首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Abstract: Hofmann rearrangement of Nα‐Boc‐l ‐Gln‐OH mediated by a polymer‐supported hypervalent iodine reagent poly[(4‐diacetoxyiodo)styrene] (PSDIB) in water afforded Nα‐Boc‐l ‐α,γ‐diaminobutyric acid (Boc‐Dab‐OH, 1 ) in 87% yield. Nα‐Z‐derivative (Z‐Dab‐OH, 2 ) was prepared with PSDIB in 83% yield. Since the reaction of Nα‐Fmoc‐Gln‐OH by this procedure did not proceed because of the insolubility of Fmoc‐Gln‐OH in aqueous media, we synthesized Fmoc‐Dab(Boc)‐OH ( 5 ) from 2 in 54% yield. Polymyxin B heptapeptide (PMBH) which contains four Dab residues was successfully synthesized in a solution‐phase synthesis.  相似文献   

2.
Abstract: Two complete series of N‐protected oligopeptide esters to the pentamer level from 1‐amino‐cyclodecane‐1‐carboxylic acid (Ac10c), an α‐amino acid conformationally constrained through a medium‐ring Cαi ? Cαi cyclization, and either the l ‐Ala or Aib residue, along with the N‐protected Ac10c monomer and homo‐dimer alkylamides, were synthesized using solution methods and fully characterized. The preferred conformation of these model peptides was assessed in deuterochloroform solution using FT‐IR absorption and 1H NMR techniques. Furthermore, the molecular structures of two derivatives (Z‐Ac10c‐OH and Fmoc‐Ac10c‐OH) and two peptides (the dipeptide ester Z‐Ac10c‐l ‐Phe‐OMe and the tripeptide ester Z‐Aib‐Ac10c‐Aib‐OtBu) were determined in the crystal state using X‐ray diffraction. The experimental results support the view that β‐bends and 310‐helices are preferentially adopted by peptides rich in Ac10c, the third largest cycloaliphatic Cα,α‐disubstituted glycine known. This investigation allowed us to complete a detailed conformational analysis of the whole 1‐amino‐cycloalkane‐1‐carboxylic acid (Acnc, with n = 3–12) series, which represents the prerequisite for our recent proposal of the ‘Acnc scan’ concept.  相似文献   

3.
Abstract: Native chemical ligation has proven to be a powerful method for the synthesis of small proteins and the semisynthesis of larger ones. The essential synthetic intermediates, which are C‐terminal peptide thioesters, cannot survive the repetitive piperidine deprotection steps of Nα‐9‐fluorenylmethoxycarbonyl (Fmoc) chemistry. Therefore, peptide scientists who prefer to not use Nαt‐butyloxycarbonyl (Boc) chemistry need to adopt more esoteric strategies and tactics in order to integrate ligation approaches with Fmoc chemistry. In the present work, side‐chain and backbone anchoring strategies have been used to prepare the required suitably (partially) protected and/or activated peptide intermediates spanning the length of bovine pancreatic trypsin inhibitor (BPTI). Three separate strategies for managing the critical N‐terminal cysteine residue have been developed: (i) incorporation of Nα‐9‐fluorenylmethoxycarbonyl‐S‐(N‐methyl‐N‐phenylcarbamoyl)sulfenylcysteine [Fmoc‐Cys(Snm)‐OH], allowing creation of an otherwise fully protected resin‐bound intermediate with N‐terminal free Cys; (ii) incorporation of Nα‐9‐fluorenylmethoxycarbonyl‐S‐triphenylmethylcysteine [Fmoc‐Cys(Trt)‐OH], generating a stable Fmoc‐Cys(H)‐peptide upon acidolytic cleavage; and (iii) incorporation of Nαt‐butyloxycarbonyl‐S‐fluorenylmethylcysteine [Boc‐Cys(Fm)‐OH], generating a stable H‐Cys(Fm)‐peptide upon cleavage. In separate stages of these strategies, thioesters are established at the C‐termini by selective deprotection and coupling steps carried out while peptides remain bound to the supports. Pilot native chemical ligations were pursued directly on‐resin, as well as in solution after cleavage/purification.  相似文献   

4.
Abstract: A spontaneously folding β‐hairpin peptide (Lys‐Lys‐Tyr‐Thr‐Val‐Ser‐Ile‐Asn‐Gly‐Lys‐Lys‐Ile‐Thr‐Val‐Ser‐Ile) and related cyclic (cyclo‐Gly‐Lys‐Tyr‐Ile‐Asn‐Gly‐Lys‐Ile‐Ile‐Asn) and linear (Ser‐Ile‐Asn‐Gly‐Lys) controls were studied to determine the effects of various factors on secondary structure. Secondary structure was evaluated using circular dichroism (CD) and 1D and 2D 1H nuclear magnetic resonance (NMR). The effects of chemical modifications in the peptide and various solution conditions were investigated to determine their impact on peptide structure. The β‐hairpin peptide displayed a CD minimum at 216 nm and a TOCSY i + 1 ? i + 2 and i + 2 ?i + 3 interaction, confirming the expected structure. Using NMR α‐proton (H) chemical shifts, the extents of folding of the β‐hairpin and linear control were estimated to be 51 and 25% of the cyclic control (pH 4, 37 °C), which was taken to be maximally folded. Substitution of iso‐aspartic acid for Asn reduced the secondary structure dramatically; substitution of aspartic acid for Asn also disrupted the structure. This result suggests that deamidation in unconstrained β‐turns may have adverse effects on secondary structure. N‐terminal acetylation and extreme pH conditions also reduced structure, while the addition of methanol increased structure.  相似文献   

5.
Synthesis of [15N4] purine labeled cytokinine glycosides derived from zeatins and topolins containing a 9‐β‐d , 7‐β‐d ‐glucopyranosyl, or 9‐β‐d ‐ribofuranosyl group is described. These N6‐substituted adenine derivatives are intended as internal analytic standards for phytohormone analysis. All labeled compounds were prepared from 6‐chloro[15N4]purine ( 1 ). The equilibrium reaction of 1 with acetobromo‐α‐d ‐glucose gave isomeric 7‐β‐d ( 3 ) and 9‐β‐d ( 4 ) chloro glucosyl precursors, which were treated with the corresponding amines to get desired labeled cytokinin 7‐β‐d ( 6 ) and 9‐β‐d ( 5 ) glucopyranosides. Cytokinins containing 9‐β‐d ‐ribofuranosyl group ( 8 ) were obtained by direct enzymatic transglycosylation reaction of cytokinins ( 7 ) prepared from 6‐chloro[15N4] purine ( 1 ).  相似文献   

6.
Abstract: A new and efficient method for the synthesis ofNα‐Fmoc‐/Boc‐/Z‐β‐amino acids using the two‐step Arndt‐Eistert approach is described. Fmoc‐/Boc‐/Z‐α‐Amino acid fluorides were used for the acylation of diazomethane synthesizing Fmoc‐/Boc‐/Z‐α‐aminodiazoketones as crystalline solids with good yield and purity. They were then converted to the corresponding β‐amino acids using PhCOOAg/dioxane/H2O.  相似文献   

7.
The first total synthesis of benzophenone O‐glycosides (iriflophenone 2‐O‐α‐L ‐rhamnopyranoside: 1 and aquilarisinin: 2 ) isolated from the leaves of Aquilaria sinensis and related new derivatives ( 3 – 12 ) was accomplished through suitable protecting group manipulations and glycosylation starting from commercially available L ‐rhamnose, D ‐glucose, D ‐galactose, D ‐mannose, D ‐xylose, and 1,3,5‐trihydroxybenzene. All synthesized benzophenone O‐glycosides were evaluated for their inhibitory activities against α‐glucosidase. Of these, benzophenone O‐glycosides 4 and 10 exhibited the most potent inhibitory activity in vitro against α‐glucosidase with IC50 values of 168.7 ± 13.9 and 210.1 ± 23.9 µM, respectively, when compared with that of the positive control acarbose with an IC50 value of 569.3 ± 49.7 µM.  相似文献   

8.
Analogues of the opioid peptides H‐Tyr‐c[d ‐Cys‐Gly‐Phe(pNO2)‐d ‐Cys]NH2 (non‐selective), H‐Tyr‐d ‐Arg‐Phe‐Lys‐NH2 (μ‐selective) and dynorphin A(1‐11)‐NH2 (κ‐selective) containing 4′‐[N‐((4′‐phenyl)‐phenethyl)carboxamido]phenylanine (Bcp) in place of Tyr1 were synthesized. All three Bcp1‐opioid peptides retained high μ opioid receptor binding affinity, but showed very significant differences in the opioid receptor selectivity profiles as compared with the corresponding Tyr1‐containing parent peptides. The cyclic peptide H‐Bcp‐c[d ‐Cys‐Gly‐Phe(pNO2)‐d ‐Cys]NH2 turned out to be an extraordinarily potent, μ‐selective opioid agonist, whereas the Bcp1‐analogue of dynorphin A(1‐11)‐NH2 displayed partial agonism at the μ receptor. The obtained results suggest that the large biphenylethyl substituent contained in these compounds may engage in a hydrophobic interaction with a receptor subsite and thereby may play a role in the ligand’s ability to induce a specific receptor conformation or to bind to a distinct receptor conformation in a situation of conformational receptor heterogeneity.  相似文献   

9.
Abstract: Previous research has shown that the immunomodulatory peptide α‐melanocyte‐stimulating hormone (α‐MSH) and its carboxy‐terminal tripeptide KPV (Lys‐Pro‐Val α‐MSH11?13) have antimicrobial influences. By inserting a Cys‐Cys linker between two units of KPV, we designed the dimer [Ac‐CKPV]2 that showed excellent candidacidal effects in pilot tests and was the subject of further investigations. [Ac‐CKPV]2 was active against azole‐resistant Candida spp. Therefore, the molecule appeared a promising candidate for therapy of fungal infections and was the subject of a structural study. 1H‐NMR and restrained mechanic and dynamic calculations suggest that the peptide adopts an extended backbone structure with a β‐turn‐like structure. These results open a pathway to development of additional novel compounds that have candidacidal effects potentially useful against clinical infections.  相似文献   

10.
Abstract: 2‐Amino‐9H‐pyrido[2,3‐b]indole (AαC) and 2‐amino‐3‐methyl‐9H‐pyrido[2,3‐b]indole (MeAαC) are two mutagenic and carcinogenic heterocyclic amines formed during ordinary cooking. In this study, we have investigated the in vitro metabolism of tritium‐labelled AαC and MeAαC in hepatic microsomes from human pools, rats induced with polychlorinated biphenyl (PCB) (Aroclor 1254) and control rats. The microsomes were incubated with AαC and MeAαC and the detoxified and activated metabolites of AαC and MeAαC were separated and characterised by HPLC‐MS. AαC is metabolised to two major and three minor detoxified metabolites, while MeAαC is metabolised to three major and one minor detoxified metabolites. Some AαC and MeAαC are activated by oxidation to the reactive metabolites N2‐OH‐AαC and N2‐OH‐MeAαC, respectively. These reactive N2‐OH‐metabolites react partially in the incubation system with formation of protein adducts, dimers and the parent compound by reduction of the N2‐OH‐metabolites. The distribution between the detoxified and activated metabolites in the different types of hepatic microsomes showed same pattern for both AαC and MeAαC. In PCB‐induced rat microsomes, the major part of the metabolites are detoxified, only a little amount is activated. In control rat microsomes there is a fifty‐fifty distribution between detoxification and activation, while the major part of the metabolites from the human microsomes are activated and reacts to form dimers and protein adducts. These data show that, in human hepatic microsomes compared to rat hepatic microsomes, a major part of AαC and MeAαC are metabolically activated to the reactive N2‐OH‐AαC and N2‐OH‐MeAαC.  相似文献   

11.
Abstract The 2‐(4‐nitrophenylsulfonyl)ethoxycarbonyl (Nsc) group is an alternative to Fmoc for Nα‐protection in solid‐phase peptide synthesis. Nsc‐amino acids may be particularly suitable for automatic synthesizers, in which the amino acids are stored in solution, and the incorporation of residues prone to racemization such as Cys and His. Owing to the hydrophilicity of the Nsc group, these derivatives are useful for the preparation of protected peptides in convergent solid‐phase peptide synthesis strategies.  相似文献   

12.
Abstract: This study towards the development of sulfurane‐based coupling agents shows that bis‐[α,α‐bis(trifluoromethyl)‐benzyloxy]diphenylsulfur (BTBDS) can facilitate rapid amide bond formation between Nα‐urethane‐protected l ‐amino acids and l ‐phenylalanine ethyl ester in the absence of an external base. The corresponding dipeptide esters were obtained in excellent yields and with no detectable racemization, as judged by analysis of the formed dipeptides by chiral‐phase HPLC. In addition, BTBDS‐mediated condensation of benzoyl‐l ‐phenylalanine with l ‐phenylalanine ethyl ester was also investigated. The results indicate that sulfuranes can be useful for application in racemization‐sensitive systems, such as segment condensation.  相似文献   

13.
Abstract: A series of potential affinity label derivatives of the amphibian opioid peptide [d ‐Ala2]deltorphin I were prepared by incorporation at the para position of Phe3 (in the ‘message’ sequence) or Phe5 (in the ‘address’ sequence) of an electrophilic group (i.e. isothiocyanate or bromoacetamide). The introduction of the electrophile was accomplished by incorporating Fmoc‐Phe(p‐NHAlloc) into the peptide, followed later in the synthesis by selective deprotection of the Alloc group and modification of the resulting amine. While para substitution decreased the δ‐opioid receptor affinity, selected analogs retained nanomolar affinity for δ receptors. [d ‐Ala2,Phe(p‐NCS)3]deltorphin I exhibited moderate affinity (IC50 = 83 nm ) and high selectivity for δ receptors, while the corresponding amine and bromoacetamide derivatives showed pronounced decreases in δ‐receptor affinity (80‐ and >1200‐fold, respectively, compared with [d ‐Ala2]deltorphin I). In the ‘address’ sequence, the Phe(p‐NH2)5 derivative showed the highest δ‐receptor affinity (IC50 = 32 nm ), while the Phe(p‐NHCOCH2Br)5 and Phe(p‐NCS)5 peptides displayed four‐ and tenfold lower δ‐receptor affinities, respectively. [d ‐Ala2,Phe(p‐NCS)3]deltorphin I exhibited wash‐resistant inhibition of [3H][d ‐Pen2,D‐Pen5]enkephalin (DPDPE) binding to δ receptors at a concentration of 80 nm . [d ‐Ala2, Phe(p‐NCS)3]deltorphin I represents the first affinity label derivative of one of the potent and selective amphibian opioid peptides, and the first electrophilic affinity label derivative of an agonist containing the reactive functionality in the ‘message’ sequence of the peptide.  相似文献   

14.
Abstract: A synthetic peptide that inhibits the growth of estrogen receptor positive (ER+) human breast cancers, growing as xenografts in mice, has been reported. The cyclic 9‐mer peptide, cyclo[EMTOVNOGQ], is derived from α‐fetoprotein (AFP), a safe, naturally occurring human protein produced during pregnancy, which itself has anti‐estrogenic and anti‐breast cancer activity. To determine the pharmacophore of the peptide, a series of analogs was prepared using solid‐phase peptide synthesis. Analogs were screened in a 1‐day bioassay, which assessed their ability to inhibit the estrogen‐stimulated growth of uterus in immature mice. Deletion of glutamic acid, Glu1, abolished activity of the peptide, but glutamine (Gln) or asparagine (Asn) could be substituted for Glu1 without loss of activity. Methionine (Met2) was replaced with lysine (Lys) or tyrosine (Tyr) with retention of activity. Substitution of Lys for Met2 in the cyclic molecule resulted in a compound with activity comparable with the Met2‐containing cyclic molecule, but with a greater than twofold increase in purity and corresponding increase in yield. This Lys analog demonstrated anti‐breast cancer activity equivalent to that of the original Met‐containing peptide. Therefore, Met2 is not essential for biologic activity and substitution of Lys is synthetically advantageous. Threonine (Thr3) is a nonessential site, and can be substituted with serine (Ser), valine (Val), or alanine (Ala) without significant loss of activity. Hydroxyproline (Hyp), substituted in place of the naturally occurring prolines (Pro4, Pro7), allowed retention of activity and increased stability of the peptide during storage. Replacement of the first Pro (Pro4) with Ser maintains the activity of the peptide, but substitution of Ser for the second Pro (Pro7) abolishes the activity of the peptide. This suggests that the imino acid at residue 7 is important for conformation of the peptide, and the backbone atoms are part of the pharmacophore, but Pro4 is not essential. Valine (Val5) can be substituted only with branched‐chain amino acids (isoleucine, leucine or Thr); replacement by d ‐valine or Ala resulted in loss of biologic activity. Thus, for this site, the bulky branched side chain is essential. Asparagine (Asn6) is essential for activity. Substitution with Gln or aspartic acid (Asp), resulted in reduction of biologic activity. Removal of glycine (Gly8) resulted in a loss of activity but nonconservative substitutions can be made at this site without a loss of activity indicating that it is not part of the pharmacophore. Cyclization of the peptide is facilitated by addition of Gln9, but this residue does not occur in AFP nor is it necessary for activity. Gln9 can be replaced with Asn, resulting in a molecule with similar activity. These data indicate that the pharmacophore of the peptide includes side chains of Val5 and Asn6 and backbone atoms contributed by Thr3, Val5, Asn6, Hyp7 and Gly8. Met2 and Gln9 can be modified or replaced. Glu1 can be replaced with charged amino acids, and is not likely to be part of the binding site of the peptide. The results of this study provide information that will be helpful in the rational modification of cyclo[EMTOVNOGQ] to yield peptide analogs and peptidomimetics with advantages in synthesis, pharmacologic properties, and biologic activity.  相似文献   

15.
Hydrogen sulphide (H2S) is generated endogenously from l ‐cysteine (l ‐Cys) by the enzymes cystathionine‐β‐synthase (CBS) and cystathionine‐γ‐lyase (CSE). In addition, l ‐Cys is commonly used as a precursor in the food and pharmaceutical industries. The aim of the present study is to determine whether l ‐Cys regulates intestinal nutrient transport. To that end, the presence of CBS and CSE in the jejunum epithelium was assessed by immunohistochemistry, Western blotting and the methylene blue assay. In addition, in vivo l ‐Cys (100 mg/kg, administered immediately after the glucose load) significantly increased blood glucose levels 30 min after the oral administration of glucose to mice. This effect of l ‐Cys was completely blocked by amino‐oxyacetic acid (AOA; 50 mg/kg; administered at the same time as l ‐Cys) an inhibitor of CBS. Measurements of the short‐circuit current (Isc) in the rat jejunum epithelium revealed that l ‐Cys (1 mmol/L; 6 min before the administration of l ‐alanine) enhances Na+‐coupled l ‐alanine or glucose transport, and that this effect is inhibited by AOA (1 mmol/L;10 min before the administration of l ‐Cys), but not d ,l ‐propargylglycine (PAG;1 mmol/L; 10 min before the administration of l ‐Cys), a CSE inhibitor. Notably, l ‐Cys‐evoked enhancement of nutrient transport was alleviated by glibenclamide (Gli;0.1 mmol/L; 10 min before the administration of l ‐Cys), a K+ channel blocker. Together, the data indicate that l ‐Cys enhances jejunal nutrient transport, suggesting a new approach to future treatment of nutrition‐related maladies, including a range of serious health consequences linked to undernutrition.  相似文献   

16.
Abstract: We synthesized using solution‐phase methods three analogs of [l ‐Leu11‐OMe] trichogin GA IV, a membrane active synthetic precursor of the lipopeptaibol antibiotic in which the N‐terminal n‐octanoyl group and each of the three Aib residues in positions 1, 4 and 8 are replaced by an acetyl group and the lipophilic Cα,α‐disubstituted glycine l ‐(αMe)Aun, respectively [partial (αMe)Aun scan]. FT‐IR absorption and CD analyses unequivocally show that the main three‐dimensional structural features of [l ‐Leu11‐OMe] trichogin GA IV are preserved in the analogs. Also, [l ‐Leu11‐OMe] trichogin GA IV and the three Nαacetylated l ‐(αMe)Aun analogs exhibit strictly comparable membrane‐modifying properties. Taken together, these results strongly favor the conclusion that a shift of the long hydrocarbon moiety from the Nαblocking group to the side‐chain of the 1, 4 or 8 residue does not have any significant effect on the conformational properties or the membrane activity of [l ‐Leu11‐OMe] trichogin GA IV and, by extension, of the natural lipopeptaibol.  相似文献   

17.
Vitamin D3 and the synthetic vitamin D analogs, 1α‐hydroxyvitamin D3 [1α(OH)D3], 1α‐hydroxyvitamin D2 [1α(OH)D2] and 25‐hydroxyvitamin D3 [25(OH)D3] were appraised for their vitamin D receptor (VDR) associated‐potencies as cholesterol lowering agents in mice in vivo. These precursors are activated in vivo: 1α(OH)D3 and 1α(OH)D2 are transformed by liver CYP2R1 and CYP27A1 to active VDR ligands, 1α,25‐dihydroxyvitamin D3 [1,25(OH)2D3] and 1α,25‐dihydroxyvitamin D2 [1,25(OH)2D2], respectively. 1α(OH)D2 may also be activated by CYP24A1 to 1α,24‐dihydroxyvitamin D2 [1,24(OH)2D2], another active VDR ligand. 25(OH)D3, the metabolite formed via CYP2R1 and or CYP27A1 in liver from vitamin D3, is activated by CYP27B1 in the kidney to 1,25(OH)2D3. In C57BL/6 mice fed the high fat/high cholesterol Western diet for 3 weeks, vitamin D analogs were administered every other day intraperitoneally during the last week of the diet. The rank order for cholesterol lowering, achieved via mouse liver small heterodimer partner (Shp) inhibition and increased cholesterol 7α‐hydroxylase (Cyp7a1) expression, was: 1.75 nmol/kg 1α(OH)D3 > 1248 nmol/kg 25(OH)D3 (dose ratio of 0.0014) > > 1625 nmol/kg vitamin D3. Except for 1.21 nmol/kg 1α(OH)D2 that failed to lower liver and plasma cholesterol contents, a significant negative correlation was observed between the liver concentration of 1,25(OH)2D3 formed from the precursors and liver cholesterol levels. The composite results show that vitamin D analogs 1α(OH)D3 and 25(OH)D3 exhibit cholesterol lowering properties upon activation to 1,25(OH)2D3: 1α(OH)D3 is rapidly activated by liver enzymes and 25(OH)D3 is slowly activated by renal Cyp27b1 in mouse.  相似文献   

18.
Abstract: The N‐terminal 1–34 segment of parathyroid hormone (PTH) is fully active in vitro and in vivo and it can reproduce all biological responses in bone characteristic of the native intact PTH. Recent studies have demonstrated that N‐terminal fragments presenting the principal activating domain such as PTH(1–11) and PTH(1–14) with helicity‐enhancing substitutions yield potent analogues with PTH(1–34)‐like activity. To further investigate the role of α‐helicity on biological potency, we designed and synthesized by solid‐phase methodology the following hPTH(1–11) analogues substituted at positions 1 and/or 3 by the sterically hindered and helix‐promoting Cα‐tetrasubstituted α‐amino acids α‐amino isobutyric acid (Aib), 1‐aminocyclopentane‐1‐carboxylic acid (Ac5c) and 1‐aminocyclohexane‐1‐carboxylic acid (Ac6c): Ac5c‐V‐Aib‐E‐I‐Q‐L‐M‐H‐Q‐R‐NH2 ( I ); Aib‐V‐Ac5c‐E‐I‐Q‐L‐M‐H‐Q‐R‐NH2 ( II ); Ac6c‐V‐Aib‐E‐I‐Q‐L‐M‐H‐Q‐R‐NH2 ( III ); Aib‐V‐Ac6c‐E‐I‐Q‐L‐M‐H‐Q‐R‐NH2 ( IV ); Aib‐V‐Aib‐E‐I‐Q‐L‐M‐H‐Q‐R‐NH2 ( V ); S‐V‐Aib‐E‐I‐Q‐L‐M‐H‐Q‐R‐NH2 ( VI ), S‐V‐Ac5c‐E‐I‐Q‐L‐M‐H‐Q‐R‐NH2 ( VII ); Ac5c‐V‐S‐E‐I‐Q‐L‐M‐H‐Q‐R‐NH2 ( VIII ); Ac6c‐V‐S‐E‐I‐Q‐L‐M‐H‐Q‐R‐NH2 ( IX ); Ac5c‐V‐Ac5c‐E‐I‐Q‐L‐M‐H‐Q‐R‐NH2 ( X ); Ac6c‐V‐Ac6c‐E‐I‐Q‐L‐M‐H‐Q‐R‐NH2 ( XI ). All analogues were biologically evaluated and conformationally characterized in 2,2,2‐trifluoroethanol (TFE) solution by circular dichroism (CD). Analogues I – V , which cover the full range of biological activity observed in the present study, were further conformationally characterized in detail by nuclear magnetic resonance (NMR) and computer simulations studies. The results of ligand‐stimulated cAMP accumulation experiments indicated that analogues I and II are active, analogues III , VI and VII are very weakly active and analogues IV , V , VIII–XI are inactive. The most potent analogue, I exhibits biological activity 3500‐fold higher than that of the native PTH(1–11) and only 15‐fold weaker than that of the native sequence hPTH(1–34). Remarkably, the two most potent analogues, I and II , and the very weakly active analogues, VI and VII , exhibit similar helix contents. These results indicate that the presence of a stable N‐terminal helical sequence is an important but not sufficient condition for biological activity.  相似文献   

19.
Abstract: General methods for the preparation of protected Nα(ω‐thioalkyl) amino acids building units for backbone cyclization using reductive alkylation and on‐resin preparation are described. The synthesis of non‐Gly Fmoc‐protected S‐functionalized N‐alkylated amino acids is based on the reaction of readily prepared protected ω‐thio aldehyde with the appropriate amino acid. Preparation of Fmoc‐protected S‐functionalized N‐alkylated Gly building units was carried out using two methods: reaction of glyoxylic acid with Acm‐thioalkylamine and an on‐resin reaction of bromoacetyl resin with Trt‐thioalkylamines. Three model peptides were prepared using these building units. The GlyS2 building unit was incorporated into a backbone cyclic analog of somatostatin that contains a disulfide bridge. Formation of the disulfide bridge was performed by on‐resin oxidation using I2 or Tl(CF3COO)3. Both methods resulted in the desired product in a high degree of purity in the crude. The AspS3 building unit was also successfully incorporated into a model peptide. In addition, the in situ generation of sulfur containing Gly building units was demonstrated on a Substance P backbone cyclic analog containing a thioether bridge.  相似文献   

20.
A facile strategy for the stereoselective synthesis of suitably protected O-glycosylated amino acid building blocks, namely, Nα-Fmoc-Ser-[Ac4-β-d -Gal-(1-3)-Ac2α or β-d -GalN3]-OPfp and Nα-Fmoc-Thr-[Ac4-β-d -Gal-(1-3)-Ac2-α or β-d -GalN3]-OPfp is described. What is new and novel in this report is that Koenigs-Knorr type glycosylation of an aglycon serine/threonine derivative (i.e. Nα-Fmoc-Ser-OPfp or Nα-Fmoc-Thr-OPfp) with protected β-d -Gal(1-3)-d -GalN3 synthon mediated by silver salts resulted in only α-and/or β-isomers in excellent yields under two different reaction conditions. The subtle differences in stereoselectivity were demonstrated clearly when glycosylation was carried out using only AgClO4 at -40°C which afforded α-isomer in a quantitative yield (α:β= 5:1). On the other hand, the β-isomer was formed exclusively when the reaction was performed in the presence of Ag2CO3AgClO4 at room temperature. A complete assignment of 1H resonances to individual sugar ring protons and the characteristic anomeric α-1H and β-1H in Ac4Galβ(1-3)Ac2GalN3α and/or β linked to Ser/Thr building blocks was accomplished unequivocally by two-dimensional double-quantum filtered correlated spectroscopy and nuclear Overhauser enhancement and exchange spectroscopy NMR experiments. An unambiguous structural characterization and documentation of chemical shifts, including the coupling constants for all the protons of the aforementioned a- and p-isomers of the O-glycosylated amino acid building blocks carrying protected β-d -Gal(1-3)-d -GalN3, could serve as a template in elucidating the three-dimensional structure of glycoproteins. The synthetic utility of the building blocks and versatility of the strategy was exemplified in the construction of human salivary mucin (MUC7)-derived, O-linked glycopeptides with varied degrees of glycosylation by solid-phase Fmoc chemistry. Fmoc/tert-butyl-based protecting groups were used for the peptidic  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号