH2 (30 and 50 mg/kg, i.p.). The antidepressant-like effect of ADDCH1 (30 mg/kg, i.p.) in the TST was prevented by pre-treatment of mice with methysergide (2 mg/kg, i.p.), a non-selective serotonin receptor antagonist, p-chlorophenylalanine methylester (pCPA, 100 mg/kg, i.p.), an inhibitor of serotonin synthesis, prazosin (62.5 microg/kg, i.p.), an alpha1-adrenoceptor antagonist, or yohimbine (1 mg/kg, i.p.), an alpha2-adrenoceptor antagonist. In contrast, the antidepressant-like effect of ADDCH2 was antagonized only by yohimbine (1 mg/kg) or haloperidol (50 microg/kg, i.p.), a dopamine D2/D3/D4 receptor antagonist, and was not affected by methysergide, pCPA or prazosin. Altogether, the present results strongly suggest the differential involvement of monoaminergic systems, serotonin/noradrenaline (ADDCH1) and noradrenaline/dopamine (ADDCH2) pathways, respectively, in the antidepressant-like effect of dibenzosuberone compounds.  相似文献   

7.
Clozapine is an effective atypical antipsychotic agent, with serious side effects. JL13 [5-(4-methylpiperazin-1-yl)-8-chloropyrido[2,3-b][1,5]benzoxazepine] is a potential new atypical antipsychotic, structurally modified from clozapine to resist oxidation so as to reduce haematological and cardiological side effects. To assess the potential clinical potency of JL13 we tested its action in a newly described animal model based on the ability of clozapine-like agents to affect brain mechanisms controlling sympathetic outflow to thermoregulatory cutaneous vascular beds.  相似文献   

8.
Piperine is a major alkaloid of black pepper (Piper nigrum Linn.) and long pepper (P. longum Linn.), and its antidepressant-like effect has been previously demonstrated. The purpose of this study was to explore the possible contribution of the serotonergic system in the antidepressant-like effect of piperine in mice. The results showed that piperine significantly reduced the immobility time in the forced swim test and tail suspension test in mice. The anti-immobility effect of piperine in the forced swim test and tail suspension test was completely abolished by pre-treating the mice with pCPA (an inhibitor of 5-HT synthesis). Piperine treatment also significantly potentiated the number of head-twitches of mice induced by 5-HTP (a metabolic precursor to 5-HT). In addition, the neurochemical assays showed that piperine produced a marked increase of 5-HT level in both the hippocampus and frontal cortex of mice. Taken together, these results clearly suggest that the antidepressant-like effect of piperine is mediated via the serotonergic system by enhancing 5-HT content in mouse brain.  相似文献   

9.
Preclinical and clinical studies suggest that direct and indirect cannabinoid agonists, including enhancers of endocannabinoids, engender stress-relieving, anxiolytic and antidepressant effects, mediated by central CB(1) receptors (CB(1)Rs). The effect of the main pharmacologically active principle in cannabis, (-)-trans-Δ(9)-tetrahydrocannabinol (delta-9-THC), on depressive behavior and on the serotonin (5-HT) system, which is implicated in the mechanism of action of antidepressants, has not been extensively clarified. Here, we showed that repeated (5 days), but not single (acute) intraperitoneal (ip) treatment with delta-9-THC (1mg/kg) exerts antidepressant-like properties in the rat forced swim test (FST). This effect was CB(1)R-dependent because it was blocked by the CB(1)R antagonist rimonabant (1mg/kg, ip). Using in vivo electrophysiology, we demonstrated that delta-9-THC modulated dorsal raphe (DR) 5-HT neuronal activity through a CB(1)R-dependent mechanism. Acute intravenous delta-9-THC administration (0.1-1.5mg/kg) elicited a complex response profile, producing excitatory, inhibitory and inert responses of 5-HT neurons. Only excitatory responses were blocked by rimonabant. Finally, repeated but not single delta-9-THC administration (1mg/kg, ip) enhanced tonic 5-HT(1A) receptor activity in the hippocampus, a postsynaptic event commonly elicited by standard antidepressants. These results suggest that delta-9-THC, like other CB(1)R agonists and endocannabinoid enhancers, may possess antidepressant properties at low doses, and could modulate 5-HT transmission in the DR and hippocampus as standard antidepressants such as selective serotonin reuptake inhibitors.  相似文献   

10.
Since galanin in vitro selectively increases theKD value of 5-HT1A receptors without altering the binding of 5-HT1B or 5-HT2 receptors, we have studied whether 5-HT1A receptor activation in turn may affect galanin binding in the ventral di- and telencephalon and the substantia nigra of the rat. As analyzed by autoradiography, the binding of125I-galanin was increased by about 55% in the presence of 3–30 nM of 8-OH-2-(di-npropylamino)-tetralin (DPAT) in the paraventricular thalamic nucleus, the nucleus reuniens and rhomboideus, the zona incerta, the medial and the lateral hypothalamus, and the medial and the lateral amygdaloid area, but not in the pars compacta of the substantia nigra, which lacks 5-HT1A binding sites. DPAT (10 nM) reduced the IC50 values of galanin at125I-galanin binding sites by approximately 55% within all the analyzed di- and telencephalic regions. The overall increase inBO values was50 ± 11%. Using the filter wipe technique in cryostat sections at Bregma -2.8 mm covering all the brain regions at this level, DPAT (10 nM) decreased the IC50 values of galanin from21.6 ± 1.1nM (control) to15.5 ± 0.9nM, and increased theBO values by19.4 ± 4.1%. In membrane preparations from the ventral di- and telencephalon, DPAT decreased the IC50 values of galanin binding sites by20 ± 3% at 100 nM of DPAT. This effect could be completely blocked by the specific 5-HT1A receptor antagonist 1-(2-methoxyphenyl)-4-[4-(2-pthalimido)butyl]piperazine. GTP (0.1 nM) produced a17 ± 5% increase in the IC50 value of galanin and a23 ± 4% decrease in theBO value of125I_galanin binding sites. However, DPAT (100 nM) was still able to decrease the IC50 values of galanin in the presence of GTP (-8 ± 3%;control-10 ± 3%). TheBmax value of125I-galanin binding was not affected by DPAT. The increased affinity of galanin binding sites by DPAT seems to reflect a G-protein-independent intramembrane receptor-receptor interaction between 5-HT1A and galanin receptors. This interaction may represent an intramembrane inhibitory feed-back mechanism of 5-HT1A receptor sensitivity, and may be important both under normal conditions and in 5-HT-mediated mental disorders.  相似文献   

11.
We used a model of neuropathic pain consisting of rats with chronic constriction injury (CCI) of the sciatic nerve, in order to investigate whether endocannabinoid levels are altered in the dorsal raphe (DR) and to assess the effect of repeated treatment with (R)-(+)-[2,3-dihydro-5-methyl-3-(4-morpholinylmethyl)pyrrolo[1,2,3-de]-1,4-benzoxazin-6-yl]-1-naphthalenylmethanone mesylate, a synthetic cannabinoid agonist, or N-(4-hydroxyphenyl)-5Z,8Z,11Z,14Z-eicosatetraenamide (AM404), an inhibitor of endocannabinoid reuptake, on DR serotonergic neuronal activity and on behavioural hyperalgesia. CCI resulted in significantly elevated anandamide but not 2-arachidonoylglycerol levels in the DR. Furthermore, as well as thermal and mechanical hyperalgesia, CCI caused serotonergic hyperactivity (as shown by the increase of basal activity of serotonergic neurones, extracellular serotonin levels and expression of 5-HT1A receptor gene). Repeated treatment with either (R)-(+)-[2,3-dihydro-5-methyl-3-(4-morpholinylmethyl)pyrrolo[1,2,3-de]-1,4-benzoxazin-6-yl]-1-naphthalenylmethanone mesylate or AM404 reverted the hyperalgesia and enhanced serotonergic activity induced by CCI in a way attenuated by N-piperidino-5-(4-chlorophenyl)-1-(2,4dichlorophenyl)-4-methyl-3-pyrazolecarboxamide, a selective cannabinoid subtype 1 (CB1) receptor antagonist. Despite the elevated levels of anandamide following CCI, N-piperidino-5-(4-chlorophenyl)-1-(2,4dichlorophenyl)-4-methyl-3-pyrazolecarboxamide did not produce hyperalgesia or any other effect on serotonergic neuronal activity when administered alone. Furthermore, the effects of AM404 were not accompanied by an increase in endocannabinoid levels in the DR. In conclusion, following CCI of the sciatic nerve, the endocannabinoid and serotonergic systems are activated in the DR, where repeated stimulation of CB1 receptors with exogenous compounds restores DR serotonergic activity, as well as thermal and mechanical nociceptive thresholds, to pre-surgery levels. However, an elevated level of endogenous anandamide in the DR does not necessarily contribute to the CB1-mediated tonic control of analgesia and serotonergic neuronal activity.  相似文献   

12.
S100B is a calcium-binding protein, produced and secreted by astrocytes, which has a putative paracrine neurotrophic activity. Clinical studies have suggested that peripheral elevation of this protein is positively correlated with a therapeutic antidepressant response, particularly to selective serotonin reuptake inhibitors (SSRIs); however, the mechanism underlying this response remains unclear. Here, we measured S100B secretion directly in hippocampal astrocyte cultures and hippocampal slices exposed to fluoxetine and observed a significant increment of S100B release in the presence of this SSRI, apparently dependent on protein kinase A (PKA). Moreover, we found that serotonin (possibly via the 5HT1A receptor) reduces S100B secretion and antagonizes the effect of fluoxetine on S100B secretion. These data reinforce the effect of fluoxetine, independently of serotonin and serotonin receptors, suggesting a putative role for S100B in depressive disorders and suggesting that other molecular targets may be relevant for antidepressant activity.  相似文献   

13.
The endocannabinoid system and CB(1) receptors participate in the control of emotional behavior and mood through a functional coupling with the classic monoaminergic systems. In general, the acute stimulation of CB(1) receptors increases the activity (spontaneous firing rate) of noradrenergic (NE), serotonergic (5-HT) and dopaminergic (DA) neurons as well as the synthesis and/or release of the corresponding neurotransmitter in specific brain regions. Notably, the antagonist/inverse agonist rimonabant (SR141617A) can decrease the basal activity of NE and 5-HT neurons, suggesting a tonic/constitutive regulation of these neuronal systems by endocannabinoids acting at CB(1) receptors. Monoaminergic systems are modulated via CB(1) receptors by direct or indirect effects depending on the localization of this inhibitory receptor, which can be present on monoaminergic neurons themselves and/or inhibitory (GABAergic) and/or excitatory (glutamatergic) regulatory neurons. The repeated stimulation of CB(1) receptors is not associated with the induction of tolerance (receptor desensitization) on the activity of NE, 5-HT and DA neurons, in contrast to chronic agonist effects on neurotransmitter synthesis and/or release in some brain regions. CB(1) receptor desensitization may alter the direct and/or indirect effects of cannabinoid drugs modulating the functionality of monoaminergic systems. The sustained activation of monoaminergic neurons by cannabinoid drugs can also be related to changes in the function of presynaptic inhibitory α(2)-adrenoceptors or 5-HT(1A) receptors (autoreceptors and heteroreceptors), whose sensitivity is downregulated or upregulated upon chronic CB(1) agonist exposure. The functional interactions between endocannabinoids and monoaminergic systems in the brain indicate a potential role for CB(1) receptor signaling in the neurobiology of various psychiatric disorders, including major depression and schizophrenia as the major syndromes.  相似文献   

14.
The compound 2-(2-benzofuranyl)-2-imidazoline (2-BFI) is a 2-imidazoline derivative that selectively inhibits the in vitro activity of monoamine oxidase-A and it is also an imidazoline I(2) agonist. However, the antidepressant potential of this compound and its mechanism of action have not been well defined. Therefore, in this study we investigated the antidepressant-like effect of 2-BFI in mice. 2-BFI (100 and 300μmol/kg, s.c.) significantly reduced the immobility time on the tail suspension test (TST) without changing locomotion in the open field test. The reduced the immobility time of 2-BFI (100μmol/kg, s.c.) was confirmed with the forced swimming test (FST). The antidepressant-like effect of 2-BFI (100μmol/kg, s.c.) in the TST was prevented by pretreatment with idazoxan (0.4μmol/kg, i.p., a I(2) site antagonist), methysergide (4μmol/kg, i.p., a non-selective serotonergic receptor antagonist) and haloperidol (0.1μmol/kg, i.p., a non-selective dopaminergic receptor antagonist). The anxiolytic effect of 2-BFI was also evaluated, using the elevated plus-maze test. 2-BFI (300μmol/kg, s.c.) was able to significantly increase the % of number of entries and the % of time spent in the open arms, indicating that it possesses an anxiolytic effect at high doses. In conclusion, these results suggest that the antidepressant-like effect of 2-BFI might involve serotonergic, dopaminergic and imidazoline systems, and then the imidazoline site could represent a new pharmacological target for the treatment of depression.  相似文献   

15.
Since galanin in vitro selectively increases theKD value of 5-HT1A receptors without altering the binding of 5-HT1B or 5-HT2 receptors, we have studied whether 5-HT1A receptor activation in turn may affect galanin binding in the ventral di- and telencephalon and the substantia nigra of the rat. As analyzed by autoradiography, the binding of125I-galanin was increased by about 55% in the presence of 3–30 nM of 8-OH-2-(di-npropylamino)-tetralin (DPAT) in the paraventricular thalamic nucleus, the nucleus reuniens and rhomboideus, the zona incerta, the medial and the lateral hypothalamus, and the medial and the lateral amygdaloid area, but not in the pars compacta of the substantia nigra, which lacks 5-HT1A binding sites. DPAT (10 nM) reduced the IC50 values of galanin at125I-galanin binding sites by approximately 55% within all the analyzed di- and telencephalic regions. The overall increase inBO values was50 ± 11%. Using the filter wipe technique in cryostat sections at Bregma -2.8 mm covering all the brain regions at this level, DPAT (10 nM) decreased the IC50 values of galanin from21.6 ± 1.1nM (control) to15.5 ± 0.9nM, and increased theBO values by19.4 ± 4.1%. In membrane preparations from the ventral di- and telencephalon, DPAT decreased the IC50 values of galanin binding sites by20 ± 3% at 100 nM of DPAT. This effect could be completely blocked by the specific 5-HT1A receptor antagonist 1-(2-methoxyphenyl)-4-[4-(2-pthalimido)butyl]piperazine. GTP (0.1 nM) produced a17 ± 5% increase in the IC50 value of galanin and a23 ± 4% decrease in theBO value of125I_galanin binding sites. However, DPAT (100 nM) was still able to decrease the IC50 values of galanin in the presence of GTP (-8 ± 3%;control-10 ± 3%). TheBmax value of125I-galanin binding was not affected by DPAT. The increased affinity of galanin binding sites by DPAT seems to reflect a G-protein-independent intramembrane receptor-receptor interaction between 5-HT1A and galanin receptors. This interaction may represent an intramembrane inhibitory feed-back mechanism of 5-HT1A receptor sensitivity, and may be important both under normal conditions and in 5-HT-mediated mental disorders.  相似文献   

16.
Recent preclinical data indicated the antidepressant-like activity of zinc in different tests and models of depression. The present study investigates the involvement of the serotonergic system in zinc activity in the forced swim test (FST) in mice and rats. The combined treatment of sub-effective doses of zinc (hydroaspartate, 2.5 mg Zn/kg) and citalopram (15 mg/kg), fluoxetine (5 mg/kg) but not with reboxetine (2.5 mg/kg) significantly reduces the immobility time in the FST in mice. These treatments had no influence on the spontaneous locomotor activity. Moreover, while the antidepressant-like effect of zinc (5 mg/kg) in the FST was significantly blocked by pretreatment with inhibitor of serotonin synthesis, p-chlorophenylalanine (pCPA, 3 × 200 mg/kg), 5HT-2A/C receptor antagonist, ritanserin (4 mg/kg) or 5HT-1A receptor antagonist, WAY 1006335 (0.1 mg/kg), the zinc-induced reduction in the locomotor activity was not affected by these serotonin modulator agents. These results indicate the specific involvement of the serotonergic system in antidepressant but not the motion behavior of zinc in mice. Also, an increase in the swimming but not climbing parameter of the rat FST observed following zinc administration (2.5 and 5 mg Zn/kg) indicates the serotonin pathway participation. This present data indicates that the antidepressant-like activity of zinc observed in the FST involves interaction with the serotonergic system.  相似文献   

17.
Nociceptin/orphanin FQ (N/OFQ) peptide (NOP) receptor antagonists proved to be effective in alleviating experimental parkinsonism. Nonetheless, loss of effectiveness or even worsening of parkinsonian symptoms have been observed at high doses. With the aim of clarifying the circuitry underlying the dual action of NOP receptor antagonists and the role of endogenous dopamine, the NOP receptor antagonist 1-benzyl-N-[3-[spiroisobenzofuran-1(3H),4′-piperidin-1-yl]propyl]pyrrolidine-2-carboxamide (Compound 24) and the D2/D3 receptor antagonist raclopride were used in 6-hydroxydopamine hemilesioned rats. Systemically administered Compound 24 improved motor activity in the 0.1–10 mg/kg dose range being ineffective at 30 mg/kg. To confirm NOP selectivity, Compound 24 improved motor performance in wild-type mice at 1 and 10 mg/kg and inhibited it at 60 mg/kg, being ineffective in NOP receptor knockout mice. To prove that the bell-shaped profile was mediated by nigral NOP receptors, reverse dialysis of Compound 24 (0.03 μM) in substantia nigra reticulata ameliorated akinesia whereas Compound 24 (3 μM) was ineffective. To demonstrate that motor responses were mediated by tuning inhibitory and excitatory inputs to nigro-thalamic neurons, the low concentration elevated GABA and reduced glutamate in substantia nigra, simultaneously reducing GABA levels in ventro-medial thalamus. Conversely, the higher concentration reduced nigral and elevated thalamic GABA, without affecting nigral glutamate levels. Co-perfusion with raclopride (1 μM) abolished the antiakinetic action of Compound 24 (0.03 μM) and turned the ineffectiveness of Compound 24 (3 μM) into an antiakinetic effect. The low concentration reduced nigral but did not affect thalamic GABA whereas the higher concentration elevated nigral and reduced thalamic GABA. Neither concentration affected nigral glutamate. We conclude that dual motor effects of Compound 24 in hemiparkinsonian rats are accomplished through blockade of nigral NOP receptors resulting in opposite modulation of nigro-thalamic neurons. Endogenous dopamine contributes to these responses affecting the level of GABAergic inhibition of the nigral output via D2/D3 receptors.  相似文献   

18.
NK-1 receptor antagonists have shown potential for the clinical treatment of chemotherapy-induced nausea and vomiting, depression and alcoholism. In a recent study, we disclosed the potential for the NK-1 antagonist, LY686017, to treat alcoholism in a clinical population. To assess whether this compound could be utilized as a platform for a brain imaging ligand, we evaluated the binding of [3H]-LY686017 to sections of guinea pig in vitro. In these studies, [3H]-LY686017 bound with a distribution and pharmacology consistent with the NK-1 receptor. Using sections through the region of the caudate nucleus, we obtained a Kd of 0.34 nM and a Bmax of 31.37 fmoles/mg tissue. Based on its high potency and low nonspecific binding in vitro, we initiated studies to evaluate the radioligand as a tool to measure in vivo receptor occupancy. In initial studies, 25 microCi of [3H]-LY686017 was administered via an indwelling jugular catheter and accumulation of radioactivity in the caudate (NK-1 containing tissue) and cerebellum (low NK-1 expression) were assessed. The ratios of caudate to cerebellum radioactivity were optimal 2 h after radioligand administration so this time point was used for subsequent studies. To assess the pharmacological specificity of the radioactivity accumulation, we administered various doses of Aprepitant, a potent NK-1 antagonists 1 h prior to intravenous administration of [3H]-LY686017. Aprepitant produced a dose-dependent reduction in radioactivity in the caudate with an approximate 70% reduction at 10 mg/kg. To image NK-1 receptors, 100 microCi of [3H]-LY686017 was administered and the brains sectioned for autoradiography. In these studies, a characteristic distribution on NK-1 receptors was observed. Based on these results, LY686017 should serve as a suitable chemical platform for future imaging ligand development.  相似文献   

19.
Both glial cell line-derived neurotrophic factor (GDNF) and adenosine influence dopaminergic function in the striatum. We now evaluated the GDNF effect on dopamine release from rat striatal nerve endings and if this effect of GDNF is modulated by adenosine A(2A) receptors.Dopamine release was evoked twice (S(1) and S(2)); GDNF was added before S(2) and drugs used to modify GDNF actions were present during both stimulation periods. The effect of GDNF was taken as the change in the S(2)/S(1) ratio in the absence and in the presence of GDNF in the same experimental conditions. GDNF (3-30 ng/ml) increased dopamine release from K(+) (20 mM, 2 min) stimulated synaptosomes and electrically (2 Hz, 2 min) stimulated striatal slices, an effect dependent upon tonic adenosine A(2A) receptor activation, since it was blocked by the A(2A) receptor antagonist, SCH 58261 (50 nM). Activation of A(2A) receptors with CGS 21680 (10 nM) potentiated the effect of GDNF in synaptosomes. CGS 21680 also potentiated the effect of GDNF in striatal slices, providing that GABAergic transmission was inhibited; if not, the action of GDNF was attenuated by CGS 21680. Blockade of GABAergic transmission per se increased dopamine release, but attenuated the effect of GDNF upon dopamine release in slices.The results suggest that GDNF enhances dopamine release by acting presynaptically at the striatum, an action that requires adenosine A(2A) receptor activity. Furthermore, in striatal slices, the action of GDNF as well as its modulation by adenosine A(2A) receptor activation appears to be also under control of GABAergic transmission.  相似文献   

20.
The azapirone derivatives, including tandospirone and buspirone, are anxiolytics with 5-HT(1A) receptor agonistic action. Previous in vitro studies have suggested these azapirone derivatives are mainly metabolized by the cytochrome P450 (CYP) 3A4 isoform. The purpose of this study was to clarify the effects CYP3A4 inhibitors have on the anxiolytic action of tandospirone in a conditioned fear stress rat model. One day after fear conditioning, the orally administered tandospirone (30-100 mg/kg) significantly inhibited conditioned freezing in a dose-dependent manner. Co-administration of oral tandospirone and CYP3A4 inhibitors [ketoconazole (10 mg/kg, i.p.) and cimetidine (200 mg/kg, p.o.)] markedly inhibited conditioned freezing. Ketoconazole significantly increased the anxiolytic effect of buspirone similar to tandospirone. As with freezing behavior, the plasma concentrations of tandospirone and buspirone were increased by CYP3A4 inhibitors. This suggests the CYP3A4 isoform is involved in the metabolism of tandospirone, in vivo. Therefore, drugs with CYP3A4 inhibitory property may facilitate the anxiolytic effect of tandospirone when treating human anxiety disorders.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号