首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
Taste buds degenerate and disappear after transection of their sensory nerve supply, and they differentiate anew from epithelial cells (e.g., lingual) following regeneration of sensory but not motor or autonomic axons. A controversy exists as to whether only gustatory sensory nerves can cause buds to reform or whether any sensory nerve can perform this function. This issue arose because the results of cross-innervation studies revealed a specificity whereas grafting data demonstrated a nonspecificity. A retest of specificity in the cross-reinnervation situation was performed by reinnervating the denervated vallate papilla of adult rat tongue with a sensory branch of the vagus nerve that is not normally gustatory. It was found that taste buds disappeared and remained lost from acutely and chronically denervated papilla. However, some buds were found 90–100 days after reinnervation by the normally nongustatory vagus nerve branch. Transection of the regenerated vagus nerve resulted in the loss of innervation and the degeneration of taste buds from reinnervated papilla indicating that this nerve had supported buds. These results show that a normally nongustatory nerve can induce the formation of taste buds after its axons grow into appropriate tissue. It appears that the ability to support taste buds is a nonspecific, rather than a specific, property of sensory nerve.  相似文献   

4.
5.
Peripheral transganglionic transport of horseradish peroxidase (HRP) was used to label afferent fibers in the taste buds and lingual epithelium 2-12 weeks after chronic chorda tympani or combined chorda tympani-lingual nerve lesions. From 4-12 weeks after a chronic chorda tympani lesion, taste buds could be found. These were innervated by fibers from the ipsilateral lingual nerve. From 8-12 weeks after a chronic chorda tympani-lingual nerve lesion, nerve fibers from the contralateral lingual nerve could be found in a few taste buds on the denervated side of the tongue. Thus, collateral sprouting took place over the midline in this instance. These findings indicate that intact gustatory axons do not sprout into denervated taste buds, but trigeminal fibers in the lingual nerve do have this ability.  相似文献   

6.
Previous cross-reinnervation studies in situ by other investigators have demonstrated that cutaneous sensory and motor axons are incapable of trophically supporting mammalian taste buds. The present experiments examined the gustatory trophic potency of chemosensory and barosensory axons of the carotid sinus nerve. We report here that morphologically normal taste buds appeared on cat circumvallate papillae at 2 to 19 months after cross-anastomosis of the carotid sinus and lingual nerves, branches of the IXth cranial (glossopharyngeal) nerve. However, neurophysiologic and histologic data also indicated that, despite microsurgical procedures designed to direct regenerating lingual nerve fibers toward the carotid body and carotid sinus, some lingual axons escaped the anastomosis and subsequently grew within their native distal stump. The principal objective of this study was thus to determine whether foreign innervation of taste buds did indeed occur, or regenerated lingual nerve fibers were instead responsible for the newly formed buds. Our results showed that stray lingual fibers were not responsible for the reappearance of taste buds because transection of the original proximal lingual nerve stump (cross-anastomosed to the distal carotid sinus nerve stump) did not reduce the incidence of taste buds or the accumulation of radiolabeled material axoplasmically transported from the petrosal (sensory) ganglion. Autoradiography of labeled tissue samples showed that more than 90% of the taste buds were labeled at 8 and 9 days after lingual nerve transection. These data support the hypothesis that sensory axons in the carotid sinus nerve share an important trophic chemistry with gustatory neurons.  相似文献   

7.
8.
9.
10.
A modification of Hansson's histochemical technique was used to reveal carbonic anhydrase activity in mounted cryostat sections of the circumvallate papillae from rat tongue. An intensely positive reaction was found at the level of the neck of the papilla, associated with the taste buds. Lingual glands also contained abundant carbonic anhydrrase activity. The presence of carbonic anhydrase in taste buds, as well as our previous observation that it is found in a population of olfactory receptor cells, may indicate a role for the enzyme in gustative and olfactory phenomena.  相似文献   

11.
12.
13.
The developmental absence of brain-derived neurotrophic factor (BDNF) in null mutant mice caused three interrelated defects in the vallate gustatory papilla: sparse innervation, a reduction in the area of the gustatory epithelium, and fewer taste buds. On postnatal day 7, the stunted vallate papilla of bdnf null mutant mice was 30% narrower, the trench walls 35% reduced in area, and the taste buds 75% less abundant compared with wild-type controls. Quantitative assessment of innervation density was carried out to determine if the small trench walls and shortage of taste buds could be secondary consequences of the depletion of gustatory neurons. The diminished gustatory innervation was linearly associated with a reduced trench wall area (r=+0.94) and fewer taste buds (r=+0.96). Residual taste buds were smaller than normal and were innervated by a few surviving taste neurons. We conclude that BDNF-dependent taste neurons contribute to the morphogenesis of lingual gustatory epithelia and are necessary for both prenatal and postnatal mammalian taste bud formation. The gustatory system provides a conspicuous example of impaired sense organ morphogenesis that is secondary to sensory neuron depletion by neurotrophin gene null mutation.  相似文献   

14.
15.
In rats treated with capsaicin (CAP) as neonates, galanin-like (GA) immunoreactivity is markedly decreased in the trigeminal ganglion and the dorsal root ganglia as well as in the superficial layers of the dorsal spinal cord (laminae I and II), the substantia gelatinosa, the nucleus and tractus of the spinal trigeminal nerve and the nucleus commissuralis. Since CAP causes selective degeneration of primary sensory neurons of the C-fiber type and type B-cells of sensory ganglia, it is concluded that GA in CAP-sensitive primary sensory neurons represents a novel peptidergic system possibly involved in the transformation or modulation of peripheral nociceptive impulses. This system differs from the CAP-resistant GA-like neurons in other brain areas.  相似文献   

16.
Immunohistochemistry for delta-opioid receptor (DOR) was performed on the rat cranial sensory ganglia. The immunoreactivity was detected in 16%, 19% and 11% of neurons in the trigeminal, jugular and petrosal ganglia, respectively. The nodose ganglion was devoid of such neurons. DOR-immunoreactive (IR) neurons were mostly small to medium-sized (trigeminal, range = 62-851 microm(2), mean +/- SD = 359 +/- 175 microm(2); jugular, range = 120-854 microm(2), mean +/- SD = 409 +/- 196 microm(2); petrosal, range = 167-1146 microm(2), mean +/- SD = 423 +/- 233 microm(2)). Double immunofluorescence method revealed that all DOR-IR neurons were also immunoreactive for calcitonin gene-related peptide. The cutaneous and mucosal epithelia in the oro-facial region, tooth pulp, taste bud and carotid body were innervated by DOR-IR nerve fibers. In the brainstem, IR nerve terminals were located in the superficial medullary dorsal horn and dorsomedial part of the subnucleus oralis as well as the solitary tract nucleus. The present study suggests that DOR-IR neurons may be associated with nociceptive and/or chemoreceptive function in the cranial sensory ganglia.  相似文献   

17.
The presence of reduced nicotinamide adenine dinucleotide phosphate (NADPH)-diaphorase activity was studied histochemically in the sensory ganglia of the rat. Supraspinally, the trigeminal ganglion possessed only a few cells positively stained for NADPH-diaphorase, while a large number of positive neurons was found in the nodose ganglion. In the dorsal root ganglia, the distribution of positive cells showed a peculiar pattern in relation to spinal levels. Very minor populations (less than 2% of the total ganglionic cells) exhibited positive reaction in ganglia at levels ranging from the first cervical (C1) to fourth thoracic (T4) and from the second lumber (L2) through the entire sacral levels. In the middle to lower thoracic levels (from T5 to L1), however, abundant diaphorase-positive cells were observed. From these positive neurons it was possible to trace intensely stained nerve fibers. In the lower thoracic level, for example, dense positive fibers were seen in the ramus communicans. Retrograde tracing studies revealed that diaphorase-containing neurons in the lower thoracic level project at least partly to the gastric wall and the celiac ganglion. These results indicate that the diaphorase-positive ganglionic neurons in the thoracicolumbar levels may carry autonomic visceral afferent information. Double staining with NADPH-diaphorase histochemistry and peptide immunohistochemistry revealed that NADPH-diaphorase colocalizes with calcitonin gene-related peptide and substance P in many of these visceral afferent neurons.  相似文献   

18.
The anterior part of the tongue was examined in wild type and dystonia musculorum mice to assess the effect of dystonin loss on fungiform papillae. In the mutant mouse, the density of fungiform papillae and their taste buds was severely decreased when compared to wild type littermates (papilla, 67% reduction; taste bud, 77% reduction). The mutation also reduced the size of these papillae (17% reduction) and taste buds (29% reduction). In addition, immunohistochemical analysis demonstrated that the dystonin mutation reduced the number of PGP 9.5 and calbindin D28k-containing nerve fibers in fungiform papillae. These data together suggest that dystonin is required for the innervation and development of fungiform papillae and taste buds.  相似文献   

19.
Morphometric studies at autopsy of a patient with sensory neuropathy associated with small-cell lung carcinoma showed preferential loss of large-diameter sensory nerve cell bodies (fifth lumbar dorsal root ganglion), marked decrease of large myelinated fibers in the dorsal root and sural nerve, and almost total loss of myelinated fibers in the fasciculus gracilis.  相似文献   

20.
In mammals, hair cells and auditory neurons lack the capacity to regenerate, and damage to either cell type can result in hearing loss. Replacement cells for regeneration could potentially be made by directed differentiation of human embryonic stem (hES) cells. To generate sensory neurons from hES cells, neural progenitors were first made by suspension culture of hES cells in a defined medium. The cells were positive for nestin, a neural progenitor marker, and Pax2, a marker for cranial placodes, and were negative for alpha-fetoprotein, an endoderm marker. The precursor cells could be expanded in vitro in fibroblast growth factor (FGF)-2. Neurons and glial cells were found after differentiation of the neural progenitors by removal of FGF-2, but evaluation of neuronal markers indicated insignificant production of sensory neurons. Addition of bone morphogenetic protein 4 (BMP4) to neural progenitors upon removal of FGF-2, however, induced significant numbers of neurons that were positive for markers associated with cranial placodes and neural crest, the sources of sensory neurons in the embryo. Neuronal processes from hES cell-derived neurons made contacts with hair cells in denervated ex vivo sensory epithelia and expressed synaptic markers, suggesting the formation of synapses. In a gerbil model with a denervated cochlea, the ES cell-derived neurons engrafted in the auditory nerve trunk and sent out neurites that grew toward the auditory sensory epithelium. These data indicate that hES cells can be induced to form sensory neurons that have the potential to treat neural degeneration associated with sensorineural hearing loss.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号