首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
An increase in brain 5-HT levels is thought to be the key mechanism of action which results in an antidepressant response. It has been proven that selective serotonin re-uptake inhibitors are effective antidepressants but the delay to therapeutic onset of these agents is thought to be due to the time required for 5-HT1A, and possibly 5-HT1B, autoreceptor desensitisation. Therefore an agent incorporating 5-HT re-uptake inhibition coupled with 5-HT1A and/or 5-HT1B autoreceptor antagonism may provide a fast acting clinical agent. The current studies describe the in vitro profile of SB-649915 (6-[(1-{2-[(2-methylquinolin-5-yl)oxy]ethyl}piperidin-4-yl)methyl]-2H-1,4-benzoxazin-3(4H)-one), a novel compound which has high affinity for human recombinant 5-HT1A, 5-HT1B and 5-HT1D receptors (pKi values of 8.6, 8.0, 8.8, respectively) and the human recombinant 5-HT transporter (pKi value of 9.3). SB-649915 also displays high affinity for rat, guinea pig, mouse and marmoset native tissue 5-HT1A, 5-HT1B and 5-HT1D receptors and rat native tissue 5-HT transporters (pKi values>or=7.5). In functional [35S]GTPgammaS binding studies, SB-649915 (up to 1 microM) does not display intrinsic activity in HEK293 cells expressing human recombinant 5-HT1A receptors but acts as a partial agonist at human recombinant 5-HT1B and 5-HT1D receptors with intrinsic activity values of 0.3 and 0.7, respectively, as compared to the full agonist 5-HT. From Schild analysis, SB-649915 caused a concentration-dependent, rightward shift of 5-HT-induced stimulation of basal [35S]GTPgammaS binding in cells expressing human recombinant 5-HT1A or 5-HT1B receptors to yield pA2 values of 9.0 and 7.9, respectively. In electrophysiological studies in rat dorsal raphe nucleus, SB-649915 did not affect the cell firing rate up to 1 microM but attenuated (+)8-hydroxy-2-(di-n-propylamino) tetralin-induced inhibition of cell firing with an apparent pKb value of 9.5. SB-649915 (1 microM) significantly attenuated exogenous 5-HT-induced inhibition of electrically-stimulated [3H]5-HT release from guinea pig cortex. In studies designed to enhance endogenous 5-HT levels, and therefore increase tone at 5-HT1B autoreceptors, SB-649915 significantly potentiated [3H]5-HT release at 100 and 1000 nM. In LLCPK cells expressing human recombinant 5-HT transporters and in rat cortical synaptosomes, SB-649915 inhibited [3H]5-HT re-uptake with pIC50 values of 7.9 and 9.7, respectively. In summary, SB-649915 is a novel, potent 5-HT1A/1B autoreceptor antagonist and 5-HT re-uptake inhibitor in native tissue systems and represents a novel mechanism that could offer fast acting antidepressant action.  相似文献   

3.
5-HT1B autoreceptors are involved in the control of extracellular 5-HT levels from both the terminal and cell body regions of serotonergic neurones. In this study we report on the effect of a selective and potent 5-HT1B receptor inverse agonist, SB-236057-A (1'-ethyl-5-(2'-methyl-4'-(5-methyl- 1,3,4-oxadiazolyl-2-yl)biphenyl-4-carbonyl)-2,3,6,7-tetrahydros piro [furo[2,3-f]indole-3,4' -piperidine] hydrochloride), on extracellular 5-HT levels in the cortex and dentate gyrus of the freely-moving guinea-pig, using the technique of in vivo microdialysis. SB-236057-A had ca. 23% bioavailability following oral drug administration. In vivo hypothermia pharmacodynamic assays demonstrated it was brain penetrant with a duration of action in excess of 18 h. SB-236057-A (0.75 mg/kg p.o.) increased extracellular 5-HT levels in the dentate gyrus to a maximum of 167+/-7% of basal but had no effect in the frontal cortex. However, a small increase in cortical 5-HT levels (117+11% of basal) was evident at 2.5 mg/kg p.o. In addition, SB-236057-A (0.75 mg/kg and 2.5 mg/kg p.o.) antagonised the sumatriptan-induced inhibition of extracellular 5-HT levels in the guinea-pig frontal cortex. These differences were attributed to MRN-innervated regions (e.g. dentate gyrus) being more responsive to 5-HT1B receptor-mediated negative feedback than DRN-innervated regions (e.g. frontal cortex). In the dentate gyrus, the increase in 5-HT release induced by SB-236057-A (0.75 mg/kg p.o.) was comparable to that after 14 days of paroxetine (10 mg/kg p.o.) administration, reaching a maximum of 183+/-13% of basal. These data suggest that acute 5-HT1B receptor blockade, by virtue of increased 5-HT release in the dentate gyrus, may provide a rapidly acting antidepressant.  相似文献   

4.
This study utilised the selective 5-ht(5A) receptor antagonist, SB-699551-A (3-cyclopentyl-N-[2-(dimethylamino)ethyl]-N-[(4'-{[(2-phenylethyl)amino]methyl}-4-biphenylyl)methyl]propanamide dihydrochloride), to investigate 5-ht5A receptor function in guinea pig brain. SB-699551-A competitively antagonised 5-HT-stimulated [35S]GTPgammaS binding to membranes from human embryonic kidney (HEK293) cells transiently expressing the guinea pig 5-ht5A receptor (pA2 8.1+/-0.1) and displayed 100-fold selectivity versus the serotonin transporter and those 5-HT receptor subtypes (5-HT(1A/B/D), 5-HT2A/C and 5-HT7) reported to modulate central 5-HT neurotransmission in the guinea pig. In guinea pig dorsal raphe slices, SB-699551-A (1 microM) did not alter neuronal firing per se but attenuated the 5-CT-induced depression in serotonergic neuronal firing in a subpopulation of cells insensitive to the 5-HT1A receptor-selective antagonist WAY-100635 (100 nM). In contrast, SB-699551-A (100 or 300 nM) failed to affect both electrically-evoked 5-HT release and 5-CT-induced inhibition of evoked release measured using fast cyclic voltammetry in vitro. SB-699551-A (0.3, 1 and 3 mg/kg s.c.) did not modulate extracellular levels of 5-HT in the guinea pig frontal cortex in vivo. However, when administered in combination with WAY-100635 (0.3 mg/kg s.c.), SB-699551-A (0.3, 1 or 3 mg/kg s.c.) produced a significant increase in extracellular 5-HT levels. These studies provide evidence for an autoreceptor role for the 5-ht5A receptor in guinea pig brain.  相似文献   

5.
A novel compound, SB-272183 (5-Chloro-2, 3-dihydro-6-[4-methylpiperazin-1-yl]-1[4-pyridin-4-yl]napth-1-ylaminocarbonyl]-1H-indole), has been shown to have high affinity for human 5-HT(1A), 5-HT(1B) and 5-HT(1D) receptors with pK(i) values of 8.0, 8.1 and 8.7 respectively and is at least 30 fold selective over a range of other receptors. [(35)S]-GTPgammaS binding studies showed that SB-272183 acts as a partial agonist at human recombinant 5-HT(1A), 5-HT(1B) and 5-HT(1D) receptors with intrinsic activities of 0.4, 0.4 and 0.8 respectively, compared to 5-HT. SB-272183 inhibited 5-HT-induced stimulation of [(35)S]-GTPgammaS binding at human 5-HT(1A) and 5-HT(1B) receptors to give pA(2) values of 8.2 and 8.5 respectively. However, from [(35)S]-GTPgammaS autoradiographic studies in rat and human dorsal raphe nucleus, SB-272183 did not display intrinsic activity up to 10 microM but did block 5-HT-induced stimulation of [(35)S]-GTPgammaS binding. From electrophysiological studies in rat raphe slices in vitro, SB-272183 did not effect cell firing rate up to 1 microM but was able to attenuate (+)8-OH-DPAT-induced inhibition of cell firing to give an apparent pK(b) of 7.1. SB-272183 potentiated electrically-stimulated [(3)H]-5-HT release from rat and guinea-pig cortical slices at 100 and 1000 nM, similar to results previously obtained with the 5-HT(1B) and 5-HT(1D) receptor antagonist, GR127935. Fast cyclic voltammetry studies in rat dorsal raphe nucleus showed that SB-272183 could block sumatriptan-induced inhibition of 5-HT efflux, with an apparent pK(b) of 7.2, but did not effect basal efflux up to 1 microM. These studies show that, in vitro, SB-272183 acts as an antagonist at native tissue 5-HT(1A), 5-HT(1B) and 5-HT(1D) receptors.  相似文献   

6.
1. The presence of 5-HT(7) receptor mRNA and protein in 5-HT neurons suggests that this receptor may act as a 5-HT autoreceptor. In this study, the effect of the 5-HT(7) receptor antagonist, SB-269970 ((R)-1-[3-hydroxy phenyl)sulfonyl]-2-[2-(4-methyl-1-piperidinyl)ethyl]pyrrolidine), was investigated on 5-HT release in the guinea-pig and rat cortex and the rat dorsal raphe nucleus (DRN), using the techniques of in vitro [(3)H]-5-HT release or fast cyclic voltammetry, respectively. 2. Cortical slices were loaded with [(3)H]-5-HT and release was evoked by electrical stimulation. 5-CT inhibited the evoked release of [(3)H]-5-HT in a concentration-dependent manner. SB-269970 had no significant effect on [(3)H]-5-HT release while the 5-HT(1B) receptor antagonist, SB-224289 significantly potentiated [(3)H]-5-HT release. In addition, SB-269970 was unable to attenuate the 5-CT-induced inhibition of release while SB-224289 produced a rightward shift of the 5-CT response, generating estimated pK(B) values of 7.8 and 7.6 at the guinea-pig and rat terminal 5-HT autoreceptors respectively. 3. Rat DRN slices were electrically stimulated and the evoked 5-HT efflux detected by voltammetric analysis. 8-OH-DPAT inhibited evoked 5-HT efflux and was fully reversed by WAY 100635. SB-269970 had no effect on either 5-HT efflux per se or 8-OH-DPAT-induced inhibition of 5-HT efflux. In addition, 5-CT inhibited 5-HT efflux in a concentration-dependent manner. SB-269970 was unable to attenuate the 5-CT-induced inhibition of 5-HT efflux. 4. In conclusion, we were unable to provide evidence to suggest a 5-HT autoreceptor role for 5-HT(7) receptors. However, investigations with more selective 5-HT(7) receptor agonists are needed to confirm the data reported here.  相似文献   

7.
The selective 5-HT7 receptor antagonist radioligand, [3H]-SB-269970, has been reported to radiolabel the human cloned 5-HT7(a) receptor and 5-HT7 receptors in guinea pig cortex (thomas et al, 2000). Saturation analysis of [3H]-SB-269970 binding to mouse forebrain, rat cortex, pig cortex, marmoset cortex and human thalamus membranes was consistent with labelling a homogenous population of binding sites in each tissue. K(D) values for [3H]-SB-269970 binding in these tissues ranged from 0.9 to 2.3 nM, being similar to those reported for the human cloned and guinea pig cortex 5-HT7 receptors (1.3 and 1.7 nM, respectively). Bmax values for [3H]-SB-269970 binding to the mouse, rat, pig, marmoset and human brain membranes were 20, 30, 31, 14 and 68 fmoles x mg x protein(-1), respectively. For each species the profile of inhibition of [3H]-SB-269970 binding, using a number of 5-HT7 receptor agonists and antagonists, correlated well with that reported for the human cloned 5-HT7(a) receptor (correlation coefficients were 0.95, 0.94, 0.92, 0.95, 0.97 versus the mouse, rat, pig, marmoset and human tissues, respectively). In conclusion, [3H]-SB-269970 has been shown to radiolabel 5-HT7 receptors in rodent, pig and primate brain and represents a valuable tool with which to further characterise the distribution and function of 5-HT7 receptors in native tissues and elucidate their potential role in disease states.  相似文献   

8.
SB-616234-A possesses high affinity for human 5-HT1B receptors stably expressed in Chinese hamster ovary (CHO) cells (pKi 8.3 ± 0.2), and is over 100-fold selective for a range of molecular targets except h5-HT1D receptors (pKi 6.6 ± 0.1). Similarly, affinity (pKi) for rat and guinea pig striatal 5-HT1B receptors is 9.2 ± 0.1. In [35S]-GTPγS binding studies in the human recombinant cell line, SB-616234-A acted as a high affinity antagonist with a pA2 value of 8.6 ± 0.2 whilst providing no evidence of agonist activity in this system. In [35S]-GTPγS binding studies in rat striatal membranes, SB-616234-A acted as a high affinity antagonist with an apparent pKB of 8.4 ± 0.5, again whilst providing no evidence of agonist activity in this system. SB-616234-A (1 μM) potentiated electrically stimulated [3H]-5-HT release from guinea pig and rat cortical slices (S2/S1 ratios of 1.8 and 1.6, respectively). SB-616234-A (0.3–30 mg kg−1 p.o.) caused a dose-dependent inhibition of ex vivo [3H]-GR125743 binding to rat striatal 5-HT1B receptors with an ED50 of 2.83 ± 0.39 mg kg−1 p.o. Taken together these data suggest that SB-616234-A is a potent and selective 5-HT1B autoreceptor antagonist that occupies central 5-HT1B receptors in vivo following oral administration.  相似文献   

9.
Rationale Central 5-hydroxytryptamine (5-HT) release is regulated by inhibitory 5-HT autoreceptors, including 5-HT1A and 5-HT1B receptors.Objectives The purpose of this study was to use combinations of selective autoreceptor antagonists to elucidate the role of these receptors in controlling extracellular 5-HT in terminal areas.Methods Microdialysis was carried out in awake rats and guinea pigs to measure extracellular 5-HT in the frontal cortex and dentate gyrus. Using the selective 5-HT1A receptor antagonist, WAY-100635, and the selective 5-HT1B receptor antagonist, SB-224289, we have compared the roles of 5-HT1A and 5-HT1B autoreceptors in controlling extracellular 5-HT.Results SB-224289 (4 mg/kg i.p.) alone produced a significant 50% increase in extracellular 5-HT in the dentate gyrus of guinea pigs, but not in the frontal cortex of the same animals. Co-administration of WAY-100635 (0.3 mg/kg s.c.), did not change the SB-224289-induced increase in dentate gyrus 5-HT but did produce a significant augmentation (60% increase) of guinea pig frontal cortex 5-HT. In contrast, neither autoreceptor antagonist, alone or in combination, affected extracellular 5-HT in the frontal cortex or dentate gyrus of rats.Conclusions These data indicate that there is a species difference in the autoreceptor control of 5-HT release. Furthermore, in the guinea pig there is a divergence between dorsal and median raphe innervated brain regions. On the basis that antagonism of 5-HT1A and 5-HT1B receptors produced an immediate increase in extracellular 5-HT in multiple brain regions in the guinea pig, it is suggested that this might be a novel mechanism for achieving antidepressant efficacy.  相似文献   

10.
N-(2,5-Dibromo-3-fluorophenyl)-4-methoxy-3-piperazin-1-ylbenzenesulfonamide (SB-357134) potently inhibited [125I]SB-258585 and [3H]LSD binding in a HeLa cell line expressing human 5-HT(6) receptors (pK(i)=8.6 and 8.54, respectively). Furthermore, SB-357134 inhibited [125I]SB-258585 binding in human caudate--putamen and in rat and pig striatum membranes (pK(i)=8.82, 8.44, and 8.61, respectively). SB-357134 displayed over 200-fold selectivity for the 5-HT(6) receptor versus 72 other receptors and enzymes. 5-HT-stimulated cyclic AMP (cAMP) accumulation in human 5-HT(6) receptors was competitively antagonised by SB-357134 (pA(2)=7.63). SB-357134 inhibited ex vivo [125I]SB-258585 binding in the rat with an ED(50) of 4.9 +/- 1.3 mg/kg po, 4 h postdose. In the rat maximal electroshock seizure threshold (MEST) test, SB-357134 produced a potent and dose-dependent increase in seizure threshold, with a minimum effective dose of 0.1 mg/kg po. At 10 mg/kg po, maximum activity occurred between 4 and 6 h postdose. Good exposure was observed with SB-357134 at 10 mg/kg po, reaching maximal blood and brain concentrations of 4.3 +/- 0.2 and 1.3 +/- 0.06 microM, respectively, 1 h postdose. In addition, SB-357134 (10 mg/kg po) enhanced memory and learning following chronic administration (twice a day for 7 days) in the rat water maze. Overall, these studies demonstrate that SB-357134 is a potent, selective, brain penetrant, and orally active 5-HT(6) receptor antagonist.  相似文献   

11.
SB-258585 (4-Iodo-N-[4-methoxy-3-(4-methyl-piperazin-1-yl)-phenyl]-benzen esulphonamide) is a high affinity ligand at 5-HT(6) receptors. It displays over 100 fold selectivity for the 5-HT(6) receptor over all other 5-HT receptors tested so far. SB-258585 has been radiolabelled, to high specific activity, for its characterization as a 5-HT(6) receptor selective radioligand. [(125)I]-SB-258585 bound, with high affinity, to a single population of receptors in a cell line expressing human recombinant 5-HT(6) receptors. Kinetic and saturation binding experiments gave pK(D) values of 9.01+/-0.09 and 9.09+/-0.02, respectively. In membranes derived from rat or pig striatum and human caudate putamen, [(125)I]-SB-258585 labelled a single site with high levels (>60%) of specific binding. Saturation analysis revealed pK(D) values of 8.56+/-0.07 for rat, 8.60+/-0.10 for pig and 8.90+/-0.02 for human. B(max) values for the tissues ranged from 173+/-23 and 181+/-25 fmol mg(-1) protein in rat and pig striatum, respectively, to 215+/-41 fmol mg(-1) protein in human caudate putamen. The pK(i) rank order of potency for a number of compounds, determined in competition binding assays with [(125)I]-SB-258585, at human caudate putamen membranes was: SB-271046>SB-258585>SB-214111>methiothepin>clozapine>5-Me-OT>5-HT>Ro 04-6790>mianserin>ritanserin=amitriptyline>5-CT>mesulergine. Similar profiles were obtained from pig and rat striatal membranes and recombinant 5-HT(6) receptors; data from the latter correlated well with [(3)H]-LSD binding. Thus, [(125)I]-SB-258585 is a high affinity, selective radioligand which can be used to label both recombinant and native 5-HT(6) receptors and will facilitate further characterization of this receptor subtype in animal and human tissues.  相似文献   

12.
In rat brain cortex slices preincubated with [3H]5-HT, the potencies of 17 5-HT receptor agonists to inhibit the electrically evoked 3H overflow and the affinities of 13 antagonists (including several beta-adrenoceptor blocking agents) to antagonize competitively the inhibitory effect of unlabelled 5-HT on evoked 3H overflow were determined. The affinities of the compounds for 5-HT1B and 5-HT2 binding sites in rat brain cortex membranes (labelled by [125I]cyanopindolol = [125I]-CYP in the presence of 30 mumol/l isoprenaline and [3H]ketanserin, respectively), for 5-HT1A binding sites in pig and rat brain cortex membranes (labelled by [3H]8-hydroxy-2-(di-n-propylamino)tetralin = [3H]8-OH-DPAT) and for 5-HT1C binding sites in pig choroid plexus membranes (labelled by [3H]mesulergine) were also determined. The affinities of the drugs for the various 5-HT recognition sites ranged over 4-5 log units (the functional experiments revealed the same range of differences between the drugs). There were no significant correlations between the affinities of the drugs at 5-HT1C and 5-HT2 binding sites and their potencies or affinities, determined for the 5-HT autoreceptors. In contrast, significant correlations were found between the potencies or affinities of the drugs for the autoreceptors and their affinities at 5-HT1A or 5-HT1B binding sites; the best correlations were obtained with the 5-HT1B binding site. Some of the drugs investigated were not included in the correlation since their agonistic or antagonistic effects on the autoreceptors were weak and pEC30 or apparent pA2 values could not be determined (less than 5.5).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
1. The aims of the present study were (i) to characterize further the pharmacology of 5-HT1D autoreceptors modulating 5-HT release in guinea-pig mesencephalic raphe, hippocampus and frontal cortex; (ii) to determine whether 5-HT1D receptors in the mesencephalic raphe are located on 5-HT neurones; (iii) to determine whether 5-HT1D autoreceptors are coupled to G proteins; and (iv) to assess their sensitivity following long-term 5-HT reuptake blockade and inhibition of type-A monoamine oxidase. 2. In mesencephalic raphe, hippocampus and frontal cortex slices, the 5-HT1D/1B receptor agonist, sumatriptan and the 5-HT1 receptor agonist, 5-methoxytryptamine (5-MeOT) but not the 5-HT1B receptor agonist, CP93129, inhibited electrically the evoked release of [3H]-5-HT in a concentration-dependent manner. This effect was antagonized by the 5-HT1D/1B receptor antagonist GR127935 in the three structures, but not by the 5-HT1A receptor antagonist, (+)-WAY100635 in mesencephalic raphe slices. These results confirm the presence of functional 5-HT1D autoreceptors controlling 5-HT release within the mesencephalic raphe as well as in terminal regions. 3. The inhibitory effect of sumatriptan on K(+)-evoked release of [3H]-5-HT was not reduced by the addition of the Na+ channel blocker, tetrodotoxin to the superfusion medium, suggesting that these 5-HT1D receptors in the mesencephalic raphe are located on 5-HT neurones and may be considered autoreceptors. 4. The in vitro treatment with the alkylating agent N-ethylmaleimide (NEM) was used to determine whether these 5-HT1D autoreceptors are coupled to G proteins. The inhibitory effect of sumatriptan on electrically evoked release of [3H]-5-HT was attenuated in NEM-pretreated slices from mesencephalic raphe, hippocampus and frontal cortex, indicating that the 5-HT1D autoreceptors activated by sumatriptan are coupled to G proteins in these three structures. Taken together with our previous results, this suggests that, in addition to the 5-HT1D autoreceptor activated by sumatriptan, another subtype of 5-HT autoreceptor is activated by 5-MeOT in the hippocampus. 5. Following a 3-week treatment with the selective 5-HT reuptake inhibitor, paroxetine (10 mg kg-1 day-1) and a 48 h washout period, the electrically evoked release of [3H]-5-HT was enhanced in mesencephalic raphe, hippocampus and frontal cortex slices. There was an attenuation of the capacity of sumatriptan to inhibit the evoked release of [3H]-5-HT from mesencephalic raphe slices but not from frontal cortex and hippocampus slices. Only in the latter structure was the suppressant effect of 5-MeOT attenuated. After a 3-week treatment with the reversible type-A monoamine oxidase inhibitor, befloxatone (0.75 mg kg-1 day-1) and 48 h washout period, the effectiveness of sumatriptan and 5-MeOT on the evoked release of [3H]-5-HT was unaltered in the same brain structures. 6. The enhancement of [3H]-5-HT release by long-term paroxetine treatment is possibly due to a desensitization of 5-HT1D autoreceptors activated by sumatriptan in mesencephalic raphe and by terminal 5-HT autoreceptors activated by 5-MeOT in hippocampus. In the case of the frontal cortex, it appears that 5-MeOT and sumatriptan may act on the same 5-HT1D autoreceptor which is not desensitized either after paroxetine or befloxatone treatment, as previously reported.  相似文献   

14.
Human cerebral cortical slices and synaptosomes, guinea-pig cerebral cortical slices and human right atrial appendages were used to study the effects of SB-216641, a preferential h5-HT1B receptor ligand, and of BRL-15572, a preferential h5-HT1D receptor ligand, on the presynaptic h5-HT1B and h5-HT1B-like autoreceptors in the human and guinea-pig brain preparations, respectively, and on the presynaptic h5-HT1D heteroreceptors in the human atrium. The brain preparations, preincubated with [3H]serotonin ([3H]5-HT), and the segments of atrial appendages, preincubated with [3H]noradrenaline, were superfused with modified Krebs’ solution and tritium overflow was evoked electrically (human and guinea-pig cerebral cortex slices and human atrial appendages) or by high K+ (human cerebral cortex synaptosomes). The electrically evoked tritium overflow from guinea-pig cerebral cortex slices was reduced by the 5-HT receptor agonist 5-carboxamidotryptamine (5-CT). This effect was not modified by BRL-15572 (2μM; concentration 154 times higher than its Ki at h5-HT1D receptors) but was antagonized by SB-216641 (0.1μM; concentration 100 times higher than its Ki at h5-HT1B receptors; apparent pA2 8.45). SB-216641 (0.1μM) by itself facilitated, whereas BRL-15572 (2μM) did not affect, the evoked overflow. In human cerebral cortex slices SB-216641 (0.1μM) also facilitated, and BRL-15572 (2μM) again failed to affect, the electrically evoked tritium overflow. In human cerebral cortical synaptosomes, 5-CT reduced the K+-evoked tritium overflow. This response was unaffected by BRL-15572 (300nM) but antagonized by SB-216641 (15nM; drug concentrations 23 and 15 times higher than their Ki at h5-HT1D and h5-HT1B receptors, respectively). Both drugs, given alone, did not modify the K+-evoked tritium overflow. In human atrial appendages, the electrically evoked tritium overflow was inhibited by 5-HT in a manner susceptible to antagonism by BRL-15572 (300nM; 23 times Ki at h5-HT1D receptors) but not by SB-216641 (30nM; 30 times Ki at h5-HT1B receptors). Both drugs by themselves did not change the electrically evoked tritium overflow. In conclusion, SB-216641 behaves as a preferential antagonist at native human 5-HT1B receptors and BRL-15572 as a preferential antagonist at native human 5-HT1D receptors. These compounds are clearly useful tools for the differentiation between human 5-HT1B and 5-HT1D receptors in functional studies. Received: 14 March 1997 / Accepted: 18 May 1997  相似文献   

15.
SB-271046, potently displaced [(3)H]-LSD and [(125)I]-SB-258585 from human 5-HT(6) receptors recombinantly expressed in HeLa cells in vitro (pK(i) 8.92 and 9.09 respectively). SB-271046 also displaced [(125)I]-SB-258585 from human caudate putamen and rat and pig striatum membranes (pK(i) 8.81, 9.02 and 8.55 respectively). SB-271046 was over 200 fold selective for the 5-HT(6) receptor vs. 55 other receptors, binding sites and ion channels. In functional studies on human 5-HT(6) receptors SB-271046 competitively antagonized 5-HT-induced stimulation of adenylyl cyclase activity with a pA(2) of 8.71. SB-271046 produced an increase in seizure threshold over a wide-dose range in the rat maximal electroshock seizure threshold (MEST) test, with a minimum effective dose of < or =0.1 mg kg(-1) p.o. and maximum effect at 4 h post-dose. The level of anticonvulsant activity achieved correlated well with the blood concentrations of SB-271046 (EC(50) of 0.16 microM) and brain concentrations of 0.01-0.04 microM at C(max). These data, together with the observed anticonvulsant activity of other selective 5-HT(6) receptor antagonists, SB-258510 (10 mg kg(-1), 2-6 h pre-test) and Ro 04-6790 (1-30 mg kg(-1), 1 h pre-test), in the rat MEST test, suggest that the anticonvulsant properties of SB-271046 are likely to be mediated by 5-HT(6) receptors. Overall, these studies demonstrate that SB-271046 is a potent and selective 5-HT(6) receptor antagonist and is orally active in the rat MEST test. SB-271046 represents a valuable tool for evaluating the in vivo central function of 5-HT(6) receptors.  相似文献   

16.
1. The purpose of the present study was to relate the effects of the novel drug, anpirtoline, on 5-hydroxytryptamine (5-HT) receptor subtypes to its antinociceptive and antidepressant-like actions in rodents. 2. Binding assays with rat brain membranes have shown that anpirtoline bound with a much higher affinity to 5-HT1B receptor (Ki = 28 nM) than to 5-HT1A (Ki = 150 nM) and 5-HT2 (Ki = 1.49 microM) receptors. 3. Like 5-HT, anpirtoline concentration-dependently inhibited forskolin-stimulated adenylate cyclase activity in homogenates from the rat substantia nigra. Both effects were not additive, and could be prevented by 5-HT1B receptor antagonists such as propranolol and penbutolol. 4. In superfused rat and pig brain cortex slices preincubated with [3H]-5-HT, the electrically evoked tritium overflow was inhibited by anpirtoline and 5-HT. Whereas 5-HT was equipotent in both tissues (EC50 = 69 nM), anpirtoline was markedly less potent in pig brain cortex slices (EC50 = 1190 nM) than in rat brain cortex slices (EC50 = 55 nM). The concentration-response curve for anpirtoline was shifted to the right by metitepine in both preparations. 5. In the social behaviour deficit test, anpirtoline and trifluoromethylphenyl-piperazine were effective in reversing the isolation-induced impairments in mice, an effect shown only by compounds with agonist properties at the 5-HT1B receptor. 6. In the electrostimulated pain test using mice, anpirtoline dose-dependently increased the pain threshold with an ED50 of 0.52 mg kg-1, i.p. The antinociceptive activity of anpirtoline was abolished by pretreatment with cyproheptadine or propranolol.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
The present study investigated the role of the 5-hydroxytryptamine (5-HT, serotonin)1D receptor as a presynaptic autoreceptor in the guinea pig. In keeping with the literature, the 5-HT1B selective antagonist, 1'-methyl-5-[[2'-methyl-4'-(5-methyl-1,2,4-oxadiazol-3-yl)biphenyl-4-yl]carbonyl]-2,3,6,7-tetrahydrospiro [furo[2,3-f]indole-3,4'-piperidine]oxalate (SB224289) potentiated [3H]5-HT outflow from pre-labelled slices of guinea pig cerebral cortex confirming its role as a presynaptic autoreceptor in this species. In addition, the 5-HT1D receptor-preferring antagonists, 1-[2-[4-(6-fluoro-1H-indol-3-yl)-3,6-dihydro-2H-pyridin-1-yl]-ethyl]-3-pyridin-4-yl-methyl-tetrahydro-pyrimidin-2-one (LY367642), (R)-1-[2-(4-(6-fluoro-1H-indol-3-yl-)-3,6-dihydro-1(2H)-pyridinyl)ethyl]-3,4-dihydro-1H-2-benzopyran-6-carboxamide (LY456219), (S)-1-[2-(4-(6-fluoro-1H-indol-3-yl-)-3,6-dihydro-1(2H)-pyridinyl)ethyl]-3,4-dihydro-1H-2-benzopyran-6-carboxamide (LY456220) and 1-[2-[4-(4-fluoro-benzoyl)-piperidin-1-yl]-ethyl]-3,3-dimethyl-1,2-dihydro-indol-2-one (LY310762), potentiated [3H]5-HT outflow from this preparation with potencies (EC50 values=31-140 nM) in the same range as their affinities for the guinea pig 5-HT1D receptor (Ki values=100-333 nM). The selective 5-HT1D receptor agonist, R-2-(4-fluoro-phenyl)-2-[1-[3-(5-[1,2,4]triazol-4-yl-1H-indol-3-yl)-propyl]-piperidin-4-ylamino]-ethanol dioxylate (L-772,405), inhibited [3H]5-HT outflow. In microdialysis studies, administration of either SB224289 or LY310762 at 10 mg/kg by the intraperitoneal (i.p.) route, potentiated the increase in extracellular 5-HT concentration produced by a maximally effective dose of the selective serotonin re-uptake inhibitor, fluoxetine (at 20 mg/kg i.p.). In addition, the 5-HT1D receptor-preferring antagonist and 5-HT transporter inhibitor, LY367642 (at 10 mg/kg i.p.), elevated extracellular 5-HT concentrations to a greater extent than a maximally effective dose of fluoxetine. It is concluded that the 5-HT1D receptor, like the 5-HT1B receptor, may be a presynaptic autoreceptor in the guinea pig.  相似文献   

18.
The pharmacological profile of SK-951 ((-)4-amino-N-[2-(1-azabicyclo[3.3.0]octan-5-yl) ethyl]-5-chloro-2,3-dihydro-2-methylbenzo[b]furan-7-carboxamide hemifumarate) was identified in relation to serotonin 5-HT3 and 5-HT4 receptors by the receptor binding assay and functional studies. The receptor binding assay showed that SK-951 bound to the 5-HT3 receptor with a high affinity, to the 5-HT4 receptor with relatively higher affinity and to the muscarinic M2 receptor with a low affinity, but not to dopamine D1 and D2 and serotonin 5-HT1 and 5-HT2 and muscarinic M1 and M3 receptors. SK-951 caused relaxations of tunica muscularis mucosae preparations from rat esophagus which were precontracted with carbachol, and the effects were antagonized by GR113808, a selective 5-HT4 antagonist. In the longitudinal muscle with myenteric plexus (LMMP) preparations from guinea pig ileum, SK-951 enhanced the electrically-stimulated contraction of preparations in which the 5-HT1, 5-HT2 and 5-HT3 receptors were blocked, and it enhanced the electrically-stimulated release of [3H]acetylcholine (ACh). These effects of SK-951 were antagonized by GR113808. SK-951 inhibited the 5-HT3 receptor-mediated contractions. These results indicate that SK-951 possesses properties of an agonist for the 5-HT4 receptor and an antagonist for the 5-HT3 receptor. Thus, SK-951 is a new and potent 5-HT4-receptor agonist and causes contractions of guinea pig ileum mediated by enhancement of ACh release via the 5-HT4 receptor.  相似文献   

19.
Rationale The delay in onset and treatment resistance of subpopulations of depressed patients to conventional serotonin reuptake inhibitors has lead to new drug development strategies to produce agents with improved antidepressant efficacy. Objectives We report the in vivo characterization of the novel 5-HT1A/1B autoreceptor antagonist/5-HT transporter inhibitor (6-[(1-{2-[(2-methyl-5-quinolinyl)oxy]ethyl}-4-piperidinyl)methyl]-2H-1,4-benzoxazin-3(4H)-one), SB-649915-B. Materials and methods Ex vivo binding was used to ascertain 5-HT1A receptor and serotonin transporter occupancy. 8-OH-DPAT-induced hyperlocomotion and SKF-99101-induced elevation of seizure threshold were used as markers of central blockade of 5-HT1A and 5-HT1B receptors, respectively. In vivo electrophysiology in the rat dorsal raphe and microdialysis in freely moving guinea pigs and rats were used to evaluate the functional outcome of SB-649915-B. Results SB-649915-B (1–10 mg/kg p.o.) produced a dose-related inhibition of 5-HT1A receptor radioligand binding and inhibited ex vivo [3H]5-HT uptake in both guinea pig and rat cortex. SB-649915-B (0.1–10 mg/kg p.o.) reversed both 8-OH-DPAT-induced hyperlocomotor activity and SKF-99101-induced elevation of seizure threshold in the rat, demonstrating in vivo blockade of both 5-HT1A and 5-HT1B receptors, respectively. SB-649915-B (0.1–3 mg/kg i.v.) produced no change in raphe 5-HT neuronal cell firing per se but attenuated the inhibitory effect of 8-OH-DPAT. Acute administration of SB-649915-B resulted in increases (approximately two- to threefold) in extracellular 5-HT in the cortex of rats and the dentate gyrus and cortex of guinea pigs. Conclusions Based on these data, one may speculate that the 5-HT autoreceptor antagonist/5-HT transport inhibitor SB-649915-B will have therapeutic efficacy in the treatment of affective disorders with the potential for a faster onset of action compared to current selective serotonin reuptake inhibitors.  相似文献   

20.
This study evaluated the possible involvement of 5-HT(2B) receptors in long-lasting hypotension to 5-hydroxytryptamine (5-HT), which is predominantly mediated by 5-HT7 receptors, in anaesthetised vagosympathectomized rats. Intravenous injections of 5-HT and 5-carboxamidotryptamine (5-CT) elicited a dose-dependent hypotension that was dose-dependently antagonised by (R)-1-[(3-hydroxyphenyl)sulfonyl]-2-[2-(4-methyl-1-piperidinyl) ethyl] pyrrolidine (SB-269970; a selective 5-HT7 receptor antagonist), but not by saline. Interestingly, alpha-methyl-5-(2-thienylmethoxy)-1H-indole-3-ethanamine (BW723C86; a 5-HT(2B) receptor agonist) produced vasopressor responses without affecting hypotension to 5-HT. These results suggest that hypotension to 5-HT and 5-CT is mainly mediated by 5-HT7 receptors, whilst the role of 5-HT(2B) receptors seems unlikely.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号